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Abstract: Learning from time series data in industrial scenarios enables the detection and classification of 

anomalies or faults in equipment and production processes. In industrial settings, variations in production 

equipment parameters or raw materials lead to changes in production operating conditions, resulting in the 

multi-operating condition characteristics of the data and placing higher requirements on anomaly detection 

models. This paper introduces domain adaptation and contrastive learning methods for multi-operating 

condition time series data, and designs an end-to-end model structure to enhance the performance of time 

series anomaly detection. The objective loss function incorporates the maximum mean discrepancy (MMD) 

and contrastive loss functions. The proposed approach is validated and analyzed on a simulated dataset. 
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1. INTRODUCTION 

In the era of digitization and automation, data generated from 

industrial processes contains valuable information, which can 

be used to predict production line yields and detect anomalies 

in industrial equipment or processes. Anomalies in production 

processes refer to situations that deviate from normal 

production conditions, such as equipment faults or deviations 

in equipment parameter settings. It is crucial to identify and 

detect potential anomalies and faults as early as possible.  

Time series data is a commonly found data format in factory 

data, in addition to image data. The temporal dependency of 

time series data requires different analysis approaches 

compared to image and text data. Time series data is an 

important research focus in academia, including prediction, 

anomaly detection, and classification. In industrial scenarios, 

time series data presents complex and variable conditions, 

such as unlabeled data, multi-operating condition, and known 

source domain data or target domain data with unknown labels.  

To address these challenges, we introduce domain adaptation 

methods from transfer learning (Weiss et al., 2016). In this 

paper, we focus on studying time series data with multi-

operating conditions. Drawing inspiration from domain 

adaptation techniques in the visual domain and incorporating 

contrastive learning algorithms, an end-to-end deep learning 

model is designed for anomaly detection in multi-operating 

conditions of time series data. The proposed model is validated 

and analyzed using a simulated dataset. The key contribution 

of this work is twofold. 

1) A Cross Domain-Contrastive Learning (CdCl) method is 

proposed to solve anomaly detection under multi-operating 

conditions by training a model based on known information 

and performing fault diagnosis on unlabeled data in the target 

domain.  

2) The proposed model constructs positive sample pairs of 

time series through different kinds of encoders, and retains 

only domain adaptive label classifiers while removing domain 

classifiers, which can ensure performance while reducing 

model complexity. 

The paper is structured as follows: Section 2 provides a 

detailed explanation of the methodology, Section 3 presents an 

analysis of the experiment conducted on an industrial process 

dataset, and Section 4 concludes the paper. 

2. METHODS 

2.1 Problem Definition 

Anomaly refers to behavior patterns in data that significantly 

deviate from normal conditions, and detecting these inconsist-

ent patterns is known as anomaly detection (Chandola et al., 

2009). In general, anomaly detection in the industrial domain 

often refers to fault diagnosis. Multi-operational conditions are 

crucial scenarios faced by industrial data, where variations in 

raw materials and external environmental factors can cause 

abrupt changes in the production process, resulting in 

multimodal characteristics (Liu and Qin, 2016). 

Unlike other research fields in machine learning, the term 

"modality" here does not refer to diverse patterns of different 

data representations such as images or videos, but is defined 

as changes in operating points. To avoid confusion, we refer to 

these variations in industrial process operating points as multi-

operational conditions. Under different operational conditions, 

data may exhibit multimodal distributions, and fault detection 

models built based on one condition may exhibit higher false 

alarm rates in other conditions (Bi et al., 2022).  

Although deep learning methods have been successfully 

applied in the field of fault diagnosis (Saeed et al., 2020), such 

approaches impose higher requirements on training data. 
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Firstly, an abundant and high-quality dataset is required, and 

secondly, the training and testing data should come from the 

same operational conditions. Only by simultaneously satisfy-

ing these conditions can the effectiveness of the fault diagnosis 

model be ensured. However, in practical situations, due to 

various environmental factors, the collected data often comes 

from different operational conditions, and there is a significant 

class imbalance in the collected data. 

Transfer learning can guide deep learning models to learn 

domain-invariant feature representations, i.e., narrowing the 

data distribution differences among different domains to adapt 

to the differences between source domain and target domain. 

For instance, within the realm of object recognition, a self-

supervised domain adaptation method is proposed to evaluate 

the multi-source domain adaptation dataset (Xu et al., 2019), 

which consists of 7 object categories and 4 domains (i.e. 

photos, art paintings, cartoons, and sketches). One of the 

domains is selected as the target domain for training the model, 

while the other three domains are used as the source domain. 

Different datasets from various operating conditions can be 

considered as different domains, but the objective of anomaly 

detection still remains consistent. The methods mentioned 

above can also be applied to time series data, offering a 

solution for fault detection in scenarios involving multiple 

operating conditions (Wu and Zhao, 2020). 

In transfer learning, we treat the known labeled data from the 

operating conditions as the source domain, and the unlabeled 

data as the target domain. Therefore, our problem and its 

objective are defined as: provided with labeled data from the 

source domain and unlabeled data from the target domain, we 

aim to train a model that brings the source and target domain 

data closer together in the feature space. Consequently, the 

classifier trained on the source domain for fault classification 

should perform effectively on the target domain. 

2.2 Transfer Learning 

Domain: It refers to the primary focus of learning, which 

includes two main components: the feature space X and the 

probability distribution P(X) that generates the data (Pan and 

Yang, 2009). Typically, D is used to represent a domain, while 

P represents a probability distribution. In the context of 

transfer learning, two fundamental domains are involved 

specifically: the source domain 𝐷𝑠 and the target domain 𝐷𝑡 . 

Task: It refers to the learning objective, which consists of two 

main components: the label space Y and the function f() that 

associates inputs with their corresponding labels (Pan and 

Yang, 2009). Y is commonly used to represent the label space, 

and f() or 𝑃(𝑦|𝑥) represents a learning function. The class 

spaces for the source domain and the target domain are 

denoted as 𝑌𝑠 and 𝑌𝑡, respectively. 

 𝑇𝑠 = {𝑌𝑠, 𝑃𝑠(𝑦|𝑥)}，𝑇𝑡 = {𝑌𝑡 , 𝑃𝑡(𝑦|𝑥)}.            (1) 

If two domains are consistent, i.e., 𝐷𝑠 = 𝐷𝑡  and 𝑇𝑠 = 𝑇𝑡 , 

traditional machine learning methods can be adopted to 

address this issue, where 𝐷𝑠 serves as the training set and 𝐷𝑡  

serves as the testing set. However, if 𝐷𝑠 ≠ 𝐷𝑡 or 𝑇𝑠 ≠ 𝑇𝑡, a 

model trained on 𝐷𝑠 may not perform well on 𝐷𝑡 . When there 

exists a correlation between the source domain and the target 

domain, the knowledge and information gathered from the 

source domain can be utilized to improve the predictive 

capabilities of the target task learning function  𝑃𝑡(𝑦|𝑥). This 

process is known as transfer learning (Csurka, 2017). 

2.3 Domain Adaptation 

Domain adaptation (DA) is one of the most prominent 

problems in transfer learning, which aims to learn classifiers 

for unlabeled or unseen data in the target domain using labeled 

data from one or multiple related source domains (Csurka, 

2017). The general assumption in domain adaptation is:  

 𝑃𝑠(𝑥) = 𝑃𝑡(𝑥),    𝑃𝑠(𝑦|𝑥) ≠ 𝑃𝑡(𝑦|𝑥).            (2) 

The objective of domain adaptation is to identify common 

features across different distributions and transfer invariant 

information (Csurka, 2017). Domain adaptation are commonly 

observed in the field of image analysis, such as images from 

different scenes or with different styles. Time series data can 

also exhibit multiple sources, such as varied motor loads or 

different operational settings in a manufacturing process. 

The most commonly used distance measure in domain 

adaptation is maximum mean discrepancy (MMD) (Gretton et 

al., 2007). It calculates the distance between data from the 

source domain 𝐷𝑠  and the target domain 𝐷𝑡  after mapping 

them to a reproduced kernel Hilbert space. The detailed 

definition of MMD is as follows (Gretton et al., 2007): 

𝑀𝑀𝐷(𝑋𝑠, 𝑋𝑡) = ||
1

𝑛𝑠
∑ 𝜙(𝑥𝑖

𝑠)

𝑛𝑠

𝑖=1

−
1

𝑛𝑡
∑ 𝜙(𝑥𝑗

𝑡)

𝑛𝑡

𝑗=1

||

ℋ

     (3) 

Where ℋ  is the kernel Hilbert space, 𝜙  is the mapping 

function typically using a kernel function, 𝑋, 𝑌 → ℋ , 𝑥𝑖
𝑠 

represents the source domain data, 𝑛𝑠 is the number of source 

domain data, 𝑥𝑗
𝑡  represents the target domain data, and 𝑛𝑡  is 

the number of target domain data, respectively. 

MMD applies a mapping technique that transforms the data 

into a reproduced kernel Hilbert space and calculates the 

difference between the source and target domain data in this 

space. This difference is then used as part of the loss function. 

This method aims to minimize the discrepancy between the 

source and target domains, bringing them closer together in the 

same feature space. This allows classifiers trained on the 

source domain data to be effective on the target domain data 

as well. A model, called as DAFD (Lu et al., 2017), is proposed 

to address cross-domain learning in the field of fault diagnosis. 

Specifically, in most domain adaptation models, two types of 

classifiers are used, named a label classifiers and domain 

classifiers. In our model, we removed the domain classifier 

because we hope to achieve a good fault classifier and reduce 

the complexity of the model. 

2.4 Contrastive Learning 

Contrastive learning emphasizes extracting shared features 

among analogous samples and discerning disparities between 

distinct categories. 
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For an input sample x, there exist similar samples x+ and 

dissimilar samples x-. The aim of contrastive learning is to 

learn an encoder f that can minimize the distance between 

positive samples while maximizing the distance between x and 

its negative samples. Video domain adaptation tasks were 

studied by using a cross-modal contrastive learning framework 

(Kim et al., 2021). Two objective losses, called as cross-modal 

contrastive loss and cross-domain contrastive loss, were used 

to learn better domain adaptation methods for feature 

representation. Contrastive learning was also applied to 

temporal data, and various novel data augmentation techniques 

were designed. SimCLR-TS model was proposed for 

contrastive learning on time series data (Pöppelbaum, 2022). 

The key to contrastive learning lies in constructing positive 

and negative sample pairs. To create positive sample pairs in 

the context of time series data construction, there are three 

common methods, including sequence consistency, time 

consistency, and transformation consistency. Transformation 

consistency involves enhancing the time series through 

different transformations, such as scaling and permutation. In 

the visual domain, rotation and cropping are commonly used 

methods. In the case of time series data, various data 

augmentation techniques were proposed (Pöppelbaum, 2022), 

but the  left-right flipping for time series data cannot be 

explained in terms of the physical meaning of the time series. 

We adopt different encoder architectures, namely linear layer 

encoding and gate recurrent unit (GRU) temporal feature 

encoding, to capture features from various viewpoints of the 

input data and form positive sample pairs. 

2.5 Model Structure 

The proposed method is an end-to-end model called as cross 

domain-contrastive learning (CdCl). The model architecture is 

shown in Figure 1, and the algorithm flow is described in 

Algorithm 1.  

The core idea of the model is to encode the original data using 

different encoders to obtain positive sample pairs for 

contrastive learning, which serves as the first step of feature 

extraction. The data is then fed into the GRU layer of a time 

series deep learning model to reduce the distance between the 

source domain and target domain in the feature space through 

cross-domain learning. In this step, we use the MMD as part 

of the loss function. In the classifier part, we construct a two-

layer fully connected network to classify faults based on the 

learned features from the source domain, using cross-entropy 

loss as the loss function. The trained model is then used to 

classify faults in the target domain and evaluate the 

classification performance on the source domain data.  

In Figure 1, 𝑋𝑑  represents the data, 𝑎1
𝑑  represents the 

encoded data, 𝑧1
𝑑  represents the feature vectors, 𝑜𝑢𝑡𝑝𝑢𝑡𝑑 

represents the predicted labels, and 𝑦𝑑  represents the true 

labels, where the superscript d = s or t indicates the source 

domain and target domain, respectively. 𝐿𝑐𝑙  denotes the 

contrastive learning loss, 𝐿𝑐𝑑  denotes the domain adaptation 

loss, and 𝐿𝑐𝑙𝑎𝑠𝑠  denotes the cross-entropy loss for the source 

domain labels. The overall loss function 𝐿𝑡𝑜𝑡𝑎𝑙 of the model is 

defined as follows: 

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑐𝑙𝑎𝑠𝑠 + 𝛼𝑐𝑑 ∗ 𝐿𝑐𝑑 + 𝛼𝑐𝑙 ∗ 𝐿𝑐𝑙                    (4) 

 𝐿𝑐𝑙𝑎𝑠𝑠 = −
1

𝑁
∑ ∑ 𝑦𝑛𝑐log (𝑝𝑛𝑐)𝐶

𝑐=1
𝑁
𝑛=1                          (5) 

 𝐿𝑐𝑑 =
1

m
∑

1

n
∑ 𝑘𝜎

𝑟𝑏𝑓
 (𝑥𝑖

𝑠, 𝑥𝑖
𝑡)

n

𝑖=1

𝑚
𝜎=1  

          =
1

m
∑

1

n
∑ exp (−||𝑥𝑖

𝑠 − 𝑥𝑖
𝑡||

2
/2𝜎2)

n

𝑖=1

𝑚
𝜎=1      (6) 

   𝐿𝑐𝑙 = −𝑙𝑜𝑔
exp (𝑞∗𝑘+/𝜏)

∑ exp (𝑞∗𝑘𝑖/𝜏)𝑘
𝑖=0

                                          (7) 

Where 𝛼𝑐𝑑 represents the weight of the domain adaptation loss 

function, and 𝛼𝑐𝑙  represents the weight of the contrastive 

learning loss function, N is the number of data, C is the number 

of total classes, 𝑦𝑛𝑐 is the label, 𝑝𝑛𝑐 is the probability, 𝑘𝜎
𝑟𝑏𝑓

 is 

Gaussian kernel, 𝑞 𝑎𝑛𝑑 𝑘+ are positive pairs, respectively. 

The accuracy of the model in the source and target domains is 

defined as： 

𝑠𝑟𝑐_𝑎𝑐𝑐 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑜𝑢𝑟𝑐𝑒 𝑑𝑜𝑚𝑎𝑖𝑛 𝑑𝑎𝑡𝑎

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑢𝑟𝑐𝑒 𝑑𝑜𝑚𝑎𝑖𝑛 𝑑𝑎𝑡𝑎
   (8) 

𝑡𝑎𝑟_𝑎𝑐𝑐 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑜𝑚𝑎𝑖𝑛 𝑑𝑎𝑡𝑎

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑜𝑚𝑎𝑖𝑛 𝑑𝑎𝑡𝑎
   (9) 
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Figure 1. Model Structure 

 

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

822



The procedure of CdCl model is described in detail as follows. 

 

Algorithm 1: CdCl Model  

Train 
Input: labeled source data {𝑋𝑠, 𝑌𝑠}, and unlabeled 

target data {𝑋𝑡}, 𝛼𝑐𝑑, 𝛼𝑐𝑙; 

Output: trainded model 

for epoch = 1 to N do 

  for each mini-batch do 

① get encoder data 𝑎1
𝑠,𝑎2

𝑠 of 𝑥𝑠 by 

Encoder1 and Encoder 2 respectively, 

𝑎1
𝑡 ,𝑎2

𝑡 of 𝑥𝑡, calculate the contrastive 

learning loss 𝐿𝑐𝑙; 

② get feature data 𝑧1
𝑠, 𝑧2

𝑠, 𝑧1
𝑡, 𝑧2

𝑡 by 

GRU-layer, calculate the mmd loss 𝐿𝑐𝑑;  

③ get prediction 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 and calculate 

cross entropy loss 𝐿𝑐𝑙𝑎𝑠𝑠 between 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 

and 𝑦𝑠; 

④ Back-propagate 𝐿𝑡𝑜𝑡𝑎𝑙 and update model 

parameters 

         𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑐𝑙𝑎𝑠𝑠 + 𝛼𝑐𝑑 ∗ 𝐿𝑐𝑑 + 𝛼𝑐𝑙 ∗ 𝐿𝑐𝑙  

  end for 

end for 

 

Test 
Input: source data{𝑋𝑠}, target data {𝑋𝑡}; 

Output: source data label {𝑌𝑠} and src_acc, target 

data label {𝑌𝑡} and tar_acc 

𝑠𝑟𝑐_𝑎𝑐𝑐 =
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋𝑠

𝑁𝑡𝑜𝑡𝑎𝑙 𝑠𝑜𝑢𝑟𝑐𝑒 𝑑𝑎𝑡𝑎

 

𝑡𝑎𝑟_𝑎𝑐𝑐 =
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋𝑡

𝑁𝑡𝑜𝑡𝑎𝑙 𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑎𝑡𝑎

 

3. EXPERIMENT 

3.1 TE Process Dataset 

The Tennessee Eastman (TE) process (Bathelt et al., 2015) is 

a dataset commonly used to validate the effectiveness of 

anomaly detection algorithms. The variables in this process 

exhibit evident coupling and nonlinear relationships, and the 

process response properties change over time. 

The revised TE model is used here to generate data with multi-

operating conditions (Bathelt et al., 2015). The TE process 

consists of 53 process monitoring variables, including 12 

manipulated variables and 41 variables related to monitoring. 

The monitoring variables can be further divided into 22 

continuous variables and 19 analytical variables. The TE 

process has a basic operation case and six operation modes. 

Due to difficulties in generating data for mode 2 and mode 5, 

this study only uses data from the basic case (called as mode 

0), mode 1, mode 3, mode 4, and mode 6. 

In the simulation, the sampling interval was set to 36 seconds 

(i.e., 100 sampling points per hour). We generated 1000 

samples for each class in all five modes. Under each mode, 

normal data and 21 types of fault data were generated. A 

detailed description of the modes has been shown in Table 1. 

In this study, we focused on anomaly detection and fault 

classification for several fault types (1,2,10,12,13,20) and 

normal data (labeled as 0). We classified each fault separately 

from normal data and taked the average result. The normal and 

fault data in different modes are shown in Figure 2. 

Our experiment was set up with known data and labels from 

multiple source domains. We aimed to perform fault classify-

cation on a single unknown labeled target domain data, and 

evaluated the classification performance of the statistical 

model on both the source and target domains. 

 
 

Table1. Optimal steady-state values in multi-operating modes 

Manipulated variables(u) Base case 
Mode1 

(50/50) 

Mode3 

(90/10) 

Mode4 

(50/50) 

Mode6 

(90/10) 

D Feed, % 63.05 62.94 89.13 100.00 100.00 

E Feed, % 53.98 53.15 8.38 86.72 9.44 

A Feed, % 24.64 26.25 19.11 49.48 21.54 

A+C Feed, % 61.30 60.57 51.37 96.60 57.64 

Recycle value, % 22.21 1.00 77.62 1.00 71.17 

Purge value, % 40.06 25.77 9.50 48.74 10.65 

Separator value, % 38.10 32.27 29.15 60.96 32.69 

Stripper value, % 46.53 46.44 39.43 74.52 44.25 

Steam value, % 47.45 1.00 1.00 1.00 1.00 

Reactor coolant, % 41.11 35.99 35.55 60.79 40.54 

Condenser coolant, % 18.11 12.43 99.00 35.53 99.00 

Agitator speed, % 50.00 100.00 100.00 100.00 100.00 
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Table2. Performance of the model under different parameters 

Source Target 𝛼𝑐𝑑 𝛼𝑐𝑙 src_acc tar_acc 

1,3,4,6 0 0 0 0.95 0.54 

1,3,4,6 0 0 1 0.94 0.65 

1,3,4,6 0 1 0 0.95 0.86 
1,3,4,6 0 1 1 0.93 0.88 

0,3,4,6 1 0 0 0.95 0.68 
0,3,4,6 1 0 1 0.94 0.73 

0,3,4,6 1 1 0 0.94 0.90 
0,3,4,6 1 1 1 0.93 0.90 

0,1,4,6 3 0 0 0.95 0.81 

0,1,4,6 3 0 1 0.94 0.80 
0,1,4,6 3 1 0 0.94 0.86 

0,1,4,6 3 1 1 0.93 0.90 
0,1,3,6 4 0 0 0.94 0.64 

0,1,3,6 4 0 1 0.93 0.70 

0,1,3,6 4 1 0 0.94 0.89 
0,1,3,6 4 1 1 0.92 0.90 

0,1,3,4 6 0 0 0.94 0.72 
0,1,3,4 6 0 1 0.94 0.78 

0,1,3,4 6 1 0 0.94 0.89 

0,1,3,4 6 1 1 0.93 0.86 

 

Figure 2. Normal (left) and Fault 12 (right) data in different modes 

3.2 Ablation experiment 

The model underwent ablation experiments on multiple source 

domains and a single target domain, and the  results are shown 

in Table 2.  

It can be found from Table 2 that if the domain adaptive part 

is removed, the model’s performance in the target domain is 

extremely poor, and the domain adaptive part greatly solves 

operating conditions; Adding contrastive learning can keep the 

model’s performance on source domain data to a certain extent, 

but introducing contrastive learning increases the depth and 

complexity of the model, and there may be over-fitting on 

easily distinguishable faults, resulting in a slight decrease in 

performance. 

3.3 Analysis 

Figure 3 shows the raw data, indicating that each fault is mixed 

and each mode is dispersed. Figure 4, Figure 5 and Figure 6 

show the dimensionality reduction visualization of the data, 

with different colors representing different faults, and normal 

data in blue. After adding domain adaptation and contrastive 

losses, the model plays a role in bringing data from different 

domains closer, while also bringing similar data closer. This 

enables the model to classify faults in the target domain data. 

 
 

Figure 3. Dimensionality reduction visualization of raw data 

( Different colors represent different types of faults, and  

different numbers represent different operating conditions ) 

     

Figure 4. Dimensionality reduction visualization (𝛼𝑐𝑑=0, 𝛼𝑐𝑙=1) 
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Figure 5. Dimensionality reduction visualization (𝛼𝑐𝑑=1, 𝛼𝑐𝑙=0) 

 

 

Figure 6. Dimensionality reduction visualization (𝛼𝑐𝑑=1, 𝛼𝑐𝑙=1) 

4.  CONCLUSIONS 

This paper proposed an end-to-end model architecture that 

addresses the problem of anomaly detection in multi-operating 

condition time series data in industrial scenarios. The approach 

incorporated domain adaptation and contrastive learning 

methods and experiments were conducted on a simulated 

dataset to demonstrate the necessity of domain adaptation and 

the importance of contrastive learning. We applied strategies 

mitigate overfitting, such as regularization techniques or 

model complexity control. However, overfitting was indeed a 

concern in complex models, which was inevitable in deep 

learning. In future, further research is needed to explore the 

integration of domain adaptation and contrastive learning. 
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