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Abstract: A predictive modeling framework for silicon production in fluidized bed reactors is
proposed to characterize the particle size distribution of the product and the powder loss. Two
different flow regime modeling approaches are considered to describe the silane pyrolysis reaction
and characterize the deposition rate that contributes to particle growth. A discrete population
balance equation is used to estimate the particle size distribution as a function of the deposition
rate. A nonlinear model predictive control is then utilized to regulate the system at the desired
operating conditions. Detailed open-loop and closed-loop simulation studies demonstrate the
successful integration of nonlinear MPC and the proposed predictive modeling approach.
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1. INTRODUCTION

High-purity polysilicon, or solar-grade silicon, is a critical
material in the photovoltaic supply chain, constituting
approximately 20% of the total solar cell production cost.
Consequently, there is a significant drive to minimize the
production costs associated with solar-grade feedstock (Du
et al. (2014)). Utilizing silane pyrolysis in a fluidized
bed reactor (FBR) offers a promising avenue to achieve
this goal, compared to the conventional Siemens process.
FBR systems exhibit higher operational efficiencies and
lower energy consumption, making them a more efficient
platform for solar-grade silicon production. The fluidized
reactor’s performance has been extensively evaluated and
fine-tuned for the efficient production of solar-grade sili-
con (Cadoret et al. (2007); Tejero-Ezpeleta et al. (2004)).
Polysilicon FBR dynamics are characterized by the pro-
duction scale, growth rate, and decay of the discrete par-
ticles in a continuous phase.

A particulate process involves properties distributed in
both external (space and time) and internal (particle size)
coordinates (Ramkrishna (2000)). The population balance
equation (PBE) governs the evolution of these properties
along the external coordinates. However, combining it with
the mass balance equation of the continuous phase results
in a set of partial integro-differential equations that are
challenging to solve. Several numerical methods have been
developed for solving this set of equations, with moment
transformation and discretization commonly employed ap-
proaches. In particular, White et al. (2006) proposed a
particulate phase model by combining the mass and pop-
ulation balance over discrete intervals, showing reduced
computational time compared to existing methods.
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(785) 532-5584, Fax: +1 (785) 532-7372.

The challenges associated with controlling the FBR sys-
tem originate from the intricate nature of gas-solid in-
teractions. Previous research has tackled these obsta-
cles, proposing various model-based approaches. Lai et al.
(1986) introduced two models for silane pyrolysis in flu-
idized bed systems: one employing an ideal well-mixed
reactor (CSTR) to capture the FBR system’s behavior un-
der specific conditions, and the other based on Kunii and
Levenspiel (1968) more comprehensive fluidized-bubbling
bed model, which better encapsulates the system’s physics.
Caussat et al. (1995) compared model predictions for
silane pyrolysis in FBR systems against experimental data.
These studies present detailed insights into the silane
decomposition reaction mechanisms and diverse model-
ing approaches for FBR systems. However, few studies
have focused explicitly on devising control strategies for
silane pyrolysis in fluidized systems. White et al. (2006)
proposed a simplified model that can be easily tuned us-
ing experimental data, facilitating control purposes. Their
work integrated feedback control theory into steady-state
simulations to maintain a constant mass hold-up in the
reactor and average product size. Several multiphase gas-
solid simulation studies have used computational fluid
dynamics tools to examine FBR system dynamics and
improve model reliability. These simulations have informed
the development of multi-scale modeling approaches that
integrate data, such as void fraction, drop pressure, and
temperature profiles, into deterministic models. While pre-
vious studies, including those by Guenther et al. (2001),
Parker (2011), and White et al. (2007), have primarily
employed traditional control strategies due to the complex-
ity of the models, other works by Balaji et al. (2010) has
demonstrated the potential for more sophisticated control
approaches. Du et al. (2014) proposed a multi-scale model
structure for silicon production in FBR systems that could
be integrated with a control method. Nevertheless, the
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control strategies employed in these studies have focused
solely on regulating mass hold-up and particle size dis-
tribution, overlooking the critical objective of minimizing
powder loss to improve process yield. Advanced control
strategies, such as model predictive control (MPC), appear
promising in addressing this challenge.

This work focuses on developing a predictive modeling
framework for particulate polysilicon reactor systems for
process control and real-time decision-making applica-
tions. Reduced-order models are created for ideal and
non-ideal mixed-flow conditions. These models are then
utilized as the basis for MPC designs, aiming to precisely
regulate particle size distributions and minimize powder
loss. The ultimate goal is to enhance the operational effi-
ciency of FBR systems and concurrently reduce production
costs associated with solar-grade silicon. The developed
reduced-order models encompass a comprehensive inte-
gration of reaction mechanisms, population balance, and
mass balances for the various components involved in the
reaction medium. The subsequent sections of this paper
are organized as follows: Section 2 provides a detailed
description of the particulate process under consideration.
Section 3 thoroughly explores the intricacies of model
development and the discretization scheme employed for
solving the PBE. Following this, Section 4 establishes the
mathematical formulation of the MPC theory. Section 5 is
also dedicated to presenting and discussing the outcomes
of both open-loop and closed-loop simulations.

2. PROCESS DESCRIPTION

The schematic of the FBR utilized in polysilicon produc-
tion is illustrated in Fig. 1. The bed commences with an
initial preload of silicon seed particles to initiate silicon
deposition. A mixture of preheated silane and hydrogen is
introduced at the bottom of the reactor to achieve fluidiza-
tion of the silicon particles. The fluidized bed’s tempera-
ture is regulated using wall heaters and a preheated inlet
gas stream. Upon reaching the designated reaction tem-
perature (650°C), silane’s thermal decomposition occurs,
leading to solid silicon and hydrogen formation through
pyrolysis. The following overall reaction intricately governs
this process,

SiH4 (g) −−→ Si (s) + 2H2 (g)

The thermal decomposition of SiH4 gas forms Si and H2

through two primary mechanisms. Firstly, silane engages
in heterogeneous chemical vapor deposition at the surface
of solid silicon, depositing as a crystalline solid. Secondly,
silane undergoes homogeneous decomposition, producing
a gaseous precursor that can nucleate and generate an
amorphous brown powder. A substantial portion of this
powder is scavenged by existing silicon particles, subse-
quently re-crystallizing to contribute to particle growth.
Consequently, the silicon seed particles, constituting the
product, undergo growth within the reactor and are later
extracted from the bottom. The product particles are
withdrawn at a regulated rate to maintain the solid hold-
up inside the reactor. The remaining fines are exhausted
alongside hydrogen gas and unreacted silane at the top
exit, diminishing the yield due to powder loss. Minimizing
powder loss emerges as a pivotal factor in enhancing the
overall yield of the process. Additionally, seed particles are

Fig. 1. Fluidized bed reactor.

introduced into the reactor to achieve the desired product
size distribution.

3. PROCESS MODEL DEVELOPMENT

3.1 Reaction module

Silane undergoes thermal decomposition through two reac-
tion mechanisms. The first involves homogenous decompo-
sition into a gaseous intermediate, which is subsequently
scavenged by seed silicon particles. The rate of homoge-
neous decomposition of silane is expressed as

rhom = 2× 1013 exp

(
−26000

T

)
CSiH4

(1)

The homogeneous decomposition generates an interme-
diate, instigating the nucleation of a new silicon phase
(fines). Silicon vapor is assumed to be the gaseous in-
termediate. The silicon nucleation rate is described by
the classical theory of homogeneous nucleation (Abraham
(1974))

rHN = NA
αc

ρ

(
2σ̂m

π

)1/2

exp

(
−4πr̂2σ̂NA

3RT

)
c2Si (2)

where NA is Avogadro’s number and αc is the condensa-
tion coefficient. The critical radius nuclei r̂ is determined
by

r̂ =
2σSi

ρpRT lnS
(3)

where S = PSi/P
0
Si is the supersaturation ratio and P 0

Si
is the silicon vapor pressure at equilibrium, determined
by the following equation (Lai et al. (1986)) when the
temperature is below 1685 K,

log(P 0
Si) = 7.5341− 2.3399× 104/T (4)

The specific surface energy (σ̂) of condensed-phase silicon
nuclei is approximated based on the surface tension at the
melting temperature (σm) (Du et al. (2014)),

σ̂ = σm

(
7500− T

7500− Tm

)1.2

(5)

The concentration of silicon vapor is suppressed by diffu-
sion and condensation on large particles and by molecular
bombardment of powders. The rate of molecular diffusion
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of silicon vapor onto larger particles is expressed by (Fried-
lander et al. (2000))

rdl =
2Dg

dp
(CSi − C0

Si) (6)

where Dg is the molecular gas diffusion coefficient calcu-
lated by

Dg =
kBT

3πµdpf
(7)

with kB is the Boltzmann constant, µ is the viscosity of
the gas phase, and dpf is the diameter of fine particles.
The rate of molecular bombardment of silicon vapor on
powder is also determined by

rdf =

(
RT

2Msi

)1/2

(CSi − C0
Si) (8)

A fraction of the generated fines due to silicon molecule
nucleation is captured by larger particles, thereby con-
tributing to overall particle growth. The rate at which
fines are scavenged can be estimated using the following
expression,

Rsc = kscCf (9)

where Cf denotes the concentration of fines generated by
nucleation and ksc is an adjustable proportionality con-
stant. The appropriate value for ksc must be determined
by comparing model predictions and experimental data
(Balaji et al. (2010)). As indicated in White et al. (2006),
the proportionality constant ksc [m

3/s] falls within the
range 0 ≤ ksc ≤ Vg.

An alternative reaction pathway involves the heteroge-
neous decomposition of silane occurring either on the
surface of the pre-existing seed silicon particles or onto
the fines generated, ultimately resulting in chemical vapor
deposition.

rhet = 2.79× 108 exp
(−19530

T

)
CSiH4

(10)

Therefore, the overall decomposition rate of silane is
expressed by

Rtotal = rhet(Atl +Atf ) + rhomVg (11)

where Vg denotes the gas phase volume, calculated as the
difference between the total reactor volume (V ) and the
volume occupied by the solid phase (Vs). The volume of
the solid phase is determined by the density of solid silicon,
with an assumption of negligible porosity in the solid
particles, where Vs = Msolid/ρ and Msolid and ρ represent
the quantity of solid silicon and its density, respectively.
Subsequently, Atl denotes the available surface area of
the larger particles (seed particles), while Atf pertains
to the available surface area of fine particles (powder).
The surface area of seed particles (Atl) is assessed using
the population balance equation, as elaborated in the
subsequent section. Conversely, for the surface area of
fines (Atf ), an approximation is made by considering
the average diameter (dpf ) of fine particles found in the
literature (Du et al. (2014)).

The increase in silicon particle size within the reactor is
facilitated through direct chemical vapor deposition onto
the surface of seed particles and the incorporation of fines
generated during the reaction. Consequently, the overall
deposition rate (Y ) on seed particles is a combination of
the heterogeneous decomposition rate (rhet), the molecular

diffusion rate of silicon vapor (rdl), and the scavenging rate
(Rsc),

Y = Atl(rhet + rdl) +Rsc (12)

A portion of the fines produced remains unscavenged by
the larger particles. This residual powder is transported
out of the reactor alongside hydrogen and silane in the
gas phase, increasing the yield loss. The proportion of
unrecovered fines, often referred to as powder loss, can be
assessed by considering it as a function of both the total
deposition rate and the reaction rate of silane,

Ff = 1− Y

Rtotal
(13)

3.2 Population Balance

A discrete population balance model is employed to pre-
dict the particle size distribution achieved during the
process. The discretization approach is illustrated in Fig.
2. White et al. (2006) introduced a discrete representa-
tion of the population balance equation, streamlining the
modeling task. This representation ensures the preserva-
tion of conservation laws across all discretization levels,
thereby reducing computational costs without additional
discretization. Notably, this approach converges to the
classical population balance equation when the number of
discrete intervals approaches infinity (White et al. (2006)).

Fig. 2. Discrete size interval network.

The analysis assumes that particles are distributed across
K intervals (classes), each characterized by an average
number of moles (or mass) per particle. Consequently, each
class contains a specific number of particles denoted as
Ni, with an average mass mi. The correlation between the
overall mass of the particles and the quantity of particles
within each class is expressed as

Mi = miNi ∀i = 1, 2, . . . ,K (14)

The total available surface area of the particles in a class
is defined by

Ai = aiNi (15)

where ai represents the surface area of a particle within the
size class i. Experimental measurements have consistently
demonstrated that the shape of silicon particles closely
approximates a sphere. Hence, the surface area of a particle
with diameter l is calculated by the following expression

ai = 4π

(
l

2

)2

(16)

Particle growth is initiated through deposition onto the
particles and a scavenging process, prompting their tran-
sition from one size class to the subsequent size category.
Consequently, the mass balance for each size class is artic-
ulated as follows

dMi

dt
= fi−1 + fi + ri + qi (17)
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The conservation equation for the quantity of particles
within each class is expressed as

dNi

dt
=

qi
mi

− fi
mi

+
fi−1

mi
(18)

where qi = qini − qouti represents the total external flow
of particles. This quantity is explicitly defined as the
difference between the rate of addition of seed particles
qini within the class i and the particle withdrawal flow
qouti . The rate of mass transfer from the gas phase to the
particles within each class is expressed as

ri = Y
Ai∑
i Ai

∀i = 1, 2, . . . ,K (19)

The key parameter connecting the rate of silane decom-
position to particle growth in the population balance is
the total deposition rate Y . Molar flows of particles occur
between consecutive particle size classes. Specifically, the
molar flow entering the size class i is denoted as fi−1,
whereas fi represents the molar flow existing in the class.
Notably, this study does not consider the effects of ag-
glomeration and attrition. White et al. (2006) proposed
an expression linking molar flows between neighboring
classes,

fi = ri
mi+1

mi+1 −mi
(20)

Nevertheless, the final class K requires additional consid-
erations. According to the mass balance illustrated in Eq.
20, this concluding class should not involve particle flow
to the subsequent class. Consequently, the mass balance
and number balance for class K are defined as

dMi

dt
= fi−1 + ri + qi,

dNi

dt
=

qi
mi

+
fi−1

mi + 1
(21)

The final class K has no mass transfer from the fluid phase
to the solid particles. The total mass is the cumulative sum
of all masses across all classes

Mtotal =

K∑
i=1

Mi (22)

The comprehensive mass balance equation for the solid
phase is expressed as follows

dMtotal

dt
= Y + S − P (23)

where S is the seed addition rate, Y is the total deposition
rate, and P is the product withdrawal rate. Sustaining
a consistent level in the solid bed is crucial for ensuring
stable fluidization conditions during operation. This goal
can be achieved by controlling the total mass hold-up of
silicon particles within the reactor. The regulation of the
total mass hold-up is facilitated by manipulating the flow
of product withdrawal. Therefore, an inventory control
strategy for the silicon mass hold-up (White et al. (2006))
can be defined as

dMtotal

dt
= Km(Mtotal −M∗) (24)

where Km is a proportional gain constant and M∗ is the
desired mass hold-up. Consequently, the expression for
product withdrawal can be formulated as

P = S + Y +Km(Mtotal −M∗) (25)

The proposed control strategy effectively regulates the
mass hold-up in the system, taking into account the
product withdrawal rate. The average particle size is

determined by employing the weighted average approach,
derived from the particle size distribution,

dp =
1∑

i wi/dpi
(26)

where wi represents the fraction (weight) of i-th class in
the distribution, and dpi denotes the particle diameter.

3.3 Flow regimes and mass balances

Well-mixed flow regime: The fluid dynamics and gas-solid
interactions within the fluidized reactor present inherent
complexities. Nonetheless, under certain operational con-
ditions, the system’s behavior can be reasonably approx-
imated as that of an ideally well-mixed reactor. This ap-
proximation becomes feasible in fluidized beds only when
bubble formation is effectively suppressed while ensuring
robust solid-gas mixing (Lai et al. (1986)). Assuming well-
mixed conditions for both the solid and gas phases within
the reactor, the mass balances for the gas phase are ex-
pressed as follows

dMSiH4

dt
= F inCin

SiH4
− F outCout

SiH4

−(rhomVg + rhet(Atl +Atf ))

dMH2

dt
= F inCin

H2
− F outCout

H2

+2(rhomVg + rhet(Atl +Atf ))

dMSi

dt
= (rhom − rhn)Vg − rdl(Atl +Atf )

dMf

dt
= rhnVg −Rsc − F outCout

f + rhetAtf

(27)

This particle growth system involves several distinct time
scales. The silane decomposition reaction is almost instan-
taneous and reaches completion over a few centimeters at
the reactor’s entrance (Caussat et al. (1995)). The flow
and mixing regimes stabilize into steady-state conditions
within a few seconds of operation. Additionally, contingent
upon the inlet conditions, the temperature can attain a
steady state after a few minutes (Balaji et al. (2010)).
In contrast, particle size growth proceeds at a markedly
slower pace, with changes in the particle size distribution
taking place over days (Du et al. (2014)). Consequently,
Eqs. 27 can be solved under pseudo-steady state condi-
tions.

Plug flow regime: The assumption of an ideal mixed flow
reactor can only be applied to describe system dynamics
under particular conditions. However, experiments indi-
cate that the process yield may exhibit variability based on
the prevailing process conditions, stem from concentration
gradients within the fluid phase, or inconsistent opera-
tional parameters (Balaji et al. (2010)). Notably, the exist-
ing equations within the CSTR framework fail to account
for the gas phase concentration gradients across the reac-
tor. Hence, to offer a more encompassing representation
of the system’s dynamics, the present study proposes to
model the gas phase as a plug-flow reactor under pseudo-
steady state conditions. This adjustment aims to capture
the nuanced dynamics of the gas phase within the reactor,
which are essential for a comprehensive understanding of
the system,
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dMSiH4

dx
= −rhomVg − rhet(Atl +Atf )

dMH2

dx
= −2

(
rhomVg + rhet(Atl +Atf )

)
dMSi

dx
= (rhom − rhn)Vg − rdl(Atl +Atf )

dMf

dx
= rhnVg −Rsc + (rdl + rhet)Atf

(28)

In this case, both the silane decomposition rate and the
total deposition rate exhibit dependence on the reactor
height. Integrating these parameters into the discrete
population balance scheme necessitates the calculation of
their respective average values, as expressed by

Rtotal =
1

h

∫ (
rhet(x)(Atl +Atf ) + rhom(x)Vg

)
dx

Y =
1

h

∫ (
Atl

(
rhet(x) + rdl(x)

)
+Rsc(x)

)
dx

(29)

where h is the reactor height.

4. NONLINEAR MODEL PREDICTIVE CONTROL

Model predictive control (MPC) is an advanced control
strategy capable of predicting future process states to
estimate optimal control actions within the constraints
of the process (Rawlings et al. (2017)). MPC consists of
three integral components: an objective function, a process
model, and a dynamic optimizer. Leveraging the process
model, MPC predicts the system’s state response by con-
sidering the inherent physical phenomena. Subsequently,
real-time optimization comes into play, determining the
optimal control action by resolving a dynamic optimiza-
tion problem,

min
u

J
(
x(t), u(t)

)
=

∫ t+Tp

t

F
(
x(τ), u(τ)

)
dτ (30)

subject to the nonlinear process model

ẋ(t) = f
(
x(t), u(t)

)
, x(0) = x0 (31)

and input and state constraints

u(τ) ∈ U ∀τ ∈ [t, t+ Tc]

x(τ) ∈ X ∀τ ∈ [t, t+ Tp]

C(x, u, t) = 0

D(x, u, t) ≤ 0

(32)

where
U := {u ∈ Rm |umin ≤ u ≤ umax}
X := {x ∈ Rn |xmin ≤ x ≤ xmax}

(33)

where x(t) ∈ Rn and u(t) ∈ Rm represent the state and
input vectors, respectively. The vectors umax and umin

denote the upper and lower bounds for the manipulated
inputs, while xmax and xmin specify the upper and lower
bounds for the state vector. Tp and Tc represent the
prediction and control horizons, respectively, where Tc ≤
Tp. The functions C and D encompass nonlinear vector
functions that correspond to the equality and inequality
constraints inherent in the system. The cost function J
under consideration is quadratic,

F
(
x(τ), u(τ)

)
= (x− xs)

TQ(x− xs)

+(u− us)
TW (u− us)

(34)

where xs and us represent the desired reference vector
values (targets) for the system state and manipulated

inputs, respectively. These reference values may be con-
stant or time-varying. The positive definite weight matri-
ces Q ∈ Rn×n and W ∈ Rm×m are adjusted to impose
penalties on the errors in state regulation and manipulated
variables within the objective function (Pourkargar et al.
(2017)). The system model utilized to predict the response
is initialized based on the actual system state, which can
be either directly measured or estimated. Solving the op-
timization problem yields the optimal sequence of control
actions u∗(·, x(t)) : [t, t + Tp] → U over the prediction
horizon [t, t + Tp]. Following this, the computed vector
of manipulated variables during the prediction horizon is
applied, with only the first control input of the sequence
being implemented at time t. Subsequently, the optimiza-
tion process recommences for the next sampling period.

5. SIMULATION RESULTS AND DISCUSSIONS

Table 1 outlines the simulation parameters employed in
this study. In our investigation, we utilized 20 size in-
tervals. The average particle size within each interval is
documented in a prior study by Du et al. (2014). The as-
sociated initial bed distribution and seed size distribution
are depicted in Fig. 3.

Fig. 3. Particle size distributions used for the simulations.

Table 1. Initial Conditions.

Parameter Value Symbol

Reactor height 7 m h

Reactor diameter 0.5 m D

Inlet gas velocity 0.55 m/s vin
Inlet Concentration - Silane 6.5 mol/m3 Cin

SiH4

Inlet Concentration - Hydrogen 1.6 mol/m3 Cin
H2

Inlet Concentration - Silicon Powder 0.001 mol/m3 Cin
Si

Scavenging factor 0.03 m3/s ksc
Fine diameter 0.3×10−6m df
Seed addition rate 0.001 mol/s S

Initial Solid bed 350 kg M

Mass hold-up 450 kg M∗

Reactor Temperature 850 K T

5.1 Open-loop simulations

Fig. 4 presents the open-loop particle growth dynamics,
showcasing the evolution of the critical process properties
over time. According to the simulation results, the particle
growth dynamics reach steady state conditions after 125
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hours. Fig. 4a displays the average particle sizes predicted
by both modeling approaches. While minimal differences
exist in the steady-state values obtained from both models,
a notable disparity emerges in the transient region. This
mismatch is associated with the different deposition rates
calculated in each modeling approach. Precisely, the well-
mixed flow regime approach attains steady-state condi-
tions more rapidly due to a higher initial deposition rate.
Conversely, the plug flow regime approach yields a lower
deposition rate due to incorporating concentration gradi-
ents in the calculations.

Fig. 4. Open-loop system dynamics for (a) average particle
size, (b) available surface area, (c) total deposition
rate, and (d) powder loss.

The change in the particle size distribution due to the par-
ticle growth reduces the available surface area for chemical
vapor deposition onto the seed particles. A substantial
reduction in the available surface area of seed particles
is observed in Fig. 4b. This decrease in surface area di-
minishes the effectiveness of chemical vapor deposition,
stemming from the heterogeneous decomposition of silane
and the molecular diffusion of silicon vapor to facilitate
particle growth. Consequently, there is a notable reduction
in the overall deposition rate (Fig. 4c).

The projected powder loss for each model is presented
in Fig. 4d. Both models predict a powder loss exceeding
40% of the generated powder under steady-state condi-
tions. However, the well-mixed flow approach predicts a
higher power loss. Minimizing powder loss is imperative
to enhance the process yield. Several factors contribute
to increased powder loss, including elevated temperatures,
which promote fines formation due to the higher activa-
tion energy of the homogeneous decomposition reaction
compared to the heterogeneous mechanism. Additionally,
higher inlet gas velocities can carry more fine particles in
the gas phase at the top of the FBR system. Consequently,
operating at high temperatures or increased inlet gas ve-
locities leads to a diminished process yield.

Generally, at low temperatures and low gas flow rates
(near the minimum fluidization velocity), the predictions
of these two models align closely. However, achieving the
ideal well-mixed condition, especially at minimum flu-
idization conditions, is challenging. Furthermore, the well-

mixed flow regime modeling approach oversimplifies the
system by neglecting concentration and temperature gra-
dients in its calculations. In contrast, the plug flow regime
approach offers a more accurate system representation,
making it suitable for control and decision-making.

5.2 Closed-loop Simulations

The prediction and control horizons are set to Np = Nc =
10 sampling, with a sampling time of ∆ = 5 hours for
each MPC iteration. Consequently, the prediction horizon
for solving the optimal control problem at each sampling
instance is determined as Tp = Tc = 50 hours. It is
assumed that all states are accessible at the designated
sampling times. The control objective is stabilizing the
system at the steady-state condition detailed in Table 2.

Table 2. Steady State Values.

Parameter Value Symbol

Mass hold-up 450 kg xSS
1

Average Particle size 2.10 mm xSS
2

Seed addition rate 0.001 mol/s uSS
1

Inlet gas velocity 0.55 m/s uSS
2

The interior-point optimization algorithm (IPOPT) is em-
ployed to address the nonlinear constrained dynamic opti-
mization problem at each sampling time (Biegler (2010)).
Given the nonconvex nature of the optimization problem,
the assurance of a global minimum value is not guaranteed.
Weight matrices are utilized to balance the importance
of each state and input variable in the cost function.
However, in this context, mass hold-up and particle size
distribution are deemed equally significant, as are the
manipulated inputs. Consequently, identity matrices are
chosen for both weight matrices Q and W . The controlled
variables encompass the product’s mass hold-up and par-
ticle size distribution, crucial for ensuring the system’s
proper operation. However, the non-self-regulating nature
of the mass hold-up dynamic necessitates constraints to
avoid convergence to different steady states or instability
when determining associated flow rates. Eq. 25 is inte-
grated into the MPC controller as a nonlinear constraint
to regulate the product withdrawal rate.

The second controlled variable is the particle size dis-
tribution of the product. The physicochemical and me-
chanical properties of particulate system products hinge
strongly on the corresponding particle size distribution
characteristics. Manipulating the particle size distribution
is thus fundamental for controlling product quality. The
product size distribution depends on the seed added to
the reactor and the ratio between the seed mass and the
total mass. Hence, the seed addition rate can be used as
a manipulated variable. The seed addition rate influences
the product size distribution, while the inlet gas velocity
regulates the deposition rate by controlling the amount of
silane in the reactor. Additionally, these manipulations can
be considered to minimize power loss in the FBR system.
Consequently, the seed addition rate and the inlet gas flow
rate are manipulated inputs for the MPC controller, con-
strained within ±50% of their steady-state values outlined
in Table 2.

Fig. 5 illustrates the closed-loop simulation employing the
plug flow regime model approach. State variables and
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inputs are presented in normalized deviation form. Figs.
5a and 5b depict the seed addition rate and the inlet gas
velocity gradually converging to their steady-state values.
After 50 hours, the control actions reach a steady-state
condition, remaining constant.

Fig. 5. Closed-loop system dynamics: (a) seed addition
rate, (b) inlet gas velocity, (c) mass hold-up, (d)
average particle size.

Fig. 5c presents the dynamic response of the mass hold-
up, revealing a faster dynamic response compared to the
average particle size illustrated in Fig. 5d. A slight over-
shoot is observed before the system attains its steady-state
value. This overshooting behavior results from the control
strategy outlined in Eq. 25, integrated with MPC. Turning
attention to Fig. 5d, the transient response in the particle
size distribution is evident, requiring a more extended
period to achieve a steady-state condition. The sluggish
evolution of the average particle size can be attributed
to the gradual dynamics inherent in the particle growth
process. In summary, both state variables exhibit conver-
gence with smooth trajectories, indicating the successful
stabilization of the system at their respective steady-state
values.

6. CONCLUSION

This work presents a control-oriented predictive model for
polysilicon production in FBR systems. The developed
model uniquely integrates concentration gradients to char-
acterize silane decomposition along the reactor and em-
ploys population balance principles to anticipate particle
growth. The successful integration of nonlinear MPC with
the proposed model is demonstrated through simulation
results. These findings showcase the MPC controller’s ef-
fectiveness in regulating mass hold-up and controlling par-
ticle size distribution in the final product. The introduced
predictive modeling and control framework holds promise
for advancing control strategies used in particulate sys-
tems operation, thereby contributing to the optimization
of silicon production within fluidized systems. Our future
investigations emphasize controlling reactor temperature
and enhancing the scavenging rate to minimize powder
loss, providing avenues for further refinement and improve-
ment in the overall process.
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