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Abstract: The paper extends recent advancements in self-stabilizing eNMPC formulation
without pre-calculated setpoints, which leverages norm-based steady-state optimality conditions
to enhance system robustness. To facilitate practical implementation, a generalized time-domain
formulation is proposed, accommodating the discrete-time nature of control instrumentation and
the continuous-time nature of first-principle models. The online computational time of the self-
stabilizing eNMPC is improved via the simplification of the Lyapunov function. A case study
involving a modular membrane reactor illustrates the applicability of self-stabilizing eNMPC in
real-world industrial scenarios.

Keywords: Economic Nonlinear Model Predictive Control, Lyapunov Stability,
Self-Stabilization, Input-to-State Practical Stability, Pyomo

1. INTRODUCTION

Economic Nonlinear Model Predictive Control (eNMPC)
represents a viable alternative to a distributed control sys-
tem for addressing the challenges that arise from the mis-
match between Real-Time Optimizers (RTO) and Model
Predictive Controllers (MPC). Standard eNMPC is for-
mulated as a nonlinear programming (NLP) problem that
combines the economic objective function of RTO with
the dynamic prediction of MPC. While eNMPC offers
significant advantages, it also introduces challenges related
to closed-loop stability (Angeli et al., 2012).

In recent times, a self-stabilizing eNMPC without pre-
calculated steady-state optima was proposed by replacing
the tracking stage cost with a norm of the steady-state
optimality conditions (Karush–Kuhn–Tucker or KKT con-
ditions) (Lin and Biegler, 2023). While the theoretical
framework that underpins the self-stabilizing eNMPC
demonstrates robustness, there is an imperative need for
a comprehensive and pragmatic implementation strategy.
In this work, the primary objective revolves around the
adaptation of the existing self-stabilizing eNMPC frame-
work for practical implementation. This adaptation aims
to facilitate smooth integration with well-established al-
gebraic modeling platforms, such as Pyomo, AVEVA, or
Aspen Custom Modeler, which are commonly employed
for describing chemical processes.

A case study on a modular membrane reactor for direct
methane aromatization (DMA-MR) is conducted to illus-
trate the practical application of self-stabilizing eNMPC.
A modular process is a self-contained system built within a
frame or “module” for easy transportation and integration
(Baldea et al., 2017). This system encompasses process
equipment, instrumentation, valves, piping components,
and electrical wiring, all securely mounted within a struc-
tural steel framework (Ladiges et al., 2018). Given the
autonomous nature of modular units, employing a self-

stabilizing eNMPC emerges as an ideal choice for the
integrated control system.

The paper is organized as follows in the subsequent sec-
tions, with the aim of identifying any encountered limita-
tions and offering recommendations for further exploration
and refinement of the proposed control system within in-
dustrial contexts. Section 2 introduces foundational knowl-
edge on eNMPC and provides a mathematical descrip-
tion of dynamic processes in continuous and discrete time
domains. In Section 3, the formulation of self-stabilizing
eNMPC is presented, along with modifications aimed at
enhancing the rate of convergence to steady-state optima
and the online solution strategy for the controller. A case
study is presented in Section 4, which includes a first-
principles dynamic model for a counter-current DMA-
MR and its self-stabilizing eNMPC simulations. Finally,
Section 5 concludes the paper by summarizing the key
takeaways and emphasizing the broader implications of
these findings.

2. PROCESS DESCRIPTIONS

2.1 Notations

In the scope of this investigation, the following notations
are taken into consideration. A function denoted as α(ξ) :
R≥ 0→ R≥ 0 is classified as a member of the K function
class if it exhibits the properties of continuity, strict
monotonicity, and α(0) = 0. A function α falls within the
K∞ class if it is in the K class and is unbounded. The
L2-norm of a vector is symbolized by ‖ · ‖. The metric
defining the distance between a point x ∈ Rnx and a
set A ⊂ Rnx is formulated as ‖x‖A := infz∈A ‖x − z‖.
If the set A = {x∗} only contains a single point, then
‖x‖A := ‖x − x∗‖ and limx→x∗ ‖x‖A = 0. A closed set A
is a positive invariant set for a closed-loop discrete-time
system xk+1 = f̄(xk, uk) = f̄(xk, κ(xk)) if xk ∈ A implies
xk+1 ∈ A.
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2.2 System Description

The first-principles dynamic model is assumed to be rep-
resented by a system of semi-explicit differential-algebraic
equations of index-1, and it is expressed in a nonlinear
state-space structure as follows.

ẋ(t) = f(x(t), y(t), u(t)) (1a)

h(x(t), y(t), u(t)) = 0 (1b)

g(x(t), y(t), u(t)) ≤ 0 (1c)

in which for each time instance t, x(t) ∈ Rnx is the
vector of state variables, ẋ(t) ∈ Rnx is the time deriva-
tive vector of state variables, y(t) ∈ Rny is a vector
of algebraic variables (for which no time derivatives are
present), u(t) ∈ Rnu is the vector of manipulated variables.
The rate of change equations, f : Rnx+ny+nu → Rnx ,
reflect the process dynamics. In engineering applications,
the algebraic equations h : Rnx+ny+nu → Rnh encompass
various aspects of the systems under consideration, includ-
ing equilibrium conditions, relationships among different
variables and equality constraints.

For a fixed sampling period, ∆t, the following time in-
dex conversion is introduced between a continuous-time
dynamic system and a discrete-time dynamic system.

tk = k∆t (2)

For ease of notation, the discrete-time vectors of state
variables, algebraic variables, and manipulated variables
are respectively denoted as xk = x(tk), yk = y(tk), and
uk = u(tk). The discrete-time dynamic model of the above
system in (1) is:

xk+1 = f̄ (xk, yk, uk) = xk +

∫ tk+1

tk

f(x(t), y(t), u(t))dt

(3a)

h(xk, yk, uk) = 0 (3b)

g (xk, yk, uk) ≤ 0 (3c)

In this context, f̄ represents the time-discretized version
of the dynamic model (1), incorporating a zero-order hold
on the manipulated variables.

2.3 Economic Nonlinear Model Predictive Control

Economic Nonlinear Model Predictive Control presents a
dynamic programming problem that integrates economic
process optimization with the principles of model pre-
dictive control. In the eNMPC formulation, the setpoint-
tracking objective function of MPC is replaced by a cost
function that combines process performance objectives
with financial considerations. Additionally, a nonlinear
dynamic model is embedded within the constraints to
delineate feasible operating regions. The standard eNMPC
is characterized by the following optimization problem.

min

N−1∑
l=0

Ψec (sl, wl, vl) (4a)

s.t. sl+1 = f̄ (sl, wl, vl) , l = 0, . . . N − 1 (4b)

h(sl, wl, vl) = 0 (4c)

g(sl, wl, vl) ≤ 0 (4d)

s0 = xk (4e)

in which, the economic stage cost, Ψec, represents eco-
nomic factors, such as production costs, resource utiliza-
tion, energy consumption, profit margins, or other relevant
financial metrics to the specific application. The triplet
(s, w, v) is the respective prediction of the real process
variables (x, y, u). At each time step tk, the nonlinear
optimizer of the eNMPC receives the estimated state vari-
ables, xk, and assigns them to the initial conditions, as
demonstrated in constraint (4e).

3. IMPLEMENTATION OF SELF-STABILIZING
ENMPC

3.1 Steady-State Optimality Conditions

The following steady-state optimization problem is consid-
ered for the RTO in order to identify the KKT condition
for the self-stabilizing Lyapunov function.

min
x,u

Ψec(x, u, y) (5a)

s.t. x = f̄ (x, u, y) (5b)

h (x, u, y) = 0 (5c)

g (x, u, y) ≤ 0 (5d)

The log-barrier function is a powerful tool in optimization
that enables the handling of inequality constraints without
the need for active set strategies. In the following reformu-
lation of (5), the inequalities in (5d) are replaced by their
respective barrier functions.

min
x,u

Ψ̄ec(x, u, y) := Ψec(x, u, y)− µ
ng∑
j=1

ln (−gj(x, u, y))

(6a)

s.t. 0 = F (x, y, u) =

[
x− f̄(x, y, u)
h(x, y, u)

]
(6b)

in which the Ψ̄ec is the augmented steady-state objective,
µ > 0 is the barrier parameter, and ng is the number
of inequality constraints. Since the log-barrier function
approaches infinity when an inequality constraint becomes
active, the value of µ is chosen to be very small to allow the
optimal solution of (6) to converge to the optimal solution
of (5). This modification in Problem (6) is borrowed
from the interior point method for solving constrained
optimization problems.

Since the self-stabilizing eNMPC discussed in the following
section penalizes deviation from the steady-state opti-
mal condition rather than the distance from the steady-
state optimal solution, this objective revision results in
a KKT condition that incorporates the complementary
property of the KKT multipliers associated with the in-
equalities. Furthermore, this KKT condition facilitates a
smooth transition between active and inactive inequality
constraints, thus making it a suitable choice for inclusion
into the Lyapunov function. The Lagrangian of (6) is as
follows.

L(x, y, u, λ) = Ψ̄ec(x, y, u) + F (x, y, u)ᵀλ (7)

in which λ is the Lagrange multiplier of the steady-state
equalities.

The following KKT conditions are the first-order necessary
conditions for a steady-state optimum of (6) (Nocedal and
Wright (2006)).
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∇xL = ∇xΨ̄ec(x, y, u) +∇xF (x, y, u)λ = 0 (8a)

∇yL = ∇yΨ̄ec(x, y, u) +∇yF (x, y, u)λ = 0 (8b)

∇uL = ∇uΨec(x, y, u) = 0 (8c)

∇λL = F (x, y, u) = 0 (8d)

Furthermore, the steady-state system is assumed to satisfy
the Strong Second Order Sufficient Conditions (SSOSC)
and Linear Independent Constraint Qualification (LICQ)
(Nocedal and Wright, 2006). These assumptions guarantee
that the KKT conditions in (8) are sufficient to identify
the steady-state optimum of (6) and subsequently (5).

3.2 Generalized-Time Formulation of Self-stabilizing eNMPC

The foundation of Lyapunov stability theory rests on
the notion of energy dissipation and its relationship to
the stability of dynamical systems. Here, a Lyapunov
function can be linked to a mathematical emulation of
potential energy. This function assigns a scalar value to
every state within the system, thereby representing and
quantifying the system’s pseudo-energy associated with
that particular state. Formally, the Lyapunov function is
defined as follows.

Definition 1. A Lyapunov function, V : Rnx → R≥0 exists
for the discrete-time dynamic system, xk+1 = f̄(xk, κ(xk))
with respect to a positive invariant set A if f̄ is locally
bounded, and there exist functions α1, α2 of class K∞, and
a positive definite function φd that satisfy the following:

α1(‖x‖A) ≤ V (x) ≤ α2(‖x‖A) (9)

V (f̄(x, κ(x)))− V (x) ≤ −φd(‖x‖A) (10)

The existence of a Lyapunov function implies asymptotic
convergence to a set A, and it is well-known as the Lya-
punov theorem (Rawlings et al., 2020). Typically, inequal-
ities (9) and (10) are incorporated into the constraints of
a standard eNMPC to achieve stabilization, with the Lya-
punov function selected from the tracking stage cost. This
choice aligns with setting A as the steady-state optimal
setpoint, and the distance from the set A is the norm of
the difference from the setpoint.

The rationale behind a self-stabilizing Lyapunov con-
straint for eNMPC in the absence of a precomputed
steady-state lies in the notion of penalizing deviations from
the steady-state conditions rather than penalizing differ-
ences from the steady-state optimal solution. In short, the
set A in self-stabilizing eNMPC is determined by the norm
of the KKT conditions, as presented in equation (8). This,
in turn, leads to the subsequent formulation of the stage
cost and Lyapunov function.

Ψtr (sl, wl, vl, λ
∗) := ‖F (sl, wl, vl)‖2

+ ‖∇sL (sl, wl, vl, λ
∗)‖2

+ ‖∇wL (sl, wl, vl, λ
∗)‖2

+ ‖∇vL (sl, wl, vl, λ
∗)‖2

(11)

V (xk) :=

N−1∑
l=0

Ψtr (sl, wl, vl, λ
∗) (12)

where Ψtr (sl, wl, vl, λ
∗) is the stage cost at predictive time

l, λ∗ is defined from (13g) and V (xk) is the Lyapunov
function at operating time k. This distinction of index

signifies the roles of the predictive variables sl and the
actual variables xk in the controller. The values of the
triplet (sl, wl, vl) are calculated according to the current
states xk for all values of l in the predictive horizon. Thus,
while sharing the same notations, the values of (sl, wl, vl)
in the expression of V (xk) and those in the expression of
V (xk+1) take different values, as they represent solutions
to two distinct constrained optimization problems.

In the formulation of the self-stabilizing eNMPC, the
augmented components of the stage cost and the Lyapunov
function, as delineated previously, are incorporated into
the standard eNMPC framework. Specifically, at discrete
time instances denoted as tk, the subsequent constrained
optimization problem is solved to achieve the optimal
control actions.

min

N−1∑
l=0

Ψec (sl, wl, vl) (13a)

s.t. sl+1 = f̄ (sl, wl, vl) , l = 0, . . . N − 1 (13b)

h(sl, wl, vl) = 0 (13c)

g(sl, wl, vl) ≤ 0 (13d)

s0 = x(tk) (13e)

V (xk) ≤ V (xk−1)−Ψtr(xk−1, uk−1) (13f)

∇sL (sN , wN , vN , λ
∗) = 0 (13g)

∇wL (sN , wN , vN , λ
∗) = 0 (13h)

∇vL (sN , wN , vN , λ
∗) = 0 (13i)

F (sN , wN , vN ) = 0 (13j)

The values of (sl, wl, vl) are conditional on the initializa-
tion of s0 with an estimation of xk. Thus, the right-hand
side of the Lyapunov constraint (13f) is taken from the
solution of the eNMPC in the previous time step tk−1,
and it is a constant value at the current time tk.

In the eNMPC formulation (13), the steady-state KKT
conditions are exclusively incorporated into the endpoint
constraints of the predictive horizon, and there are dual
intentions for this substitution. Firstly, the Lagrange mul-
tiplier is not defined by index l; instead λ∗ is set to be
the same for all stage costs in the predictive horizon. This
approach was proposed in Lin and Biegler (2023), where it
is proved to guarantee the asymptotic stability of a closed-
loop system. Consequently, the Lagrange multipliers are
recalculated only in the event of a parameter update.
Otherwise, these multipliers remain constant to reduce the
computational time of the eNMPC.

3.3 Rate of Convergence Modification

Although the self-stabilizing eNMPC described in (13) can
guide the dynamic process towards the optimal steady
state without relying on pre-calculated setpoints, man-
aging the rate of convergence to this steady state can
be advantageous during online operation. For instance, in
cases where cyclic optimal behaviors are observed, and it
is economically advantageous for the process to operate
in a transient state rather than maintaining a steady
state, decreasing the rate of convergence can be beneficial
to capture short-term gains. Conversely, if the process is
more cost-effective at the new steady state, eNMPC should
expedite the process toward achieving the optimal steady-
state condition. In order to achieve more control over
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the rate of convergence, the Lyapunov constraint (13f) is
modified as follows.

V (xk) ≤ (1− δ1)V (xk−1)− δ2Ψtr(xk−1, uk−1) (14)

in which, δ1 ∈ [0, 1) and δ2 ∈ (0, 1]. When δ1 is set
to zero, the Lyapunov constraint (14) becomes identical
to the previously proposed Lyapunov constraint in self-
stabilizing eNMPC(Lin and Biegler, 2023), ensuring ro-
bust stability. Since δ1 is strictly less than 1, the positive
definite Lyapunov function V (xk−1) causes the constraint
(14) to be strictly less than its right-hand side with δ1 = 0.
Thus, the incorporation of additional tuning parameters
maintains the robust stability of the previously established
formulation.

Furthermore, the right-hand side of (14) is bounded above
by (1 − δ1)V (xk−1). Thus, the closed-loop process con-
verges to the optimal steady-state at an exponential rate
(1− δ1)kV (x0) as follows.

V (xk) ≤ (1− δ1)V (xk−1)− δ2Ψtr(xk−1, uk−1)

≤ (1− δ1)V (xk−1) ≤ (1− δ1)2V (xk−2)

≤ . . . ≤ (1− δ1)kV (x0)

(15)

3.4 Online Solution Strategy

Our eNMPC formulation is implemented within the Py-
omo algebraic modeling environment, as an efficient frame-
work for online computation. This framework deliberately
initializes the nonlinear program using the recently de-
veloped built-in Dynamic Interface (Parker et al., 2023).
Given that eNMPC inherits the predictive characteristics
of MPC, it is noteworthy that the optimal control actions
for two consecutive time steps should not differ signifi-
cantly from each other, especially when the predictive hori-
zon is sufficiently long. Therefore, a strategic initialization
scheme for the current time step is constructed by shifting
the predictions from the previous eNMPC solution back-
ward by one time step. While this strategy is applicable
across various modeling environments, the Dynamic In-
terface in Pyomo simplifies this task substantially by reor-
ganizing the block-hierarchical structure within the model
solution. When dealing with model variables stored using a
complex index structure, this interface can effectively slice
and sort the variable data into time-indexed snapshots,
facilitating the extraction and shifting of instances for the
initialization of the subsequent time step.

4. CASE STUDY: DIRECT METHANE
AROMATIZATION

In this work, a dynamic model of a counter-current mem-
brane reactor for Direct Methane Aromatization (DMA-
MR) is constructed. While a counter-current membrane
reactor has proved to have higher conversion rates in
other intensified processes (Bishop and Lima, 2021), it
has not been previously investigated for the DMA-MR.
A schematic of the counter-current flow configuration
of the DMA-MR is provided in Figure 1. The dynamic
model of the DMA-MR is assumed to operate under
rigorous temperature and pressure control, maintaining
both isothermal and isobaric conditions throughout its
operation. Within this framework, the influence of pressure
drops is deliberately omitted, and emphasis is placed on

Fig. 1. Schematic with inputs, outputs, and reactions of
the DMA-MR

the impact of pressure profiles within the tube and shell on
the flow rate. This simplification allows for the assumption
of a 1-dimensional model with no radial profile, effectively
reducing the complexity of the analysis to variations in
states along the DMA-MR’s length. The ideal gas law
is selected to describe the gas behavior within the sys-
tem. The method of lines discretization is applied along
the length of the reactor to convert it into a system of
differential-algebraic equations. Additional details of the
dynamic DMA-MR model can be found in Dinh et al.
(2024).

4.1 Closed-Loop Simulation

In the context of closed-loop simulations for eNMPC, an
economic stage cost is employed to minimize downstream
separation costs for the permeate and retentate, which are
assumed to be proportional to their respective flow rates.
The economic objective is also to maximize the production
of both benzene in the tube as well as hydrogen in the shell.
The formulation for the stage cost at time k is as follows:

Ψec =− (φC6H6Ct,C6H6(L, k)− φtube)Qtube,k
− (φH2

Cs,H2
(0, k)− φshell)Qshell,k

(16)

in which at every discrete time k, Qtube,k is the volumet-
ric flow rate of the tube inlet, Qshell,k is the volumetric
flow rate of the shell inlet, φC6H6

denotes the profit from
producing C6H6, φH2

denotes the profit from producing
H2, φtube denotes the separation cost of the permeate, and
φshell denotes the separation cost of the retentate. It is im-
portant to note that the main focus of the case study is to
demonstrate the application of self-stabilizing eNMPC to
DMA-MR, rather than provide techno-economic analysis
of its operation. Thus, Ψec in (16) is dimensionless, and its
quantitative values serve as evaluations of eNMPC perfor-
mance instead of actual operating cost. Furthermore, the
function Ψec in (16) is not a K class function, so the closed-
loop stability of a standard eNMPC (4) is not guaranteed
without a stabilizing constraint.

In the first scenario, the application of self-stabilizing
eNMPC to a system with parameter updates serves to
illustrate its capacity to achieve convergence to steady-
state optima without relying on predefined setpoints. The
simulation results for this scenario are illustrated in Figure
2. The closed-loop system demonstrates its convergence
to the initial steady state by the 62nd time step. Subse-
quently, at the 100th time step, a modification is intro-
duced in the boundary condition of the tube inlet, transi-
tioning it from 95% methane to 85% methane. Notably, the
proposed eNMPC framework effectively guides the system
to a new steady-state optimum by the 169th time step,
all without the necessity of pre-established setpoints. This
demonstration underscores that the dynamic system can
be systematically directed toward the respective steady-
state solutions through the indirect penalization of the
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Lyapunov function with the norm of the steady-state KKT
conditions.

(a) Output variable: benzene molar percentage in retentate

(b) Output variable: hydrogen molar percentage in permeate

(c) Manipulated variable: inlet volumetric flow rate in tube side

(d) Manipulated variable: inlet volumetric flow rate in shell side

Fig. 2. Self-stabilizing eNMPC convergence to new steady-
state optima without pre-calculated setpoints

In this case study, we explore three distinct online solution
approaches: i) formulation of alternative KKT tracking
stage cost with fixed multipliers (λ∗) from the solution of
(5), ii) alternative KKT tracking stage cost with free λ∗,
which are determined in (13) and iii) full KKT tracking
stage cost derived in Lin and Biegler (2023), which in-
tegrates the stage cost (11) and Lyapunov function (12)
into the stabilizing and terminal constraints of (13). This
approach requires recomputation of Lagrange multipli-
ers at each predictive time step. A computational time
comparison in Figure 3 reveals superior efficiency of al-
ternative KKT tracking formulations, despite the slightly
longer computational time of the alternative KKT tracking
stage cost with free multipliers. Overall, these approaches
exhibit similar trends, with two peaks in computational
time following setpoint changes in self-stabilizing eNMPC,
reflecting adjustments in Lagrange multipliers to track new
steady-state optima and align predictive trajectories.

In the subsequent scenario within the case study, an
adjustment is made to the tuning parameters specified
in (14) to illustrate their impact on the convergence
rate to steady-state optima. Given that both δ1 and δ2
exert a monotonic influence on the convergence rate, it is
appropriate to simplify the analysis by selecting the values
for these parameters as δ = δ2 = 2δ1. The simulations
with varying values of δ are shown in Figure 4. From
these results, it is observed that the time required to reach
steady state shortens as δ → 1, while it lengthens as
this parameter decreases. Moreover, for the case where
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Fig. 3. Online computational time for the self-stabilizing
eNMPC with parameter update

δ = 1, the economic performance is improved by 24% over
standard eNMPC.

(a) Output variable: benzene molar percentage in retentate

(b) Output variable: hydrogen molar percentage in permeate

(c) Manipulated variable: inlet volumetric flow rate in tube side

(d) Manipulated variable: inlet volumetric flow rate in shell side

Fig. 4. Effects of tuning parameter on the rate of conver-
gence to steady state

The final scenario explored in this case study is the time-
varying disturbance rejection operation. Specifically, the
inlet methane concentration within the feed natural gas
stream undergoes random fluctuations around 5% of its
nominal value. The simulation results, which compare
to a disturbance-free steady-state optimal condition, are
presented in Figure 5.

The simulation results lead to a primary observation that
the closed-loop DMA-MR with noisy inputs does not
achieve asymptotic convergence to a steady state. This
phenomenon arises from the inherent behavior of self-
stabilizing eNMPC, which actively tracks the optimality
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(a) Output variable: benzene molar percentage in retentate

(b) Output variable: hydrogen molar percentage in permeate

(c) Manipulated variable: inlet volumetric flow rate in tube side

(d) Manipulated variable: inlet volumetric flow rate in shell side

Fig. 5. Self-stabilizing eNMPC with time-varying distur-
bances

conditions. These conditions, however, undergo changes
with each new set of boundary conditions introduced at ev-
ery time step by time-varying disturbances. Consequently,
the self-stabilizing eNMPC effectively converges towards a
dynamically shifting target, rendering it incapable of at-
taining a steady state. Nevertheless, the closed-loop behav-
ior of the eNMPC applied to the DMA-MR system remains
bounded rather than becoming unstable. This resilience
can be attributed to the inherent input to state practical
stability (ISpS) of the previously proposed formulation,
even as the new Lyapunov constraint is further tightened
through an additional tuning parameter. Additional eN-
MPC results for the DMA-MR process can be found in
Dinh et al. (2024).

5. CONCLUSION

This study explores the practical use of self-stabilizing
eNMPC without the reliance on predetermined setpoints.
This advancement represents a substantial step forward
in overcoming the challenges associated with integrating
RTO and advanced regulatory controllers, such as MPC.
The proposal of a generalized time-domain formulation ad-
dresses the inherent differences between the discrete-time
nature of control instrumentation and the continuous-time
characteristics of first-principle models. Furthermore, the
dynamic adjustment of the Lyapunov constraint’s param-
eters provides operators with enhanced control over the
behavior of the closed-loop system, ultimately increasing
its adaptability.

A case study examines the implementation and practical
performance of self-stabilizing eNMPC in the context of a
counter-current DMA-MR system. Various scenarios are

explored, providing a unique insight into the operation
of the framework. The framework’s adaptability to pa-
rameter updates showcases its real-time control potential.
Tuning parameters significantly influence the membrane
system’s convergence rates, allowing operators to adjust
the control system’s response to transient dynamics. Com-
putational efficiency emerged as an advantage, particularly
in scenarios without parameter updates. Finally, ISpS
is demonstrated in the presence of time-varying distur-
bances.
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