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Abstract: In this study, we introduce a triggered model reduction method for soil moisture and
hydraulic parameter estimation. The approach employs cluster-based unsupervised learning to
extract simplified models capturing essential dynamics of the complex original nonlinear system.
To handle model mismatch over time, a sequential triggering method with an event trigger
followed by a performance trigger is proposed for model identification. Further, an adaptive
extended Kalman filter (EKF) that can take advantage of the adaptively reduced models is
developed to estimate soil moisture and the associated hydraulic parameters. The performance
of the proposed method is illustrated based on a large-scale agricultural field.
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1. INTRODUCTION

Many dynamical systems are of high dimensions, with gov-
erning equations complex and nonlinear. Agro-hydrological
systems are examples of such systems. The complexity of
these models poses challenges in performing simulations,
model-based optimization, control and estimation. This
motivates researchers to develop model reduction methods
to reduce the model complexity.
Over the last few decades, different dimensionality reduc-
tion methods have been discussed in control theory and
applied to control systems for many engineering applica-
tions. Popular techniques for model reduction in dynam-
ical systems include subsystem decomposition (Debnath
et al., 2022), proper orthogonal decomposition (POD), and
Krylov methods (Antoulas, 2005). These methods are used
to develop models of lower dimensions compared with the
original models and the reduced model can then be used
in the design of controllers and estimators. In Sahoo et al.
(2022a), a cluster-based model reduction approach is pro-
posed that preserves the overall connection among states of
the original systems. This technique gives non-overlapping
clusters, where states within each cluster follow similar
trajectories and thus are represented by a reduced-order
state. This guarantees the retention of dynamic properties
and physical topology within the reduced-order model.
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gratefully acknowledged.

An agro-hydrological system describes water movements
in the soil and plant. The modeling of the water dynam-
ics in an agro-hydrological system typically involves the
Richards equation, which is a partial differential equa-
tion. For large-scale agricultural fields, this leads to high-
dimensional problems, which pose significant challenges
when such a model is used in the design of estimation
and control algorithms (Sahoo et al., 2022b). In this work,
we propose an adaptive model reduction approach to ad-
dress the high dimensionality issue associated with agro-
hydrological models based on the Richards equation.
In our previous work (Debnath et al., 2023), a performance-
triggered model reduction method for soil moisture es-
timation was proposed. The method in Debnath et al.
(2023) uses a cluster-based model reduction approach and
is specifically developed for point sensors that provide
continuously available measurements. This work extends
the method to present a sequentially triggered model
reduction approach for simultaneous soil moisture and
hydraulic parameter estimation. In this work, instead of
point sensors, we consider intermittent measurements ob-
tained from microwave radiometers mounted on a rotating
center pivot irrigation system. The intermittent nature of
the microwave measurements introduces further challenges
in the design of the triggering mechanism, which makes
the performance-based triggering mechanism developed
in (Debnath et al., 2023) not implementable. The work
proposes a sequence of triggers for model reduction. The
proposed method is also illustrated based on measure-
ments obtained from an actual agricultural field.
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Fig. 1. Considered agro-hydrological system (Agyeman
et al., 2021).

2. PRELIMINARIES

2.1 Agro-hydrological systems description

The agro-hydrological system considered in this work is
equipped with a center pivot irrigation system as shown
in Fig. 1. The hydrological cycle in the system involves
soil, crops, the atmosphere, and water. The dynamics
of water infiltration into the soil, driven by capillary
and gravitational forces, is characterized by the Richards
equation (Richards, 1931). A cylindrical version of the
Richards equation is used to facilitate the consideration of
the movement of the center pivot irrigation system. The
cylindrical version of the Richards equation is shown as
follows (Agyeman et al., 2021):
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where θm [m3m−3] and h [m] represent the field water
soil moisture content and pressure head, c(h) [m−1] and
K(h) [ms−1] denote the soil water capacity and hydraulic
conductivity, while r [m], θ [rad], and z [m] are the radial,
azimuthal, and axial spatial variables, respectively, and
S(h, z) [m3m−3s−1] is the sink term. The conversion from
h to θm can be referenced in Agyeman et al. (2021).

2.2 State space model

We consider an explicit finite difference method for spa-
tially discretizing system (1), resulting in a continuous-
time state-space representation as follows:

ẋ(t) = f(x(t), p(t), u(t)) + w(t) (2a)
y(t) = Cx(t) + v(t) (2b)

where x(t) ∈ RNx represents state vector of the pressure
head, p(t) ∈ RNp is the soil hydraulic parameter vector,
and u ∈ RNu denotes the total precipitation includes
applied irrigation and rain, y(t) ∈ RNy is the vector
of measurements of soil moisture content, w(t) ∈ RNx

denotes the system disturbance, where C is a matrix
relates x and y, and v(t) ∈ RNy is the measurement noise.
Figure 2 shows an illustration of the discretization of
system (1), which is discretized into a total of Nx nodes

Fig. 2. Discretization of the agro-hydrological system.

Fig. 3. Center pivot with microwave sensors (top-view).
with Nr, Nθ, and Nz in the radial, azimuthal, and axial
directions, respectively. The dimension of the irrigation
uirr is the same as the radial Nr nodes. The soil moisture
observation is obtained from the microwave radiometers
which are installed on the center pivot system and the
measurements are obtained intermittently. As the center
pivot irrigates the field, the microwave radiometer rotates
and provides the soil moisture observations shown in
Fig. 3. The matrix C is sparse because the number of
measurements is much less than the number of nodes
Ny << Nx. Also, it is changing due to the rotation of the
center pivot which results in changing in the measurement
locations. Owing to the heterogeneity of soil texture, each
discrete node is assigned its unique set of parameters.
In this work, we examined five crucial soil hydraulic
parameters: Ks, θs, θr, α, and η, for each discretized node
(Agyeman et al., 2023). We also assume that soil properties
vary similarly at different depths within the soil.

2.3 Objective

The main objective is to estimate the soil moisture content
θm at each node across the field using soil moisture
measurements from microwave radiometers. A center pivot
irrigation system rotates across the field slowly. It typically
takes more than one day for a center pivot to complete one
cycle. The estimation of the soil moisture and hydraulic
parameters using these microwave measurements poses a
few challenges including (a) the computational complexity
of the Richards model in estimation methods, and (b) the
low degree of observability of x with limited observations.

3. PROPOSED APPROACH

To handle the challenges, we propose an information fusion
system, data assimilation (Agyeman et al., 2023), within
an adaptive reduced model framework as illustrated in Fig.
4. The availability of measurements, acting as an event
trigger, guides the decision-making process, determining
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Fig. 4. The proposed adaptive model reduction and data
assimilation.

whether to pursue open-loop predictions employing the
Richards equation or opt for simultaneous estimation us-
ing a reduced-order model. Sequentially, the prediction
performance of the existing reduced model is assessed,
and only the reduced-order model exhibiting inadequate
performance is replaced with a new model in real time.
The state trajectory is generated based on the current
estimates or predicted soil moisture information. Subse-
quently, clusters are formed using the hierarchical clus-
tering method, separately identifying clusters for both
states and parameters. These trajectories are developed
with consideration of anticipated irrigation, rainfall, evap-
otranspiration (ET ), and crop coefficient (Kc) over three
days. Utilizing the reduced-order model, we construct a
reduced-order estimator through an EKF algorithm for
simultaneous estimation of soil water and its parameters.
Parameters chosen for estimation are those associated with
nodes where measurements are available during the sam-
pling period, as discussed in Orouskhani et al. (2022). The
estimable parameters denoted by pe ∈ RNpe and the rest of
the parameters are kept in pne ∈ RNpn (p = [pe,T pne,T ]T ).
To update the non-estimable parameters, estimated pa-
rameters are interpolated using the Kriging method.

3.1 Proposed adaptive model reduction

To identify the reduced model at the beginning or to re-
identify a model when ϵL ≥ ϵth as illustrated in Fig. 2, the
same steps are followed and explained below:
State trajectory generation: The current state estimates at
tk, x̂(tk), is assumed as the initial soil moisture condition,
and the system (2) is simulated with forecast data and
prescribed irrigation for the following Nfd steps.

Xm = [x(tk) x(tk+1) . . . x(tk+Nfd
)]

where Xm ∈ RNx×Nfd is the snapshot matrix of the soil
water for the mth model reduction considering that (m−1)
number of model reductions were performed before tk.

Pm = [Ks(tk), θs(tk), θr(tk), α(tk), η(tk)]

where Pm is the current parameter estimate at tk.
Generation of state and parameter clusters: Agglomerate
hierarchical clustering is used to group state trajectories
into clusters based on their similarity. Each row in Xm

implies a state trajectory and is considered a data point.
For example, the trajectory of a state, x̄i is denoted as data

point i (i = 1, . . . , Nx). Each data point (state trajectory)
is considered a cluster, and the distances between these
clusters are calculated. When the average distance between
data points is smaller than a threshold thx, a cluster tuning
parameter, they remain in one cluster (Steinbach et al.,
2000). Let’s consider two clusters p and q with sizes np,
and nq respectively. The measure of the distance between
clusters p and q is evaluated using Euclidean distance
denoted by d as follows:

D(p, q) =
1

npnq

np∑
i=1

nq∑
j=1

d(x̄pi, x̄qj)

where x̄pi and x̄qj denote data points within clusters p and
q respectively. Similarly, each parameter in Pm is clustered
with a distance threshold thp which is also a cluster tuning
parameter.
Consider that there are rm clusters during the mth model
reduction. The collection of clusters for the mth model
is denoted as: C(m) = {C(m)

1 , C
(m)
2 , . . . , C

(m)
rm } as . The

clusters must satisfy two properties: a) C
(m)
i ∩ C

(m)
j = Φ

and b) C
(m)
1 ∪ C

(m)
2 ∪ . . . ∪ C

(m)
rm = Xm. In this study,

we used Petrov-Galerkin projection for the reduced model
(Antoulas, 2005). The projection matrix (U (m)

x ∈ RNx×rm)
is constructed using the formed clusters (C(m)) and the
entries of the matrix are evaluated below:

U
(m)
x(i,j) =

{
vi, when point i ∈ C

(m)
j

0, otherwise
and vi is defined as follows:

vi = 1/||βi||, βi = STi β
where ||βi|| is the norm L2 of βi which is defined by
β = [1, . . . , 1]T ∈ RNx . Si = sCi

∈ RNx×NCi , where NCi
is

the of number of nodes belongs to cluster Ci. S is a matrix
with columns made of sj ’s and every sj is the j-th column
of the identity matrix INx×Nx

. Likewise, when there are pm
clusters for parameters during the mth model reduction,
the projection matrix Up ∈ RNp×pm is constructed for the
parameter clusters.
Augmented reduced state and parameter model: The aug-
mented model is obtained by combining equation (2) and
ṗ(t) = 0 as follows:

ẋa(t) = fa(xa(t), u(t)) + wa(t) (3a)
y(t) = Caxa(t) + va(t) (3b)

where subscript a indicates the augmentation and xa(t) =
[x(t)T p(t)T ]T . The total augmentation is necessary for
updating the covariance matrix in EKF, simplifying the
calculation of the simultaneous estimation. However, the
non-estimable parameters pne are assigned nominal values
while estimating xa. For the augmented reduced model we
define the augmented projection U ∈ R(Nx+Np)×(rm+pm)

after mth model reduction as a block diagonal matrix
Um = blkdiag{[Um

x ], [Um
p ]}.

Reduced state space model: We consider a discrete-time
reduced state space model for the augmented model (3) as
follows:

ξ(m)(tk+1) = f
(m)
rd (ξ(m)(tk), u(tk), wa(tk)) (4a)

y(tk) = C(m)
r ξ(m)(tk) + va(tk) (4b)

where ξ is the reduced state, frd is the discrete-time
function of the reduced model and C

(m)
r = CaU

(m)T .
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The projection is performed as ξ(m)(t) = U (m)Txa(t),
and f

(m)
r = U (m)T fa and the approximated predicted

state is evaluated as x̃a(t) = U (m)ξ(m). To maintain a
consistent flow of information between the reduced models,
the (m − 1)th model is reverted to the full-order system
and subsequently projected to the mth model using the
updated projection matrix.
Proposed extended Kalman filter: The EKF begins with
an initial guess for the state x̂a(t0) and its covariance
matrix Pa(t0) by employing ξ̂(m)(t0) = U (m)T x̂a(t0) and
Pr(t0) = U (m)Pa(t0)U

(m)T . In the prediction step, the
reduced state ξ(m) and reduced covariance matrix P

(m)
r

are predicted based on the reduced model (4) at tk below:

ξ̂(m)(tk|k−1) = f
(m)
rd (ξ̂(m)(tk−1), u(tk−1), wa(tk−1))

P (m)
r (tk|k−1) = A

(m)
d (tk−1)P

(m)
r (tk−1)A

(m)
d (tk−1) +Q(m)

r

where ξ̂(m)(tk|k−1) denotes the reduced state prediction at
tk based on the previous reduced estimate at tk−1, and

A
(m)
d (tk−1) =

∂f
(m)

rd

∂ξ(m)

∣∣∣∣
ξ̂(m)(tk−1)

is the state-transition ma-

trix obtained by linearizing the nonlinear reduced model
(4). Q(m)

r is the reduced covariance matrix for the process
disturbance where Q

(m)
r = U (m)QaU

(m)T , and Qa is the
augmented system covariance matrix of wa. In the update
step, the predicted reduced state and its reduced covari-
ance matrix are updated based on the measurements.
ξ̂(m)(tk) = ξ̂(m)(tk|k−1) +K(m)

r (tk)(y(tk)− C(m)
r

ξ̂(m)(tk|k−1))

P (m)
r (tk) = (Irm −K(m)

r (tk)C
(m)
r )P (m)

r (tk|k−1)

where ξ̂(m)(tk) and P
(m)
r (tk) represent the estimated re-

duced state and the posteriori reduced covariance matrix
at tk respectively. K(m)

r (tk) denotes the Kalman gain uti-
lized to minimize the a posteriori error covariance based
on the measurement innovation y(tk) − C

(m)
r ξ̂(m)(tk|k−1)

and Irm represents the identity matrix of the mth reduced
model of dimesion rm. The Kalman gain is evaluated as
follows:
K(m)

r (tk) = P (m)
r (tk|k−1)C

(m)T
r (R+ C(m)

r P (m)
r (tk|k−1)

C(m)T
r )−1

where R represents the covariance matrix of the measure-
ment noise. Notably, Pa(t0), Qa, and R serve as three
tuning parameters for the EKF. The soil moisture and
its parameter estimates from the reduced estimator are
evaluated as x̂r(tk) = U (m)ξ̂(m)(tk). During model change,
the information of the EKF is transferred as follows:

• Converting the reduced state and state covariance to
the full order state and covariance: x̂r = U (m−1)ξ̂(m−1),
Pa = U (m−1)TP

(m−1)
r U (m−1).

• Projecting the full order information to the new re-
duced model: ξ̂(m) = U (m)T x̂r, P (m)

r = U (m)PU (m)T .
Design of the triggered metrics: The event trigger is a
binary decision: when measurements are available, the
EKF will be executed; otherwise, the open-loop prediction
will be computed. We calculate the performance metric ϵL
at tk inspired by Alanqar et al. (2017) as follows:

Fig. 5. Investigated area in Lethbridge, Alberta, Canada.

ϵL(tk) =
1

Nd

100

Nx +Np

Nd∑
j=1

Nx+Np∑
i=1

|x̃ai(tk+j)− xai(tk+j)|

where x̃ai and xai denote the open loop predictions of ith
node from the reduced model and the Richards equation
respectively. A prediction horizon Nd is used for a day.

4. REAL CASE STUDY

The Research Farm operated by Lethbridge College is
located in Lethbridge, Canada, and a quadrant of the field
is chosen as shown in Fig. 5. The field primarily consists
of clayey loam soil, with a few scattered sand lenses. The
field is a circular field equipped with a five-span center
pivot system. The microwave radiometers are installed on
the center pivot system to observe soil moisture at various
points during the rotation cycle and the soil moisture
observations used in the study are collected in the summer
of 2022. The soil parameter Ks is shown in Fig. 6(a)
which varies across the field. The quadrant being studied
has a radius of approximately 290 meters and a depth of
0.32 meters. The boundary conditions used in Richards
equation for a quadrant can be found in Agyeman et al.
(2021). We discretize the radius, angle, and depth into 30,
17, and 10 equally spaced sectors, respectively. Hence, the
quadrant is discretized into total Nx = 5100 states and
the total number of parameters is Np = 2550 giving in
total of 7650 estimates. The model undergoes temporal
discretization with a step size of 30 minutes. In solving
the Richards equation, we employ a symbolic CasADi
integrator, specifically an explicit Runge-Kutta (RK4)
method (Andersson et al., 2019). This symbolic approach
with CasADi simplifies the computation of the necessary
Jacobian matrices for implementing the EKF.
The soil moisture content measurements are considered
from July 1st, 2022 to August 8th, 2022 in the investigated
quadrant in this study. The soil moisture measurements
are obtained from the microwave radiometers every 30

minutes. Data assimilation is carried out using 4
5

th of
the measurement for training and the rest is used for
validation. The raw measurements undergo multiple data
pre-processing steps such as sorting the measurements by
date and time, grouping them by quadrants, removing
outliers, and mapping the measurements to the nodes of
the model are explained explicitly in our previous work
(Agyeman et al., 2023). Daily reference evapotranspiration
(ET), rain, irrigation application, and crop coefficient (Kc)
values which are crucial inputs into the field model, are
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(a) (b)

Fig. 6. Spatial distribution of (a) the nominal (Ks) and
(b) initial guess θ̂m.

acquired from the Alberta Information Service website and
Alberta Irrigation Center (Agyeman et al., 2023).
The proposed adaptive model reduction strategy utilizes
distinct thresholds for cluster generation. We set thx to
0.01 for the state and thp to 0.0005 for the parameters.
As the model changes, a trajectory spanning three days
(Nfd = 144) is generated to account for the extended pre-
diction horizon. The criteria for performance assessment
consider the prediction for the following day (Nd = 48).
To set the performance threshold, we find an appropriate
threshold for the reduced model’s performance at ϵth = 3.
The reduced estimator is initialized with initial guess
x̂a(t0) which is set with limited knowledge about the actual
condition xa(t0) shown in Fig. 6(b). In our prior study
(Agyeman et al., 2023), we determined the parameter
values for quadrant 4. In this current work, we make an
informed initial guess for the parameters by leveraging
the similarities in soil type. The initial covariance matrix
Pa(t0) is a matrix with higher diagonal elements than the
off-diagonal elements to account for the high uncertainty
in x̂a(t0). In particular, the elements corresponding to the
states are initialized in a range of 0.1 − 1700, while those
corresponding to the parameters are set to 5. The covari-
ance matrices of process disturbance Q = 0.008INx+Np

and measurement noise R = 0.01INy are considered tuning
parameters where I is the identity matrix.
The proposed approach is compared to a full estimator
utilizing full model (3) and their performance is quantified
using the Normalized Root Mean Square Error (NRMSE)
as follows:

NRMSE =
1

(ymax − ymin)

√√√√√√
Nv

y∑
k=1

(y(tk)− ŷ(tk))

Nv
y

where ŷ(tk) and y(tk) are the estimated soil moisture
content and measured soil moisture content, Nv

y represents
the number of measurements within the validation dataset,
and ymax and ymin are the highest and lowest soil moisture
content in the validation set, respectively.
Figure 7 provides a comprehensive summary of the re-
sults found through the proposed model reduction ap-
proach. The occurrence of an event trigger, followed by
a performance trigger, signals the necessity for a model
adjustment. Out of fifteen available days with soil mea-
surements, performance triggers are activated seven times
in plot (a). It is evident that the threshold is violated
six times, resulting in the re-identification of a reduced
model on each occasion. The tuning parameters for the

(a)

(b)

(c)

Fig. 7. (a) Triggers with measurements for training of
EKF, (b) Performance measure, and (c) Reduced
state and parameter order of adaptive models.

Table 1. Computational speed per iteration

[in Sec] Data assimilation Estimation
Reduced estimation 3.5± 0.4 30− 100

Full estimation 7.4± 0.6 220± 40

cluster generation are set to ensure that the new model’s
metrics fall within the specified threshold in plot (b).
The maximum model order is recorded as 3507 (3260,
and 247), while the minimum model order stands at 1969
(1619, and 350) in plot (c). In Table 1, the simulation
time required for estimation at each sampling point varies
from 30 s for model orders around 2000 to 100 s for model
orders around 3500. However, the full-order system with
7650 variables takes more than twice as long compared to
the highest-ordered reduced model. Additionally, as the
system variables increase, the simulation time for the large
state-transition matrix, Ad, grows substantially. For the
same reason, employing the EKF in the large-scale field
becomes nearly intractable with the available computa-
tional resources. On average, the reduced estimator can
provide assimilated soil moisture in just 3.5 s, while the full
estimation takes approximately 7.4 s, and a computational
efficiency of over 50% is achieved. This is why the reduced
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(a)

(b)
Fig. 8. (a) Actual measurements vs reduced estimation for

the entire season with overall NRMSE= 0.1385, and
(b) Day-wise NRMSE.

(a)

(b)
Fig. 9. (a) Actual measurements vs full estimation for the

entire season with overall NRMSE= 0.1244, and (b)
Day-wise NRMSE.

approach highly feasible approach for application in the
large-scale field.
In Fig. 8(a) and Fig. 9(a), we achieve overall NRMSE
values of 0.1385 and 0.1244 for the reduced and full-
order estimations, respectively. However, it highlights a
discrepancy of approximately 12 % in the cross-validation
results, which corresponds to model approximation errors.
When examining the daily NRMSE in Fig. 8(b) and Fig.
9(b), we realize that a limited number of measurements
can result in decreased accuracy. Also, a similar error

pattern is observed on most days, except for the 21st and
the following day, which could be due to a potential model-
plant mismatch.

5. CONCLUSIONS

We address the challenge of high dimensionality of agro-
hydrological model in its application to soil moisture and
hydraulic parameter estimation. We leverage a sequential
trigger approach to systematically deduce the reduced
model. The reduced state estimator demonstrates satis-
factory performance, providing both reasonable accuracy
and improved computational speed.
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