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Abstract: The predictive performance of soft sensors deteriorates over time which is called the 
performance change of a soft sensor. These changes occur due to differences between the current 
characteristics of the process or plant and the soft sensor model. The deviation is a type of plant-model 
mismatch (PMM). Initially, this mismatch may be acceptable. However, over time, the PMM can become 
so large that it affects the prediction quality of the soft sensor and may become unacceptable. This paper 
develops a new method to evaluate the impact of PMM on closed-loops with soft sensors. Using coprime 
factorisation and small-gain theory, a performance-change index is developed to characterise the PMM-
induced performance degradation. Then, a performance-based online PMM detection method is proposed 
using this performance-change index. To validate the effectiveness of the proposed algorithm, we use a 
numerical example and a continuous stirred tank reactor (CSTR). It is shown that that the proposed index 
can detect the change of the PMM. 
Keywords: Plant-model mismatch, soft sensor, performance-change index, Coprime factorisation 

 

1. INTRODUCTION 

In most industrial environments, failure to measure critical 
variables quickly enough or accurately enough can lead to 
financial loss or safety issues. In both cases, soft sensors are 
designed to estimate unknown variables using more easily 
available process data (Bosca & Fissore, 2011; Yu, 2012). 

Soft sensors can be divided into three categories. First, soft 
sensors can be developed using first-principle models, Kalman 
filters, and observers (de Assis & Maciel Fiho, 2000; Heineken, 
Flockerzi, Steyer, Voigt, & Sundmacher, 2007; Mangold, 
2012). As well, inference-based soft sensors (Fortuna, 
Graziani, Rizzo, & Xibilia, 2007) are subsumed into model-
based soft sensors as relevant variables are used to predict the 
desired result (Shardt & Huang, 2012). Model-based soft 
sensors require an understanding of the process and 
considerable effort to develop the model. Another approach 
involves using data-driven techniques to create soft sensors, 
where process data and plant knowledge play a crucial role 
(Dufour, Bhartiya, Dhurjati, & Doyle III, 2005; Facco, 
Doplicher, Bezzo, & Barolo, 2009). Techniques like principal 
component regression (PCR) and partial least squares (PLS) 
are used in constructing linear models. Progress has been made 
in quality estimation from collinear high dimensional data 
(Krdlec, Gabrys, & Strandt, 2009). However, even if soft 
sensors are initially accurate, the predictive performance of the 
models deteriorates over time due to various factors. These 
factors include changes in raw materials properties, 
fluctuations in catalyst activity, changes in the external 
environment, or even shifts in the operational condition (Urhan 
& Alakent, 2020). This situation is known as a soft-sensor 
performance change, which causes the true process (also 
known as the plant) to differ from the initial process model. 

This deviation is called plant-model mismatch (PMM). PMM 
refers to the difference between the dynamics of the initial 
process model and the actual process behaviour. To tackle this 
problem, it is necessary to detect PMM and develop effective 
performance evaluation tools (Shardt, et al., 2012). 

Detection of PMM is the first step for performance change 
detection of a soft sensor. There are many approaches to detect 
PMM. A partial correlation approach was developed by Badwe 
et al. (2009), which used the correlation between the residuals 
and the manipulated variable. Three specific indices were 
proposed (Jing, Li, & Shah, 2007): ηABC, ηAC, and ηC, which 
can be used to detect PMM in the matrices of model predictive 
control (MPC) systems. This approach is based on discrete-
time state-space models. To identify PMM in a closed-loop 
control system, Ling et al. (2017) developed an evaluation 
indicator for process models. This indicator is based on 
calculating the ratio between the variance of the disturbance 
innovations and the variance of the model quality variables. A 
larger value implies a smaller PMM. An approach based on the 
subspace method was developed by Wang, Song, and Xie 
(2012) to detect PMM.  

Compared to detecting PMM, there are only a few methods 
in the literature to assess the impact of PMM. An assessment 
criterion is proposed based on minimum variance for 
evaluating the control loop performance change caused by the 
PMM (Harris, 1989). Although the method extends from 
univariate to multivariate systems, the main purpose of this 
index is not to evaluate the PMM, and if there are deviations, 
it does not mean that the model has changed, it could mean that 
the controller has been poorly tuned. (Hong, Tore, & Zhihuan, 
2012) proposed a metric called the integral absolute error 
(IAE) index. They demonstrated that the IAE index increases 
as PMM is increased. However, none of the criteria and 
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decisions are indicated for comparison with the defined index 
or indicate how the index should be like under normal working 
environment. A closer relationship between PMM and 
robustness of soft-sensor control loop has not been suggested 
elsewhere in the literature. However, robustness should be 
considered when studying detection of PMM. It is concerned 
with the stability of controlled systems. In addition to this, 
PMM can lead to either an increase or decrease in the 
performance of the soft-sensor control loop which require 
engineers to respond differently. System robustness can 
effectively detect these changes. Therefore, when evaluating 
PMM, it is important to consider the robustness of the soft-
sensor control loop. 

Thus, the objectives of the paper are: to develop an online 
PMM detection algorithm considering the robustness of the 
soft-sensor control loop and provide the associated design 
decision logic; to test the PMM detection algorithm on a 
numerical example; and to test the PMM detection algorithm 
on an industrial continuous, stirred tank reactor (CSTR). 

2. BACKGROUND AND PROBLEM FORMULATION 

2.1. Background 

 Consider the controlled soft-sensor system shown in 
Figure 1, where G(z)=(AG, BG, CG, DG) is the plant (or true 
process), 𝐺𝐺�(z)=(A, B, C, D) is the assumed process model, K(z) 
is the controller, GB(z) is the bias update term, 𝑣𝑣(𝑧𝑧) ∈ 𝑅𝑅𝑛𝑛 is 
the reference signal, 𝑢𝑢(𝑧𝑧) ∈ 𝑅𝑅𝑚𝑚 is the input to the plant and 
the soft sensor, y(𝑧𝑧) ∈ 𝑅𝑅𝑛𝑛  is the (true) plant output, 𝜃𝜃(𝑧𝑧) ∈
𝑅𝑅𝑛𝑛 is the model output, 𝑦𝑦𝛽𝛽(𝑧𝑧) ∈ 𝑅𝑅𝑛𝑛 is the compensation signal 
from the bias update term, 𝑦𝑦𝑚𝑚(𝑧𝑧) ∈ 𝑅𝑅𝑛𝑛  is the compensated 
output, and 𝑑𝑑(𝑧𝑧) ∈ 𝑅𝑅𝑛𝑛  is the disturbance, which is assumed to 
be white, Gaussian noise. The bias update term GB(z) and the 
model 𝐺𝐺�(z) create the soft sensor S(z).  

According to the design characteristics of the bias update 
term (Shardt & Huang, 2012), when there is a difference 
between 𝜃𝜃(𝑧𝑧) and y(𝑧𝑧), GB(z) provides a compensation signal 
to guarantee that 𝑦𝑦𝑚𝑚(𝑧𝑧) is close to the true output y(𝑧𝑧). 

 

Figure 1: Closed-loop structure with soft sensors                             
(Shardt & Huang, 2012) 

In Figure 1, 𝑦𝑦𝑚𝑚(𝑧𝑧) is the actual output of the soft sensor. 
Therefore, we have 
𝑣𝑣(𝑧𝑧) = 𝑢𝑢(𝑧𝑧) − 𝐾𝐾(𝑧𝑧)𝑦𝑦𝑚𝑚(𝑧𝑧)                                                        (1)                              

𝑦𝑦𝑚𝑚(𝑧𝑧) = 𝑆𝑆(𝑧𝑧)𝑢𝑢(𝑧𝑧)                                                                       (2) 

The soft-sensor can be described by the following equation:  

 �
𝑢𝑢

𝑦𝑦𝑚𝑚
� = � 𝐼𝐼 −𝐾𝐾

−𝑆𝑆 𝐼𝐼 �
−1

�𝑣𝑣
0�                                                                       (3)  

Definition 1 (Zhou & Doyle, 1998): In the 𝑅𝑅𝑅𝑅∞ space, there 
are two matrices 𝑀𝑀�(𝑧𝑧) and 𝑁𝑁�(𝑧𝑧) with an equal number of rows, 

if there are two other matrices X̂(z) and Ŷ(z) in the same space 
that satisfy the following relationship: 

 [𝑀𝑀�(𝑧𝑧) 𝑁𝑁�(𝑧𝑧)] �𝑋𝑋�(𝑧𝑧)
𝑌𝑌�(𝑧𝑧)

� = 𝐼𝐼                                                                      (4) 

Then, it is said that in the 𝑅𝑅𝑅𝑅∞ space, the matrices 𝑀𝑀�(𝑧𝑧) and 
𝑁𝑁�(𝑧𝑧) are left coprime, and equivalent to [𝑀𝑀�(𝑧𝑧) 𝑁𝑁�(𝑧𝑧)]  , 
which are right invertible in the 𝑅𝑅𝑅𝑅∞ space. 

Similarly, in the 𝑅𝑅𝑅𝑅∞ space, there are two matrices M(z) 
and N(z) with an equal number of columns, if there are other 
matrices X(z) and Y(z) in the same space that satisfy the 
following relationship:  

[𝑋𝑋(𝑧𝑧) 𝑌𝑌(𝑧𝑧)] �𝑀𝑀(𝑧𝑧)
𝑁𝑁(𝑧𝑧)� = 𝐼𝐼                                                                    (5) 

Lemma 1 (Zhou & Doyle, 1998): Suppose 𝐺𝐺� (z) is a real, 
rational matrix that has a stabilisable and observable realisation. 
Let ℱ and ℒ satisfy, respectively, 𝒜𝒜+ℬℱ and 𝒜𝒜 − ℒ𝒞𝒞 stability. 
Therefore, the above eight transfer matrices can also be 
expressed as 
𝑀𝑀(𝑧𝑧) = �𝐴𝐴 + 𝐵𝐵𝐵𝐵 𝐵𝐵

𝐵𝐵 𝐼𝐼 � ,            𝑁𝑁(z) = �𝐴𝐴 + 𝐵𝐵𝐵𝐵 𝐵𝐵
𝐶𝐶 + 𝐷𝐷𝐵𝐵 𝐷𝐷� 

𝑋𝑋�(𝑧𝑧) = �𝐴𝐴 + 𝐵𝐵𝐵𝐵 𝐵𝐵
𝐵𝐵 𝐼𝐼 � ,             Ŷ(𝑧𝑧) = �𝐴𝐴 + 𝐵𝐵𝐵𝐵 −𝐿𝐿

𝐵𝐵 0 � 
(6) 

M� (𝑧𝑧) = �𝐴𝐴 − 𝐿𝐿𝐶𝐶 𝐿𝐿
−𝐶𝐶 𝐼𝐼� ,              𝑁𝑁� = �𝐴𝐴 − 𝐿𝐿𝐶𝐶 𝐵𝐵 − 𝐿𝐿𝐷𝐷

𝐶𝐶 𝐷𝐷 �               

𝑋𝑋(𝑧𝑧) = �𝐴𝐴 − 𝐿𝐿𝐶𝐶 −𝐵𝐵 + 𝐿𝐿𝐷𝐷
𝐿𝐿 𝐼𝐼 � , 𝑌𝑌(𝑧𝑧) = �𝐴𝐴 − 𝐿𝐿𝐶𝐶 −𝐿𝐿

𝐵𝐵 0 �         

Then, 𝐺𝐺�(𝑧𝑧) = 𝑁𝑁(𝑧𝑧)𝑀𝑀(𝑧𝑧)−1 = 𝑀𝑀�−1(𝑧𝑧)𝑁𝑁�(𝑧𝑧) are, respectively, 
the right coprime factorisation (RCF) and left coprime 
factorisation (LCF) of 𝐺𝐺� (z). Furthermore, Bézout’s identity 
holds: 

�
𝑋𝑋(𝑧𝑧) 𝑌𝑌(𝑧𝑧)

−𝑁𝑁�(𝑧𝑧) 𝑀𝑀�(𝑧𝑧)� �𝑀𝑀(𝑧𝑧) −𝑌𝑌�(𝑧𝑧)
𝑁𝑁(𝑧𝑧) 𝑋𝑋�(𝑧𝑧)

� = �𝐼𝐼 0
0 𝐼𝐼�                                      (7) 

The LCF and RCF are obtained for the system 𝐺𝐺�(𝑧𝑧) and 
the controller K(z) described in Figure 1 to give: 
𝐺𝐺�(𝑧𝑧) = 𝑁𝑁(𝑧𝑧)𝑀𝑀(𝑧𝑧)−1 = 𝑀𝑀�−1(𝑧𝑧)𝑁𝑁�(𝑧𝑧)                                                  (8) 

𝐾𝐾(𝑧𝑧) = 𝑈𝑈(𝑧𝑧)𝑉𝑉(𝑧𝑧)−1 = 𝑉𝑉� −1(𝑧𝑧)𝑈𝑈�(𝑧𝑧)                                                     (9)    

Lemma 2 (Tay & Mareels, 1998): For the real, rational model 
𝐺𝐺�(z) and controller K(z), K(z) stabilises 𝐺𝐺�(z) if and only if there 
exist coprime factorisations Equation (8) and (9) such that the 
following Bézout’s identity holds:                :                     

� V� U�
−𝑁𝑁� 𝑀𝑀�

� �𝑀𝑀(𝑧𝑧) −𝑈𝑈(𝑧𝑧)
𝑁𝑁(𝑧𝑧) 𝑉𝑉(𝑧𝑧) � = 𝐼𝐼                                               (10) 

2.2 Problem formulation 

The PMM in the soft sensor S(z) is equivalent to the PMM 
in 𝐺𝐺�(𝑧𝑧), since GB(z) is not affected by PMM. We suppose 
PMM exists in the 𝐺𝐺�(z) of the soft sensor: 
𝑆𝑆𝑃𝑃 = 𝐺𝐺�𝑃𝑃 = 𝑀𝑀�−1𝑁𝑁� = �𝑀𝑀�0 + ∆𝑀𝑀� �−1�𝑁𝑁�0 + ∆𝑁𝑁��                               (11)           

where 𝑀𝑀�0, 𝑁𝑁�0 ∈ 𝑅𝑅𝑅𝑅∞ are the LCF when the soft sensor is 
fault-free and ∆𝑀𝑀� , ∆𝑁𝑁�∈ 𝑅𝑅𝑅𝑅∞  are the model uncertainties 
(Vinnicombe, 2000). 
Let us assume that: 
 The soft-sensor can be described as a linear and time-

invariant system. 

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

105



 
 
 

     

 A controller and an observer can be designed to meet the 
requirement of performance and stability in the soft-
sensor control loop. 

 The reference signal v(z) is persistently excited. 

3. PMM DETECTION 

3.1 Constructing a performance-change index (PCI 

Combining Equations (3)(8)(9) and (11), we get:   

�
𝑢𝑢

𝑦𝑦𝑚𝑚
� = �

𝐼𝐼 −𝐾𝐾
−𝑆𝑆𝑝𝑝 𝐼𝐼 �

−1
�𝑣𝑣
0� = � V� U�

−𝑁𝑁� 𝑀𝑀�
�

−1
�𝑉𝑉

^

0
� 𝑣𝑣                               (12)

Combining Equations (11) and (12):  

� V� U�
−𝑁𝑁� 𝑀𝑀�

�
−1

= �� V� U�
−𝑁𝑁�0 𝑀𝑀�0

� � 0 0
−∆𝑁𝑁� ∆𝑀𝑀�

��
−1

                     (13) 

Bézout’s identity (7) gives: 

� V� U�
−𝑁𝑁� 𝑀𝑀�

�
−1

= �𝑀𝑀0 −𝑈𝑈
𝑁𝑁0 𝑉𝑉 � �𝐼𝐼 + � 0 0

−∆𝑁𝑁� ∆𝑀𝑀�
� �𝑀𝑀0 −𝑈𝑈

𝑁𝑁0 𝑉𝑉 ��
−1

                      (14) 

According to small-gain theory (Ding S. X., 2008), the transfer 
function is stable if: 

�[−∆𝑁𝑁� ∆𝑀𝑀� ] �𝑀𝑀0 −𝑈𝑈
𝑁𝑁0 𝑉𝑉 ��

∞
< 1                                             (15)                         

Equation (15) contains uncertainties ∆𝑁𝑁� and ∆𝑀𝑀� . It is clear 
that uncertainty has an impact on the stability of the model. If 
Equation (15)  is satisfied, then transfer function (14)  is 
stable. Hence, Equation (15) reflects the performance change 
of the soft sensor (Tay & Mareels, 1998; Ding S. X., 2021), 
and can be regarded as the PCI. If PCI is close to 1, it indicates 
proximity to the stability limit. To detect PCI more accurately, 
we can design a maximum acceptable limit PCIth for the 
performance degradation of the soft sensor: 

𝑃𝑃𝐶𝐶𝐼𝐼𝑡𝑡ℎ ≥ 𝑠𝑠𝑢𝑢𝑠𝑠 �[−∆𝑁𝑁� ∆𝑀𝑀� ] �𝑀𝑀0 −𝑈𝑈
𝑁𝑁0 𝑉𝑉 ��

∞
                           (16)  

If PCIth <1, then    

�[−∆𝑁𝑁� ∆𝑀𝑀� ] �𝑀𝑀0 −𝑈𝑈
𝑁𝑁0 𝑉𝑉 ��

∞
< 𝑃𝑃𝐶𝐶𝐼𝐼𝑡𝑡ℎ < 1                           (17) 

From the above discussion, it can be seen that the 
predictive behaviour of the soft sensor is affected by PMM. If 
there is no PMM in the system, PCI = 0. Once PMM 
occurs, PCI starts to increase. Once PCI is greater than PCIth, 
the prediction accuracy will decline to an unacceptable level. 
From this point of view, PCI can be regarded as the 
performance change. To monitor changes in the predictive 
behaviour, we use the following logic: 

�
𝑃𝑃𝐶𝐶𝐼𝐼 <  𝑃𝑃𝐶𝐶𝐼𝐼𝑡𝑡ℎ  ⇒  good performance                                      
𝑃𝑃𝐶𝐶𝐼𝐼 ≥  𝑃𝑃𝐶𝐶𝐼𝐼𝑡𝑡ℎ  ⇒  performance anomaly (alarm)             (18) 

     If 𝑃𝑃𝐶𝐶𝐼𝐼 ≥  𝑃𝑃𝐶𝐶𝐼𝐼𝑡𝑡ℎ, an alarm will be triggered, which alerts the 
engineer that PMM has occurred that causes the closed-loop 
performance to degrade to an unacceptable level.                                                               
3.2 Online detection of the PCI 

Construct the state observer and the observer-based 
residual generator (Ding S. X., 2008) for the assumed process 
model 𝐺𝐺�(z): 
𝑥𝑥�(𝑘𝑘 + 1) = 𝐴𝐴𝑥𝑥�(𝑘𝑘) + 𝐵𝐵𝑢𝑢(𝑘𝑘) + 𝐿𝐿�𝑦𝑦𝑚𝑚(𝑘𝑘) − 𝑦𝑦�𝑚𝑚(𝑘𝑘)�          (19)                            

 𝑦𝑦�𝑚𝑚(𝑘𝑘) = 𝐶𝐶𝑥𝑥�(𝑘𝑘) + 𝐷𝐷𝑢𝑢(𝑘𝑘), 𝑟𝑟 = 𝑦𝑦𝑚𝑚(𝑘𝑘) − 𝑦𝑦�𝑚𝑚(𝑘𝑘)                 (20) 

where 𝒜𝒜, ℬ, 𝒞𝒞, and 𝒟𝒟 are the state-space realisation and the 
known constant matrices of the soft sensor, and matrix ℒ 
stabilises (𝒜𝒜−ℒ𝒞𝒞). 

Substituting Equation (20) into the Equation (19) gives: 
𝑥𝑥�(𝑘𝑘 + 1) = 𝐴𝐴𝑥𝑥�(𝑘𝑘) + 𝐵𝐵𝑢𝑢(𝑘𝑘) + 𝐿𝐿�𝑦𝑦(𝑘𝑘) − 𝐶𝐶𝑥𝑥�(𝑘𝑘) − 𝐷𝐷𝑢𝑢(𝑘𝑘)� 

               = (𝐴𝐴 − 𝐿𝐿𝐶𝐶)𝑥𝑥�(𝑘𝑘) + (𝐵𝐵 − 𝐿𝐿𝐷𝐷)𝑢𝑢(𝑘𝑘) + 𝐿𝐿𝑦𝑦(𝑘𝑘)     (21)                 

 Performing the z-transformation gives: 
𝑥𝑥�(𝑧𝑧) = [𝑧𝑧𝐼𝐼 − (𝐴𝐴 − 𝐿𝐿𝐶𝐶)]−1(𝐵𝐵 − 𝐿𝐿𝐷𝐷)𝑢𝑢(𝑧𝑧) + [𝑧𝑧𝐼𝐼 − (𝐴𝐴 −
               𝐿𝐿𝐶𝐶)]−1𝐿𝐿𝑦𝑦𝑚𝑚(𝑧𝑧)                                                             (22)               
Substituting Equation (22)  into the z-transformation of 
Equation (20) gives 

 𝑦𝑦�𝑚𝑚(𝑧𝑧) = 𝐶𝐶[𝑧𝑧𝐼𝐼 − (𝐴𝐴 − 𝐿𝐿𝐶𝐶)]−1(𝐵𝐵 − 𝐿𝐿𝐷𝐷)𝑢𝑢(𝑧𝑧) + 𝐶𝐶[𝑧𝑧𝐼𝐼 − (𝐴𝐴 

                   −𝐿𝐿𝐶𝐶)]−1𝐿𝐿𝑦𝑦𝑚𝑚(𝑧𝑧) + 𝐷𝐷𝑢𝑢(𝑧𝑧)                                     (23) 

and r (z)= ym(z) – ŷm(z), we have: 
𝑟𝑟(𝑧𝑧) = 𝑦𝑦𝑚𝑚(𝑧𝑧) − 𝐶𝐶[𝑧𝑧𝐼𝐼 − (𝐴𝐴 − 𝐿𝐿𝐶𝐶)]−1(𝐵𝐵 − 𝐿𝐿𝐷𝐷)𝑢𝑢(𝑧𝑧) − 𝐶𝐶[𝑧𝑧𝐼𝐼 

-(𝐴𝐴 − 𝐿𝐿𝐶𝐶)]−1𝐿𝐿𝑦𝑦𝑚𝑚(𝑧𝑧) − 𝐷𝐷𝑢𝑢(𝑧𝑧) 

          = [𝐼𝐼 − 𝐶𝐶[𝑧𝑧𝐼𝐼 − (𝐴𝐴 − 𝐿𝐿𝐶𝐶)]−1𝐿𝐿]𝑦𝑦𝑚𝑚(𝑧𝑧) − [𝐷𝐷 + 𝐶𝐶[𝑧𝑧𝐼𝐼 − (𝐴𝐴 

               −𝐿𝐿𝐶𝐶)]−1(𝐵𝐵 − 𝐿𝐿𝐷𝐷)]𝑢𝑢(𝑧𝑧)                                           (24) 

Form the following matrices 
M� (𝑧𝑧) = �𝐴𝐴 − 𝐿𝐿𝐶𝐶 𝐿𝐿

−𝐶𝐶 𝐼𝐼� ,      𝑁𝑁� = �𝐴𝐴 − 𝐿𝐿𝐶𝐶 𝐵𝐵 − 𝐿𝐿𝐷𝐷
𝐶𝐶 𝐷𝐷 �                        

Therefore, we get the residual generator: 
𝑟𝑟 = 𝑀𝑀�(𝑧𝑧)𝑦𝑦𝑚𝑚(𝑧𝑧) − 𝑁𝑁�(𝑧𝑧)𝑢𝑢(𝑧𝑧)                                                    (25) 

Equation (25) is the new form of the residual generator, 
which can be built using data-driven methods (Ding S. X., 
2013). When there is no PMM, Equation (25) can be rewritten 
as 
𝑀𝑀�0(𝑧𝑧)𝑦𝑦𝑚𝑚(𝑧𝑧) − 𝑁𝑁�0(𝑧𝑧)𝑢𝑢(𝑧𝑧) = 0                                              (26) 

In light of Equations (11), (25) and (26), 
𝑟𝑟 = 𝑀𝑀� 0𝑦𝑦𝑚𝑚(𝑧𝑧) + ∆𝑀𝑀� 𝑦𝑦𝑚𝑚(𝑧𝑧) − 𝑁𝑁�0𝑢𝑢(𝑧𝑧) − ∆𝑁𝑁�𝑢𝑢(𝑧𝑧) 

     = [−∆𝑁𝑁� ∆𝑀𝑀� ] �
𝑢𝑢

𝑦𝑦𝑚𝑚
� 

Combining Equation (12) , the dynamics process of the 
residual generator is given by:  

𝑟𝑟 = [−∆𝑁𝑁� ∆𝑀𝑀� ] � V� U�
−𝑁𝑁� 𝑀𝑀�

�
−1

�V�
0

� 𝑣𝑣                                        (27) 

Using Equation (14) and Bézout’s identity gives 

� V� U�
−𝑁𝑁� 𝑀𝑀�

�
−1

= �𝑀𝑀0 −𝑈𝑈
𝑁𝑁0 𝑉𝑉 � �𝐼𝐼 + � 0 0

−∆𝑁𝑁� ∆𝑀𝑀�
� �𝑀𝑀0 −𝑈𝑈

𝑁𝑁0 𝑉𝑉 ��
−1

                      �28� 

Substituting Equation (28) into Equation (27) gives 

𝑟𝑟 = �𝐼𝐼 + [−∆𝑁𝑁� ∆𝑀𝑀�] �−𝑈𝑈
𝑉𝑉

��
−1

× [−∆𝑁𝑁� ∆𝑀𝑀�] �
𝑀𝑀0

𝑁𝑁0
� 𝑉𝑉�𝑣𝑣                (29) 

Equation (29)  gives a transfer function between the 
residual and reference signals. The purpose is to estimate the 
detection logic online. Comparing Equations (29) and (15), 
we need Lemma 3 to determine the required relationship. 
Lemma 3:  

Let ∆1, ∆2∈ 𝑅𝑅∞ and ��∆1
∆2

��
∞

< 𝛾𝛾 < 1, then  
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∥ ∆1(𝐼𝐼 + ∆2)−1 ∥∞<
𝛾𝛾

�1 − 𝛾𝛾2
 

Proof: See (Georgiou & Smith, 1990). 
We have ||Δ1, Δ2|| ≤ γ < 1, then 

∥ (𝐼𝐼 + ∆2)−1∆1∥∞≤
𝛾𝛾

�1 − 𝛾𝛾2
                                                (30) 

Comparing Equations (17) and (28), we see that: 

∆1= [−∆𝑁𝑁� ∆𝑀𝑀� ] �𝑀𝑀0
𝑁𝑁0

� , ∆2= [−∆𝑁𝑁� ∆𝑀𝑀� ] �−𝑈𝑈
𝑉𝑉 �, 𝛾𝛾 = 𝑃𝑃𝐶𝐶𝐼𝐼𝑡𝑡ℎ 

If PCIth < 1, then 
 ∥ (𝐼𝐼 + ∆2)−1∆1∥∞≤ 𝑃𝑃𝑃𝑃𝐼𝐼𝑡𝑡ℎ

�1−𝑃𝑃𝑃𝑃𝐼𝐼𝑡𝑡ℎ
2

                                                (31)           

Hence, we get an evaluation function and a new threshold, then 
we can specify the logic equivalent to Equation (18): 
 𝐽𝐽(𝑘𝑘) =∥ (𝐼𝐼 + ∆2)−1∆1∥∞ , 𝐽𝐽𝑡𝑡ℎ = 𝑃𝑃𝑃𝑃𝐼𝐼𝑡𝑡ℎ

�1−𝑃𝑃𝑃𝑃𝐼𝐼𝑡𝑡ℎ
2
  

�
𝐽𝐽(𝑘𝑘)  <  𝐽𝐽𝑡𝑡ℎ  ⇒  good performance                                              
𝐽𝐽(𝑘𝑘)  ≥  𝐽𝐽𝑡𝑡ℎ  ⇒  performance anomaly (alarm)                       (32) 

J(k) represents the 𝑅𝑅𝑅𝑅∞ norm of the transfer function from 
r to v. Following Ding (2008), the evaluation steps for PMM 
are: 
1. Construct the Hankel matrix and calculate the evaluation 
function: 
𝐽𝐽(𝑘𝑘) =∥ (𝐼𝐼 + ∆2)−1∆1∥∞= 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅𝑉𝑉𝑇𝑇(𝑉𝑉𝑉𝑉𝑇𝑇)−1), 𝑉𝑉 = V�𝑣𝑣                  

𝑅𝑅 = �
𝑟𝑟𝑗𝑗−𝑁𝑁+1 … 𝑟𝑟𝑗𝑗

⋮ ⋱ ⋮
𝑟𝑟𝑗𝑗−𝑁𝑁+𝑠𝑠 … 𝑟𝑟𝑗𝑗+𝑠𝑠−1

�, 

𝑉𝑉 = �
V�𝑣𝑣𝑗𝑗−𝑁𝑁+1 … V�𝑣𝑣𝑗𝑗

⋮ ⋱ ⋮
V�𝑣𝑣𝑗𝑗−𝑁𝑁+𝑠𝑠 … V�𝑣𝑣𝑗𝑗+𝑠𝑠−1

�                                                 (33)                                     

2. Determine the threshold: 
𝐽𝐽𝑡𝑡ℎ = 𝑃𝑃𝑃𝑃𝐼𝐼𝑡𝑡ℎ

�1−𝑃𝑃𝑃𝑃𝐼𝐼𝑡𝑡ℎ
2

, 0 < 𝑃𝑃𝐶𝐶𝐼𝐼𝑡𝑡ℎ < 1                                      (34)                            

3. Evaluate Equation (32) to determine the condition. 

5. SIMULATION RESULTS 

5.1 Numerical example 

Create a plant G(z), an assumed process model 𝐺𝐺�(𝑧𝑧), and a 
controller, which have the following realisations: 

𝐴𝐴 = �
0.98 0.02 0.01

−0.01 1.03 0.02
0.02 −0.01 0.98

� , 𝐵𝐵 =  �
0.5 0
0 0.5

0.1 −0.2
�,  

𝐶𝐶 = �1 0 0
0 1 0� , 𝐷𝐷 = 0;  

𝐴𝐴𝑠𝑠 = �
0.98 0.02 0.01

−0.01 1.03 0.02
0.02 −0.01 0.98

� , 𝐵𝐵𝑠𝑠 =  �
0.5 0
0 0.5

0.1 −0.2
�,  

𝐶𝐶𝑠𝑠 = �1 0 0
0 1 0� , 𝐷𝐷𝑠𝑠 = 0; 

𝐾𝐾 = V�−1(𝑧𝑧)𝑈𝑈�(𝑧𝑧);   

V� = �𝐴𝐴 − 𝐿𝐿𝐶𝐶 −(𝐵𝐵 − 𝐿𝐿𝐷𝐷)
𝐵𝐵 𝐼𝐼

� , 𝑈𝑈� = �𝐴𝐴 − 𝐿𝐿𝐶𝐶 𝐿𝐿
𝐵𝐵 0� 

Let us consider ℱ and ℒ such that 𝒜𝒜 + ℬℱ and 𝒜𝒜 −ℒC 
remain stable. The bias term is (2012):  

𝐺𝐺𝐵𝐵 =
−𝑧𝑧−1

1 − 𝑧𝑧−1                                                                              (35) 

The reference input is a random constant ranging between 
0 and 1, the disturbance variable follows a Gaussian 
distribution with mean 0 and a variance 1. The simulation time 
is 11,000 s. The assumptions given in Section 2 are satisfied. 
Collect residual signal r and reference signal v and construct 
the Hankel matrix in Equation (33) . Set s = 100 and 
N = 5000. PCIth is set to 0.6 which implies that Jth = 0.75. For 
simulation purposes, PMM is simulated from the 6000th 
sample which leads to the change in model 𝐺𝐺�(𝑧𝑧) matrix as 
follows      
𝐴𝐴𝑠𝑠,𝑝𝑝 = 𝐴𝐴𝑠𝑠 + ∆, ∆= 𝑘𝑘(𝑖𝑖)∆   ,   

∆= �
−0.02 0.005 0
0.02 −0.08 0

−0.008 0 −0.01
�                                              (36) 

𝑘𝑘(𝑖𝑖) = �0, 𝑖𝑖 ≤ 6000
1, 𝑖𝑖 > 6000                                                                           

Afterwards the change in the performance of the soft 
sensor is determined using Equations (33) , (34)  and (32) . 
Figure 2 shows the simulation results. The real-time evaluation 
value is represented by the blue line, while the red line shows 
the threshold based on the Equation (16). It can be noted that 
PMM results in an increase in the estimated value, which 
means that the performance is degraded. When the evaluation 
value exceeds the threshold, an alarm is triggered. 

 

Figure 2: The performance change in a soft sensor 

5.2 Industrial example 

We will apply the proposed method to a CSTR. It consists 
of exothermic, first-order, irreversible reactions in a constant-
volume reactor with the concentrations of the reactants as 
output. The plant model G(z) and the model 𝐺𝐺�(𝑧𝑧)  and 
corresponding parameters are given in (Shardt & Huang, 2012), 
so that model 𝐺𝐺�(𝑧𝑧) is 

𝐴𝐴𝑠𝑠 = �−1.16 −0.14
1 0 � , 𝐵𝐵𝑠𝑠 = �1

0�,  
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𝐶𝐶𝑠𝑠 = [0 1], 𝐷𝐷𝑠𝑠 = 0                                                             (37)                 

Situation A: To design the bias update term GB we will follow 
Equation (35) . Simulation time is 10,000 s, where the 
disturbance variable follows a Gaussian distribution, with 
mean 0 and a variance 1. PCIth is set to 0.74, which yields Jth= 
1.1. PMM is simulated from the 6000th sample, which leads to 
the change in the S(z) matrix: 
𝐴𝐴𝑠𝑠,𝑝𝑝 = 𝐴𝐴𝑠𝑠 + ∆, ∆= 𝑘𝑘(𝑖𝑖)∆    𝑎𝑎𝑎𝑎𝑑𝑑          

∆= � 0 −0.03
0.03 0 �  with  𝑘𝑘(𝑖𝑖) = �0, 𝑖𝑖 ≤ 6000

1, 𝑖𝑖 > 6000                 (38)      

Figure 3 shows the simulation results. The blue line shows 
the performance evaluation of the soft sensor over time, while 
the red line is the threshold. It shows that the unacceptable 
performance degradation caused by PMM was detected at 
6800 s. 
Situation B: In this case, we will consider the effect of an 
impulse disturbance on the proposed method. Assume that an 
impulse disturbance occurs between 6500 s and 7500 s, and 
other parameters remain the same as in Situation A.  

The simulation results are shown in Figure 4. The blue line 
shows the performance based on a Gaussian distribution, while 
the black line shows the performance for the impulse 
disturbance between 6500 and 7500 s. The results show that 
under the influence of different disturbances, Situation B 
triggers the alarm about 100 s earlier than Situation A. 
Therefore, the sensitivity of this method will vary due to 
different disturbances.     

 
Figure 3: The performance change in the soft sensor for the 

CSTR (Situation A) 

 

Figure 4: The performance change estimation of soft sensor.  
in CSTR (Situation B) 

Situation C: Now set the bias update term as (Shardt & 
Huang, 2012) 

𝐺𝐺𝐵𝐵,𝑝𝑝 =
−0.7𝑧𝑧−1

1 − 𝑧𝑧−1                                                                          (39) 

The simulation time is 10,000 s. The disturbance variable 
follows a Gaussian distribution with mean 0 and a variance 1. 
PCIth is set to 0.74, which yields Jth = 1.1. PMM is simulated 
from the 6000th sample, which leads to a change in the 𝐺𝐺�(𝑧𝑧) 
matrix: 
𝐴𝐴𝑠𝑠,𝑝𝑝 = 𝐴𝐴𝑠𝑠 + ∆, ∆= 𝑘𝑘(𝑖𝑖)∆    and          

∆= � 0 −0.03
0.03 0 �  with  𝑘𝑘(𝑖𝑖) = �0, 𝑖𝑖 ≤ 6000

1, 𝑖𝑖 > 6000                  (40) 

Compared with Situation A, the only difference between 
Situations C and A is the bias update term. Figure 5 shows the 
simulation results. It shows that Situation C does not trigger 
the performance-degradation alarm at the same time, which 
shows that the soft sensor in Situation A is more sensitive to 
the influence of PMM and has better tracking behaviour 
(Shardt & Huang, 2012). 

 

Figure 5: The performance change for soft sensor in the 
CSTR (Situation C) 

The focus of the discussion is on performance changes of 
the control loop. Although the Harris index (Harris, 1989) can 
also evaluate control-loop performance, the evaluation is not 
the primary purpose. If there is a performance deviation in the 
loop, it may be that the minimum-variance controller has been 
poorly tuned.       

However, the IAE indicator (Hong, Tore, & Zhihuan, 2012) 
was developed under the same conditions, but they did not 
show what the indicator should be like without PMM. The 
method proposed in the paper can remedy the limitations in 
conventional methods. This method can also be used for 
controller tuning. When the controller is designed and the soft 
sensor model and disturbance signal are fixed, the optimal 
controller can be obtained by comparing different controllers 
using the PCI. 

6. CONCLUSIONS 

This paper proposed an algorithm to detect PMM and 
evaluate the effect of the PMM on the controlled soft-sensor 
system by considering the robustness of the control loop. 
Through small-gain theory, PCI is proposed to detect and 
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evaluate the effect of the PMM. As well, decision logic based 
on the PCI is formulated. Subsequently, the relationship 
between the PCI and the residual signal is established. Based 
on this, a PMM online detection algorithm using the process 
data and the H∞−norm is proposed. Finally, a numerical 
example and CSTR are used to verify the accuracy of the 
proposed method, as well as the effects of different 
disturbances and parameter variations on the sensitivity of the 
index. In the future, methods to mitigate the detected 
performance changes and how to extend the performance-
oriented PMM monitoring to nonlinear systems will be 
studied. 
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