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Abstract: The present work deals with the control and observer design for a one–stage spray
drying tower with focus on the optimization based trajectory planning and tracking control for
an operation setpoint change during continuous operation. Putting emphasis on the numerical
performance by employing different discretization schemes in combination with CasADi, key
achievements are (i) an optimization-based system inversion for target trajectory generation,
and (ii) a real-time capable model predictive tracking controller with computation times below
one second in combination with either an extended Kalman Filter or a moving horizon estimator.
The performance is shown in numerical simulations for a previously validated process model.
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1. INTRODUCTION

As spray drying is a dominant process in process engi-
neering of powdered products from liquids (Wrzosek et al.,
2013), a big interest lies in its optimization (Petersen et al.,
2017). The underlying physics can be formulated within a
two-time scale system, where the thermodynamics evolve
slowly with respect to the fast time-scale of the associ-
ated particle dynamics. Having as goal the achievement
of a desired size distribution of the dried particles, the
slow thermodynamic states are determined such that the
product quality is ensured.

In previous control oriented works different Model Predic-
tive Control (MPC) schemes are used to optimize and con-
trol a spray drying plant in continuous operation with the
purpose to reject step disturbances in feed concentration
or ambient humidity. In some cases a linear MPC with
Real Time Optimization (RTO) is used (Petersen et al.,
2014, 2015b) and the state estimation is done with a linear
Kalman Filter. The goal in these works was to maximize
the throughput and the residual moisture content while
minimizing the supply of energy from the inlet air. Other
works used an Economic Nonlinear MPC (Petersen et al.,
2015a, 2017) in combination with an Extended Kalman
Filter (EKF) based estimation scheme. In all these works,
the sampling and computation time was set to ∆t = 30 s.
The authors mentioned, that future works should focus
on speeding up the computational time, e.g. by employing
CasADi.

Regarding the efficient implementation of schemes for
continuous state estimation with discrete measurements,
many studies have been reported so far. For the purpose
of the present analysis the most important to mention
are the works of (Boiroux et al., 2019; Frogerais et al.,

2011; Kulikov and Kulikova, 2013) addressing the design of
Continous Discrete Extended Kalman Filters (CDEKFs),
and (Rao and Rawlings, 2000) proposing a solution using
Moving Horizon Estimator (MHE), which in addition
allows the consideration of inequality constraints on the
states using dynamic programming.

The present work considers a different problem in re-
gard to the spray drying operation, namely the change
of operation setpoint of the spray drying unit during run–
time. A possible scenario is, e.g., re-start up after a short
power shortage or actuator failure. It is shown that by
manipulation of the inlet flow of the liquid solution feed,
the process variables can be steered back to the desired
operation setpoint following an optimized trajectory for
the thermodynamic states. Within this optimization step,
it is possible to include constraints on the process vari-
ables, e.g. to prevent too low drying temperatures and
condensation of water in the drying chamber. By an effi-
cient use of different discretization schemes in combination
with CasADi, it is shown that a trajectory tracking control
using MPC in combination with an EKF or MHE based
state estimation can be achieved within sampling times of
∆t = 1 s, thus ensuring real–time capability with a normal
PC. A comparison between the EKF and MHE based state
estimation schemes for the considered spray drying process
is provided in particular with regard to their measurement
error compensation abilities.

2. PROBLEM DESCRIPTION

A typical spray dryer set up is shown in Figure 1, inspired
by the Mini Büchi used for the validation of the model
employed in the present study. The basic working principle
is as follows. A bi–component solution of water and solvent
is pumped by a peristaltic pump and it is atomized by
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Fig. 1. Principle arrangement of a spray dryer, motivated
by the case of the Mini Büchi B290, inspired by
(Wrzosek et al., 2013).

the nozzle. The created droplets fall through the drying
chamber within a concurrent flow field of air, the flow field
is set by the aspirator volume flow. The air is heated by
the inlet heating element. The dried particles are collected
via the outlet cyclone. Too small particles find their way
into the bag filter outlet.

The thermodynamic model of Lepsien and Schaum (2024)
is used for optimization based trajectory planning and
tracking. The coupled thermodynamic and particle dy-
namic model equations can be written in state space form
as

ẋ = f̄(x,u, p), t > 0, x(0) = x0 (1a)

y = h(x,u), (1b)

ϵṗ = L [x,u] {p} , t > 0, p(0) = p0 (1c)

yp = p̄(x,u, s, t), (1d)

where ϵ ≪ 1 represents the time scale variation and
x(t) ∈ Rn,u(t) ∈ Rp,y(t) ∈ Rm represent the thermo-
dynamic state, input and output variables at time t ≥ 0,
respectively. The functions f̄ : Rn

+×Rp×H → Rn and h :
Rn

+ → Rm represent the thermodynamic dynamics with
respect to both time scales. The operator L[x,u] : H → H
maps suitable function spaces H and is dependent on the
thermodynamic system state. It describes the dynamics of
the Particle Size Distribution (PSD) Probability Density
Function (PDF) p, with associated measurement function
p̄, given, e.g., by the mean particle size, which most com-
monly is not available online.

For the purpose at hand, the specific dynamics of the
PSD are neglected and approximated with noise entering
the system model. The thermodynamic state variables
of product X and air humidity Y as well as the tower
temperature T are considered and summarized in the
state vector x = [Xtower, Ytower, Ttower]

T
. The detailed

dynamics are elaborated in Lepsien and Schaum (2024)
and summarized by

Ẋtower =
1

ms
[Fp,inXin − Fp,outXtower −Rw] , (2)

Ẏtower =
1

mda

[
Fa,inYin − Fa,outYtower + . . .

Rw + FaddYadd − FaddYtower

]
,

(3)

Ṫtower =
1

Cthermal

[
Fa,inha,in − Fa,outha,out+

Fp,inhp,in − Fp,outhp,out −Qevap −Qloss

− Faddha,out + Faddha,add(Ttower)
]
,

(4)

with Fa,in, Fa,out being the inlet and outlet air mass flows,
and Fp,in, Fp,out the inlet and outlet solution mass flows.
The values of these quantities are determined by the
functions

Fa,in = v̇a,inρa,in = v̇a,in
Ma,inP0

RTa,in
, (5)

Fa,out = v̇a,outρa,out = v̇a,out
Ma,outP0

RTtower
, (6)

Fp,in = v̇p,in (ρsSin + ρw [1− Sin]) , (7)

Fp,out = v̇p,out (ρsStower + ρw [1− Stower]) , (8)

with

v̇p,in = v̇pump, v̇p,out = v̇pump − Rw

ρw
, (9)

v̇a,in = v̇aspirator −
Rw

ρv
, v̇a,out = v̇aspirator, (10)

where the water evaporation rate Rw corrects the volume
intake of air v̇a,in and the powder outtake v̇p,out by their
corresponding set values of the process control unit. The
specific equations for the evaporation rate and equilibrium
moisture content can be found in Lepsien and Schaum
(2024). Additionally, the relative humidity is measured
with the measurement function

RH(T, Y ) =
Y

Mv

Mda
+ Y

P0

P sat
v (T )

, (11)

with the saturation pressure [P sat
v ] = Pa described in

(Smith et al., 2018) and the atmospheric pressure P0.

In this work, as control input only the inlet flow of the
liquid solution feed v̇pump is considered. Therefore, the
inlet temperature, outflow velocity (fixed by the aspirator)
and liquid composition are considered constant. Further-
more, the process is typically subject to fluctuations and
the measurement is subject to noise. These considerations
lead to a stochastically perturbed input affine system of
the form

ẋ = f(x) + g(x)u+w, t > 0, x(0) = x0, (12a)

yk = h(xk)+vk, t ≥ 0, (12b)

with f , g chosen according to (2)-(4), and the discrete
measurement function h(xk) = [RH T ]T ,. Additionally the
disturbances in the system are described by w ∼ N (0, Q)
and v ∼ N (0, R) representing a zero mean multivariate
Gaussian process and measurement noise, respectively.

3. TRAJECTORY PLANNING

The idea behind the trajectory planning is, in case of power
failure and process plant shut–down, the system should be
brought into the desired operation point in the fastest and
most cost–efficient way as possible. For this purpose, first
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the actual state needs to be determined and then a suitable
trajectory needs to be determined along which the states
can be steered back to the desired operation setpoint.

The trajectory planning problem can be formulated as an
Optimal Control Problem (OCP) which aims to find an
optimal control input u∗(t) that drives the system from an
initial state x0 to a desired final state xf within prescribed
bounds on the system input and states, while minimizing
the cost functional J with

min
u

Jp(u) :=

∫ tf

t0

Lp(x(t), u(t), t)dt

subject to ẋ = f(x) + g(x)u

x(t0) = x0, x(tf) = xf

umin ≤ u(t) ≤ umax, x ∈ X

(13)

where t0 and tf are the initial and final times, umin and
umax are the lower and upper bounds on the control input,
and X ⊂ R3

+ is a suitable polytope satisfying physical
and safety constraints on the states. The Langrangian
Lp(x(t), u(t), t) is the instantaneous cost function at time
t, which penalizes deviations from desired behavior and
may include control effort, state errors, or other relevant
measures, such as economic considerations. In this work
the cost function is constructed from the state deviation
from the target value xf , the input value, which also
reflects the cost of the process, and the derivative of the
input variable leading to

Lp = [x(t)− xf ]
T
V p [x(t)− xf ]

+W pu2(t) + Spu̇2(t). (14)

Solving the optimization-based trajectory planning prob-
lem can involve various numerical optimization techniques,
such as gradient-based methods, direct transcription meth-
ods, or evolutionary algorithms. Efficient algorithms and
software tools are available to handle complex systems
and high-dimensional control inputs. In this paper, mul-
tiple shooting within CasADi(Andersson et al., 2019) is
employed. It should be noted that this is the first time
this approach is used to study the considered problem as
to the authors knowledge.

By applying multiple shooting, the OCP is transformed
into a finite-dimensional Nonlinear Program (NLP). The
obtained optimal control sequenceUp = [up

0 , u
p
1 , . . . , u

p
M−1]

can then be applied to the system.

The time derivative approximation of the input is given
by u̇ ≈ 1

∆t (uk − uk−1). Afterwards, the cost function is
set up to be

Jp
d (U

p) =

M−1∑
k=0

[xp
k − xf ]

T
V p [xp

k − xf ]

+W p (up
k)

2
+ Sp

(
up
k − up

k−1

)2
. (15)

Between each interval of size ∆t, a system shift occurs,
representing the solution of the system Ordinary Differen-
tial Equation (ODE), that can be computed with different
discretization schemes. The discretization scheme found to
be the most effective for this trajectory planning problem
is the implicit Euler method, since the step size can be
chosen relatively large. The usage of the implicit Euler
scheme is interesting for the trajectory planning approach,
as the convergence will not depend on the choice of the

Planning
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Disturbances
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ymeas,x
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ex ỹ

−
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Fig. 2. Block diagram of the trajectory tracking problem.

number of time intervals M . Due to this advantage, the di-
mensionality of the multiple shooting OCP can be reduced
and a faster computation follows. The disadvantage of this
approach in the context of input planning, is that at tf the
input for the next time instant has to be known. In this
work, this problem is surpassed, by setting uN+1 = uN in
the planning. This approach is useful in the case of spray
drying as a flow of solution into the drying unit is necessary
for the drying operation.

4. TRAJECTORY TRACKING

The schematic diagram of the tracking control scheme can
be seen in Fig. 2. To track the planned state trajectory
xp(t), an MPC is used.

4.1 MPC

The objective of the model predictive tracking control is to
find the optimal control sequence U t = [ut

0, u
t
1, . . . , u

t
M−1]

that minimizes the cost function

J t
d(U

t) =

M−1∑
k=0

[
xp
k − xt

k

]T
V t

[
xp
k − xt

k

]
+W t

(
up
k − ut

k

)2
+ St

(
ut
k − ut

k−1

)2
, (16)

subject to input and state constraints, similarly to the
planning.

While the MPC is similar to the planning problem there
are two main differences. First, in the cost function the
deviations from the planned state and input trajectories
are considered instead of the reference values. Secondly,
Runge-Kutta of order 4 is employed to calculate the state
shift, with constant inputs uk between sampling intervals.
The reason for the different choice of discretization is
that the differential equation can behave stiffly over the
planning horizon and therefore an implicit method pro-
vides more robust results. A small horizon is used for the
tracking controller and therefore an explicit method can
be used. Again, an efficient solution of this optimization
problem is achieved using CasADi.
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4.2 Nonlinear state estimation

As can be seen in the optimization problem cost function
(16) the tracking state xt needs to be known in each
sampling point. As only parts of the state vector x are
measured it is necessary to implement a state estimation
scheme. In the following, two different observers are com-
pared, namely the MHE and EKF. They are designed and
employed in this paper to estimate the system state, which
is necessary to set up the trajectory tracking problem.

MHE The MHE, also known as Nonlinear Model Predic-
tive Estimation (NMPE), is an advanced state estimation
technique used to estimate the states of a dynamic system
using a sequence of measurements over a moving time
horizon (Sun et al., 2014; Hedengren et al., 2014).

The MHE estimation problem can be formulated as a
sequential optimization problem. At each time step k,
we define a moving time horizon N that contains the
most recent N measurements. The objective is to find the
state estimate x̂k that minimizes a cost function over the
preceding horizon N and reads

x̂k = argmin
xk−N ,...,xk

JMHE
d (17)

JMHE
d =

N∑
i=0

(yk−i − h(x̂k−i))
T R−1(yk−i − h(x̂k−i))

with the inverse measurement noise covariance R−1. It
would also be possible to include the input estimation due
to actuator inaccuracies with the term (uk−i− ûk−i)

2T−1,
containing the inverse actuator error covariance T−1. The
summation is performed over the preceding horizon of N
steps. The optimization problem is subject to the state
dynamics and control constraints to ensure the feasibility
of the estimated state trajectory. The MHE algorithm
can be cast into a NLP formulation similarly as above
described. For the solution CasADi is employed, as well.

EKF For comparison, an EKF is implemented and
compared with the above MHE observer. The observer
implemented in regard to the system at hand, is a CDEKF,
as described in (Boiroux et al., 2019; Frogerais et al., 2011;
Kulikov and Kulikova, 2013) with regular sampling points
at tk = k∆t. Here, the sampling time ∆t = 1 s. The main
idea consists in using the actual estimate x̂(tk) at time
tk as initial value for obtaining a state estimate x̂(t) for
t ∈ [tk, tk+1) according to

˙̂xp = f(x̂p) + g(x̂p)u, t ∈ (tk, tk+1], (18)

with initial condition x̂p(tk) = x̂(tk), and the associated
covariance prediction according to

Ṗp = AkPp + PpA
T
k +Q, t ∈ (tk, tk+1], (19)

with initial condition Pp(tk) = P (tk). These ODEs are
solved with ode15s in MATLAB. The jacobians A and C
are given by

Ak =
∂f

∂x
(x̂(tk))+

∂g

∂x
(x̂(tk))u(tk), Ck =

∂h

∂x
(x̂(tk)).

Corrections take place at the sampling instants tk only,
according to

x̂(tk+1) = x̂p(tk+1) + Lk+1 (y − h(x̂p(tk+1))) , (20)

Pk+1 = (I − Lk+1Ck+1)Pp. (21)

with the correction gain Lk+1 being given by

Lk+1 = PpC
T
k+1

(
Ck+1PpC

T
k+1 +R

)−1
. (22)

5. CASE STUDY

As a case study, the constant input variables in (1a) are
set. The outlet aspirator air flow is set to v̇a = 35m3 h−1,
the inlet powder concentration to Sin = 10% and the
inlet heated air temperature to Ta,in = 135 ◦C. This case
study uses V p = diag

[
1 · 104, 1 · 104, 1 · 100

]
, W p = 1 ·

10−2 and Sp = 1 · 101 for the planning cost function and
V t = diag

[
1 · 104, 1 · 104, 1 · 100

]
, W t = 1 ·10−2, Rundis. =

diag
[
1 · 10−4, 5 · 10−10

]
, Rdis. = diag

[
5 · 10−1, 5 · 10−5

]
and Q = diag

[
1 · 10−6, 1 · 10−9, 1 · 10−5

]
in the tracking

cost function.

To compare these observers, different scenarios are simu-
lated. Firstly, one with very little noise on the measure-
ments without input disturbances. Secondly, more signif-
icant noise on the measurements without input distur-
bances. It should be noted, that the MHE only starts
to correct the state prediction with the measurements
after N time steps, whereas the EKF starts the prediction
immediately. Note, that due to the implementation of the
MHE, in the first steps, until the moving horizon of the
estimator is filled with measurements, the planned control
inputs are used and the tracking MPC starts to optimize,
when the MHE starts to give a state estimate. In this
implementation, the MPC horizon is chosen as M = 10
and the MHE horizon as N = 10, respectively. The control
action is computed for every time step. Furthermore, it
was necessary to change the cost function for the MHE
based MPC, such that the input derivative is penalized
harder in the case, when noise is present in the system.
If this would not be done, the solver does not converge.
The EKF based MPC would have converged for lower
input derivative penalty, but for comparability the value
is chosen equally for both approaches to be St = 1 ·105. It
should be noted, that the initial condition of the observers
is set to be the same as in the simulated system, as the
trajectory planning works with this initial condition.

To ensure real–time capability of the system, a simulation
with 600 time steps is conducted ten times with the
same random seed for all simulations and the time of
each optimization step is calculated. The corresponding
statistics can be found in Tab. 1. The standard IPOPT
Wächter and Biegler (2006) options are used in CasADi.
Note, that all solver times are below the sampling interval
of ∆t = 1 s, the maximum times for the MHE occur
at the first estimation step. The reason behind this can
be the initialization of the MHE with the planned input
trajectory and the disturbed system states. It should be
noted, that the EKF based approach seems more suitable,
as the estimator is deterministic in computational time
and has a lower mean and maximum MPC step time than
the optimization based MHE scheme. In any case, if the
computational time would exceed the sampling time, the
MPC control input for this instance can be chosen, as
it plans with M steps into the future at the given time
instance.
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Table 1. Solver time statistics for the disturbed
systems in seconds.

Context Component Value

MPC–EKF tmean 0.0197
tmedian 0.0187
tmax 0.1882
tmin 0.0180

MPC–MHE tmean 0.0397
tmedian 0.0371
tmax 0.9846
tmin 0.0328

The planning and tracking input results can be found
in Fig. 3 for the disturbed system. The simulated state
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Fig. 3. Input Trajectories in the disturbed simulation.

trajectories in state space can be found in Fig. 4 for the
disturbed case. Additionally, the resulting state evolution

0

20

40

16
18

20

40

50

60

Xtower (g/kg)Ytower (g/kg)

T
to
w
e
r
(◦
C
)

xset

xp

x̂t,MHE

x̂t,EKF

Fig. 4. Resulting state vector x(t) in phase space from the
closed–loop simulation with the planned input of the
planning MPC, the set-point is marked as an orange
cross, estimated trajectories are dashed.

of the disturbed system over time can be seen in Fig. 5 and
the corresponding disturbed measurements used for state
estimation can be found in Fig. 6.
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Fig. 5. Resulting state vector x(t) from the closed–loop
simulation with measurement noise and comparison
between both estimator types.
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schemes.

6. CONCLUSION

In this paper a MPC for the slow manifold of a spray
drying operation in combination with two different es-
timation schemes is designed and tested numerically. It
is shown, that trajectory planning and tracking with the
combined controller–estimator schemes work, even if noise
is entering the system. Furthermore, it is shown, that the
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usage of CasADi speeds up the computational time, to
ensure real–time applicability with an one second actuator
time interval. A future research problem is the change of
the set-point trajectory planning to another optimization
problem, which couples the particle- and thermodynamics.
Solving this optimization problem will again result in a
thermodynamic trajectory to be tracked with an MPC.
Here, particle distribution measurements could also be
included into the estimator model to achieve a better
convergence of the controller.
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Appendix A. PARAMETER TABLES

Table A.1. Simulation Parameters.

Context Constant Value Unit

Fixed Parameters

Density ρs 1.514 gmL−1

ρw 1.0 gmL−1

Molar Mass Mda 28.9647 gmol−1

Mv 18.01528 gmol−1

Mw 18.01528 gmol−1

Gas Constant R 8.3145 Jmol−1 K−1

Antoine Equation A 16.3872 −
B 3885.7 ◦C

C 230.17 ◦C

Heat Capacity Dry Air Ada 3.355 −
Bda 0.575 · 10−3 K−1

Cda 0 K−2

Dda −0.016 · 105 K2

Heat Capacity Water Vapor Av 3.470 −
Bv 1.450 · 10−3 K−1

Cv 0 K−2

Dv 0.121 · 105 K2

Heat Capacity Liquid Water Aw 8.712 −
Bw 1.25 · 10−3 K−1

Cw −0.18 · 10−6 K−2

Dw 0 K2

Latent Heat λref 2257 J g−1

Tref,evap 373.15 K

α 647.1 K

β 0.38 −
Thin-Layer Equation T0 298.15 K

Heat Capacity Solid Mannitol As,m 207.790 −
Bs,m 141.210 −
Cs,m −23.623 −
Ds,m −38.543 −
Es,m 44.992 −
Fs,m 23.902 −
Gs,m −32.126 −
Tmin 90 K

Tmax 390 K

Identified Parameters

Masses ms 0.1 kg

mda 6 kg

Thin-Layer Equation kw,1 3 · 10−2 s−1

kw,2 2.50 · 104 Jmol−1

kw,3 0.10016 −
GAB X′

0 0.2759 kg kg−1

K′ 0.8987 kg kg−1

C′ 0.2221 kg kg−1

∆HX 500 Jmol−1

∆HK 500 Jmol−1

∆HC 500 Jmol−1

Xadd −7.804 · 10−5 kg kg−1

Heat Loss kUA 0.0899 WK−1

Heat Capacity Cthermal 9 · 103 JK−1

Additive Parts Yadd 0.0117 kg kg−1

Tadd 320.5 K

Fadd 0.11 kg s−1
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