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Abstract: In this paper, a new adaptive extended state observer based data-driven anti-
disturbance control (AESO-DDADC) design is proposed for industrial nonlinear systems with
unknown dynamics subject to external disturbances. By reformulating such system description
into a compact-form dynamic linearization model with a residual term, a new AESO is firstly
constructed to estimate the residual term using the partial derivative (PD) estimation from
the previous time step, such that the residual term could be proactively counteracted by the
feedback control law, in contrast to the existing data-driven ESO where the residual term in the
PD estimation is absolutely neglected to facilitate the convergence analysis. Then, the bounded
convergence of PD estimation and AESO is jointly analyzed by the Gerschgorin disk theorem,
followed by robust convergence analysis of the established closed-loop system. Moreover, another
AESO-DDADC scheme is developed using a partial-form dynamic linearization model of the
system, along with rigorous robust convergence analysis. Finally, an illustrative example is shown
to confirm the efficacy and advantages of the proposed designs.

Keywords: Nonlinear systems, data driven, adaptive extended state observer, anti-disturbance
control, convergence analysis.

1. INTRODUCTION

Owing to the large scale and high complexity of mod-
ern industrial processes, it is challenging and cumber-
some to accurately model a real process using the first
principle mechanism or system identification. Sometimes,
even though a mathematical model of the process could
be acquired, it may be too complex (e.g., strong non-
linearity, high orders, time-varying parameters, etc.) to
be used for control design and stability analysis. Control
system design directly from the process data bypassing the
system modeling or identification has therefore received
increasing attentions in the past years, see the survey
papers (Markovsky and Dörfler (2021); Hou and Wang
(2013)) and the references therein. Among various data-
driven control schemes, the model-free adaptive control
(MFAC) methodology has made great progress in both
theory and application, owing to its capability of control-
ling nonaffine nonlinear systems, see e.g., Hou and Jin
(2013) and Hou and Xiong (2019).

It is well known that multifarious disturbances are perva-
sive in industrial manufacturing systems, inevitably jeop-
ardizing the control performance of such a closed-loop
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system. How to reject/attenuate the adverse effect of the
unknown disturbance is a vital issue in the process con-
trol field, and has received considerable attentions over
the past decades. To date, a number of anti-disturbance
control techniques have been developed, e.g., disturbance
observer based control, active disturbance rejection con-
trol (ADRC), equivalent-input-disturbance based control,
etc., as surveyed in Chen et al. (2016). However, most of
the existing anti-disturbance control methods depend on
the process model more or less, and therefore are difficult
even cannot be applied to complex industrial processes.

Recently, by incorporating the disturbance estimation
technique into the data-driven control methodology, some
data-driven anti-disturbance control (DDADC) methods
have been explored in the literature. Two discrete-time
ESO based MFAC schemes were proposed in Chi et al.
(2020) in the light of local compact-form dynamic lin-
earization (CFDL) and partial-form dynamic linearization
(PFDL) models, respectively. However, the convergence
analysis was not fully addressed therein. In Chi et al.
(2021), a data-driven ADRC scheme with a rigorous stabil-
ity proof was designed for both SISO and MIMO nonlinear
systems under a constrained input variation rate, followed
by a similar design based on a PFDL data model (Chi
et al. (2023)). To achieve higher tracking accuracy of
nonlinear systems with unknown disturbance, Huang et al.
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(2022) studied an ESO based model-free adaptive sliding
mode control with prescribed tracking performance. In
Shen et al. (2023), an extended disturbance observer-based
data-driven control was developed for networked nonlinear
systems with event-triggered output subject to unknown
disturbance. Note that the residual term estimation was
overlooked in the partial derivative/Jacobian matrix esti-
mation algorithm in the aforementioned methods, so as to
facilitate the convergence analysis. This may lead to biased
parameter estimation in the above data model for control
design, and thus degrade the system performance. As far
as we are concerned, it remains open as yet to estimate the
residual term and use it for designing a DDADC scheme
along with rigorous convergence analysis, which motivates
this study.

In this paper, two new AESO-based DDADC schemes are
proposed for nonlinear systems with unknown dynamics
and disturbance based on the CFDL and PFDL data
models, respectively. Rigorous convergence analysis is pre-
sented for the parameter estimation algorithm, AESO and
the closed-loop tracking error. The efficacy of the proposed
schemes is demonstrated by an illustrative example.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider a nonlinear system with unknown dynamics and
external disturbance, generally formulated by

y(t+ 1) = f
(
y(t), . . . , y(t− ny),

u(t), . . . , u(t− nu)
)
+ d(t),

(1)

where u(t) and y(t) are the system input and measur-
able output, respectively; d(t) represents an unknown yet
bounded disturbance; f(·) is an unknown nonlinear func-
tion with input order nu and output order ny.

The control objective in this paper is to develop a new
data-driven anti-disturbance control scheme with conver-
gence guarantee for a nonlinear system described by (1),
such that the adverse effect of the unknown disturbance
could be proactively attenuated.

For analysis, the following assumptions commonly used in
the literature are made in this study.

Assumption 1. (Chi et al. (2021)) The partial derivatives
of f(·) with respect to its arguments exist. Moreover, the
sign of ∂f(·)/∂u(t) is unchanged in the system behavior.

Assumption 2. (Chi et al. (2020, 2021)) The function f(·)
in (1) satisfies the globally Lipschitz condition, i.e.

|f(z1(t1), . . . , zN (t1))− f(z1(t2), . . . , zN (t2))|
≤ L1|z1(t1)− z1(t2)|+ · · ·+ LN |zN (t1)− zN (t2)|,

(2)

where N ∈ Z+, Li > 0, i = 1, . . . , N is the finite constant.

Assumption 3. The variation rate of control input satisfies
|∆u(t)| ≤ β∆u, ∀t ∈ Z+, where β∆u ∈ (0, 1) and ∆u(t) =
u(t)− u(t− 1).

Under Assumptions 1 and 2, the nonlinear system in (1)
could be equivalently converted into the following CFDL
model with a residual term (Chi et al. (2020))

∆y(t+ 1) = ϕ(t)∆u(t) + ξ(t), (3)

where ∆y(t) = y(t)−y(t−1), ϕ(t) is an unknown partial
derivative (PD) of f(·) with respect to u(t), and ξ(t)
represents the residual uncertainties in the CFDL model.

It follows from Assumption 2 that ϕ(t) is bounded and
satisfies |ϕ(t)| ≤ Lny+2 for any t ∈ Z+. Moreover, by
Assumptions 1-3 along with the bounded disturbance,
the boundedness of ξ(t) is guaranteed and assumed to
satisfy |ξ(t)| ≤ βξ for any t ∈ Z+, where βξ is a finite
constant. Different from the conventional MFAC in Hou
and Jin (2013) where the uncertainty term ξ(t) in (3) is
lumped into ϕ(t) to deal with, ϕ(t) and ξ(t) are separately
estimated in this study to facilitate the control design for
improving system performance.

3. AESO-DDADC DESIGN AND CONVERGENCE
ANALYSIS

This section details the proposed AESO-DDADC scheme,
and robust convergence analysis of the PD estimation
algorithm, AESO and the resulting tracking error.

To begin with, the following cost function is defined

J(u(t)) = |e(t+ 1)|2 + λ|u(t)− u(t− 1)|2, (4)

where e(t) = yd(t) − y(t), yd(t) is a reference trajectory
(or zero for regulation) satisfying |yd(t)| ≤ βd with βd

being a finite constant, and λ > 0 is a user-specified tuning
parameter to evaluate the impact of input variation. Note
that the constraint on the input variation in Assumption
3 may be satisfied by taking a larger λ at the expense of
possibly slow convergence speed.

Taking the derivative of J(u(t)) with respect to u(t) and
equaling the result to zero yield

u(t) = u(t− 1) +
ρϕ(t) (yd(t+ 1)− y(t)− ξ(t))

λ+ ϕ2(t)
, (5)

where ρ > 0 is a tuning parameter to make the control
law more flexible. Owing to the unavailable ϕ(t) and ξ(t),
the control law in (5) cannot be practically implemented.
To cope with this issue, we move on to design iterative
algorithms for estimating ϕ(t) and ξ(t), respectively.

Define another cost function associated with ϕ(t) as

J (ϕ(t)) = |∆y(t)− ϕ(t)∆u(t− 1)− ξ(t− 1)|2

+ µ|ϕ(t)− ϕ̂(t− 1)|2,
(6)

where µ > 0 is a user-specified tuning parameter to
mitigate the large variation of ϕ(t) estimation. Similar
to the establishment of the control law in (5), the PD
estimation algorithm could be derived as

ϕ̂(t) = ϕ̂(t− 1) + η∆u(t− 1)/(µ+∆u2(t− 1))

×
[
∆y(t)− ϕ̂(t− 1)∆u(t− 1)− ξ(t− 1)

]
,

(7)

where η ∈ (0, 2) is a tuning parameter to provide a flexible
parameter estimation algorithm. Also, the unavailable
residual term ξ(t − 1) still hinders the execution of the
PD estimation algorithm in (7).

In order to estimate ξ(t), the following augmented data
model is constructed{

x(t+ 1) = Ax(t) +B1ϕ(t)∆u(t) +B2∆ξ(t),

y(t) = Cx(t),
(8)

where C = [1 0] and

A =

[
1 1
0 1

]
, B1 =

[
1
0

]
, B2 =

[
1
1

]
, x(t) =

[
y(t)

ξ(t− 1)

]
.

According to the augmented system in (8), a new data-
driven AESO is proposed as below
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x̂(t+1) = Ax̂(t)+B1ϕ̂(t−1)∆u(t)+L [y(t)− Cx̂(t)] , (9)

where L is the observer gain to be determined, x̂(t) =

[ŷ(t), ξ̂(t−1)]⊤, ŷ(t) and ξ̂(t−1) are the respective estima-
tions of x(t), y(t) and ξ(t− 1).

Remark 4. Differing from the recently developed data-
driven ESO designs (Chi et al. (2020, 2021, 2023); Chen

et al. (2022)) where the PD estimation ϕ̂(t) is directly
adopted to construct AESO, the PD estimation at the

previous time instant, i.e., ϕ̂(t − 1), is used in the new
AESO to make the rigorous convergence analysis possible.

In summary, the proposed AESO-DDADC scheme is de-
tailed as below:

Algorithm 1 (AESO-DDADC)

Input: Initial values of PD estimation ϕ̂(0), control in-
put u(0) and process output y(0), reference trajectory
yd(t), upper bound of input variation rate β∆u,tuning
parameters η, µ, ρ, λ, threshold ε, AESO gain L and
maximum time step tmax.

Output: Process output y(t).
while t ≤ tmax do

Update the PD estimation ϕ̂(t) by (7) with ξ(t− 1)

replaced by its estimation ξ̂(t− 1);

if |ϕ̂(t)| ≤ ε or |∆u(t − 1)| ≤ ε or sign(ϕ̂(t)) ̸=
sign(ϕ̂(0)) then

ϕ̂(t) = ϕ̂(0);
end if
Update the AESO by (9);

Compute ζ(t) =
ρϕ̂(t)(yd(t+1)−y(t)−ξ̂(t))

λ+ϕ̂2(t)
;

if |ζ(t)| ≤ β∆u then
Update the control input by u(t) = u(t−1)+ζ(t);

else if |ζ(t)| > β∆u then
Update the control input by u(t) = u(t − 1) +

β∆usign(ζ(t));
end if
Apply the control input u(t) to the system in (1);

end while

Remark 5. In contrast to the existing data-driven control
methods (Chi et al. (2021, 2023); Chen et al. (2022)) where

the uncertainty estimation ξ̂(t−1) is overlooked in the PD
estimation algorithm to facilitate the boundedness proof

of ϕ̂(t), ξ̂(t − 1) is incorporated in the PD estimation in
Algorithm 1 to further improve the estimation accuracy.

For the convenience of convergence analysis, the following
lemmas are imposed.

Lemma 6. (Bell (1965)) Let A = [aij ]n×n be a complex
matrix and Ri be the sum of the moduli of the off-diagonal
elements in the i-th row. Then, each eigenvalue of A lies
in the unions of the circle

|z − aii| ≤ Ri =
∑

j=1,j ̸=i

|aij |, i ∈ {1, . . . , n}.

Lemma 7. (Huang (1984)) Let A ∈ Rn×n. For any δ > 0,
there exists a proper matrix norm ∥ · ∥ such that ∥A∥ <
s(A) + δ, where s(A) is the spectral radius of matrix A.

Define x̃(t) ≜ x(t)−x̂(t) = [ỹ(t), ξ̃(t−1)]⊤, and the evolution
of AESO estimation error can be derived as

x̃(t+1)=(A−LC)x̃(t)+B1ϕ̃(t−1)∆u(t)+Ω(t), (10)

where Ω(t) = B1∆ϕ(t)∆u(t) +B2∆ξ(t). It is not difficult
to verify that Ω(t) is bounded and satisfies ∥Ω(t)∥2 ≤
2βϕβ∆u + 2

√
2βξ ≜ βΩ < ∞ for any t ∈ Z+.

The following theorem establishes sufficient conditions to

ensure the boundedness of ϕ̂(t) and ξ̂(t) for any t ∈ Z+.

Theorem 8. Consider the controlled system described by
(1) satisfying Assumptions 1-3, where the PD estimation
and AESO in Algorithm 1 is applied. If the following two
conditions are satisfied: (i) the parameters η > 0, µ > 0
and γ1 ∈ (0, 1) are selected to satisfy η < 2

√
µγ1; (ii) the

AESO gain L is taken such that s(A−LC) < 1− γ3 with

β∆u < γ3 ∈ (0, 1); then the boundedness of ϕ̂(t) and ξ̂(t)

is ensured, i.e., |ϕ̂(t)| ≤ βϕ̂, |ξ̂(t)| ≤ βξ̂,∀t ∈ Z+, where

βϕ̂ > 0 and βξ̂ > 0 are two finite constants.

Proof. It follows from Algorithm 1 that the dynamics of
PD estimation error can be derived by

ϕ̃(t) = ϕ(t)− ϕ̂(t) =

[
1−

η∆u2(t− 1)

µ+∆u2(t− 1)

]
ϕ̃(t− 1) + ∆ϕ(t)

−
η∆u(t− 1)

µ+∆u2(t− 1)
[0 1]x̃(t).

(11)

Taking the norm on both sides of (10) and (11) gives

∥x̃(t+1)∥2≤s(A−LC)∥x̃(t)∥2+β∆u|ϕ̃(t−1)|+βΩ, (12)

|ϕ̃(t)| ≤
∣∣∣∣1− η∆u2(t− 1)

µ+∆u2(t− 1)

∣∣∣∣ |ϕ̃(t− 1)|+ 2βϕ

+

∣∣∣∣ η∆u(t− 1)

µ+∆u2(t− 1)

∣∣∣∣ ∥x̃(t)∥2 . (13)

Since η ∈ (0, 2), there is a constant γ1 ∈ (0, 1) such that∣∣∣∣1− η∆u2(t− 1)

µ+∆u2(t− 1)

∣∣∣∣ < 1− γ1.

Under the condition (i), it follows that∣∣∣∣ η∆u(t− 1)

µ+∆u2(t− 1)

∣∣∣∣ ≤ η

2
√
µ

≜ γ2 < γ1.

By selecting the observer gain L appropriately, there is
a constant γ3 ∈ (0, 1) such that s(A − LC) ≤ 1 − γ3.
Combining (12) with (13) yields

Θ̃(t) ≤ ΓΘ̃(t− 1) +M, (14)

where M = [2βϕ βΩ]
⊤ and

Γ =

[
1− γ1 γ2
β∆u 1− γ3

]
, Θ̃(t) =

[
|ϕ̃(t)|

∥x̃(t+ 1)∥2

]
.

By Lemma 6 together with the conditions (i) and (ii), it is
computed that the Gerschgorin disks of matrix Γ satisfy

S1 =
{
z1
∣∣|z1 − (1− γ1)| < γ2

}
⊂
{
z1
∣∣|z1| < 1− γ1 + γ2 < 1

}
,

S2 =
{
z2
∣∣|z2 − (1− γ3)| < β∆u

}
⊂
{
z2
∣∣|z2| < 1− γ3 + β∆u < 1

}
,

implying that the spectral radius of Γ is less than one
strictly, i.e., s(Γ) = maxi=1,2{|zi|} < 1. Thus, it follows
from Lemma 7 that there exists a small constant ϱ such
that ∥Γ∥ ≤ s(Γ) + ϱ ≜ ϱ̄ < 1.

Taking a proper norm on both sides of (14) gives

∥Θ̃(t)∥ ≤ ∥Γ∥∥Θ̃(t− 1)∥+ ∥M∥

≤ ϱ̄∥Θ̃(t− 1)∥+ ∥M∥ ≤ · · · ≤ ϱ̄t∥Θ̃(0)∥+ ∥M∥
1− ϱ̄

.
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Therefore, it is concluded that ∥Θ̃(t)∥ is boundedly conver-

gent under a bounded initial estimation error Θ̃(0). This

indicates that both ξ̃(t) and ϕ̃(t) are bounded for any
t ∈ Z+. According to the boundedness of ϕ(t) and ξ(t),
the conclusion of this theorem follows immediately. This
completes the proof. ■

Given the boundedness of ϕ̂(t) and ξ̂(t) established in The-
orem 8, robust convergence analysis of the tracking error
under the proposed AESO-DDADC scheme in Algorithm
1 is presented below.

Theorem 9. Consider the controlled system described by
(1) satisfying Assumptions 1-3, where Algorithm 1 is
applied. If the parameters ρ and λ are taken such that

λ > ρ2L2
ny+2/4, (15)

the tracking error e(t) converges to a bound of
βq

1−c as

t → ∞, where βq = 2βd+βξ+
ρβϕ

2
√
λ
(2βd+βξ̂) and c ∈ (0, 1)

is a constant. Particularly, βq is reduced to βξ +
ρβϕ

2
√
λ
βξ̂

when yd(t) is a constant-type reference trajectory.

Proof. Let h(t) = ∆u(t)/ζ(t). It follows that h(t) = 1
if |ζ(t)| ≤ β∆u and h(t) ∈ (0, 1) if |ζ(t)| > β∆u. Using
the CFDL model in (3) and the feedback control law in
Algorithm 1, the tracking error dynamics is derived by

e(t+1) =
[
1− ρh(t)ϕ(t)ϕ̂(t)/(λ+ ϕ̂2(t))

]
e(t)+q(t), (16)

where

q(t) = ∆yd(t+ 1)− ρϕ(t)ϕ̂(t)

λ+ ϕ̂2(t)

[
∆yd(t+ 1)− ξ̂(t)

]
− ξ(t).

By virtue of the bounded ϕ(t) and ξ(t) and their es-
timations, the boundedness of q(t) is guaranteed, i.e.,
|q(t)| ≤ βq for any t ∈ Z+.

By Assumption 1 and the initial resetting condition of
parameter estimation algorithm for ϕ(t), there stands

ϕ(t)ϕ̂(t) > 0. Thus, it follows from (15) that

0 < ρh(t)ϕ(t)ϕ̂(t)/(λ+ ϕ̂2(t)) < ρLny+2/(2
√
λ) < 1, (17)

which indicates that there is a constant c ∈ (0, 1) satisfying∣∣∣1− ρh(t)ϕ(t)ϕ̂(t)/(λ+ ϕ̂2(t))
∣∣∣ < c < 1. (18)

Thus, one has

|e(t+ 1)| ≤ c|e(t)|+ βq ≤ · · · ≤ ct+1|e(0)|+ βq/(1− c).

Due to the finite initial tracking error e(0), the conclusion
holds. This completes the proof. ■

4. PFDL-BASED AESO-DDADC DESIGN

Consider another equivalent PFDL data model of the
nonlinear system in (1) as follows

∆y(t+ 1) = ΦΦΦ⊤
H(t)∆uuuH(t) + ϑ(t), (19)

where ∆uuuH(t) = [∆u(t), . . . ,∆u(t−H +1)]⊤, H > 0 is
a positive integer representing the linearization length,
ΦΦΦH(t) = [ϕ1(t), . . . , ϕH(t)]⊤ is the gradient vector of f(·)
with respect to uuuH(t), ϑ(t) is a nonlinear residual term, see
Chi et al. (2020) for more details. Based on Assumptions
1-3 and the boundedness of disturbance, both ΦΦΦH(t) and
ϑ(t) are bounded and assumed to satisfy ∥ΦΦΦH(t)∥ ≤ βΦΦΦ
and |ϑ(t)| < βϑ for any t ∈ Z+, where βΦΦΦ and βϑ are two
finite constants.

By optimizing the cost function in (4), the control law
under the PFDL model in (19) can be derived as

u(t) = u(t− 1) +
ρϕ1(t)(yd(t+ 1)− y(t)− ϑ(t))

λ+ ϕ2
1(t)

−
ρϕ1(t)

∑H
i=2 ϕi(t)∆u(t− i+ 1)

λ+ ϕ2
1(t)

,

(20)

where ρ is the same as that in (5). Analogous to the
PD estimation algorithm in Section 3, minimizing the
following cost function

J̄ (ΦΦΦH(t))=
∣∣∆y(t)−ΦΦΦ⊤

H(t)∆uuuH(t−1)−ϑ(t− 1)
∣∣2

+ µ∥ΦΦΦH(t)− Φ̂ΦΦH(t− 1)∥22
(21)

yields the gradient estimation algorithm described as

Φ̂ΦΦH(t)=Φ̂ΦΦH(t− 1) +
η∆uuuH(t− 1)

µ+ ∥∆uuuH(t− 1)∥22
×
[
∆y(t)−Φ̂ΦΦ

⊤
H(t−1)∆uuuH(t−1)− ϑ(t−1)

]
,

(22)

where η and µ are the same as those in (7), and Φ̂ΦΦH(t) =

[ϕ̂1(t), . . . , ϕ̂H(t)]⊤ is the estimation of ΦΦΦH(t).

By augmenting ϑ(t) as a new state, the PFDL model in
(19) is transformed into{

x̄(t+ 1)=Ax̄(t)+B1ΦΦΦ
⊤
H(t)∆uuuH(t)+B2∆ϑ(t),

y(t)=Cx̄(t),
(23)

where x̄(t) = [y(t), ϑ(t−1)]⊤, A,B1, B2 and C are defined
in (8). Correspondingly, the new AESO is designed as

ˆ̄x(t+1)=Aˆ̄x(t)+B1Φ̂ΦΦ
⊤
H(t−1)∆uuuH(t)+L

[
y(t)−C ˆ̄x(t)

]
, (24)

where L is the observer gain, ˆ̄x(t) = [ŷ(t), ϑ̂(t − 1)]⊤

and ϑ̂(t − 1) are the estimations of x̄(t) and ϑ(t − 1),
respectively.

To sum up, the proposed another PFLD-based AESO-
DDADC scheme is given as below:

Theorem 10. Consider the controlled system described
by (1) satisfying Assumptions 1-3, where the gradient
estimation and AESO in Algorithm 2 are applied. If the
following two conditions are satisfied: (i) the parameters
η > 0, µ > 0 and γ̄1 ∈ (0, 1) are selected to satisfy
η < 2

√
µγ̄1; (ii) the observer gain L is taken such that

s(A − LC) < 1 − γ̄3 with
√
Hβ∆u < γ̄3 ∈ (0, 1); then,

the boundedness of Φ̂ΦΦH(t) and ϑ̂(t) is simultaneously

guaranteed, i.e., ∥Φ̂ΦΦH(t)∥2 ≤ βΦ̂ΦΦ, |ϑ̂(t)| ≤ βϑ̂,∀t ∈ Z+,
where βΦ̂ΦΦ > 0 and βϑ̂ > 0 are two finite constants.

Proof. The proof of this theorem is similar to that of
Theorem 8 and thus is omitted owing to the page limit. ■

Before presenting the bounded convergence of the track-
ing error e(t) under the proposed PFDL-based AESO-
DDADC scheme in Algorithm 2, the following useful
lemma is introduced.

Lemma 11. (Jury (1964)) Let

A =


a1 a2 . . . an
1 0 . . . 0

. . .
. . .

...
1 0

 .

If
∑n

i=1 |ai| < 1, then s(A) < 1.
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Algorithm 2 (PFDL-based AESO-DDADC)

Input: Initial values of gradient estimation Φ̂ΦΦH(0), con-
trol input u(0) and process output y(0), reference tra-
jectory yd(t), upper bound of input variation rate β∆u,
tuning parameters η, µ, ρ, λ, threshold ε, AESO gain L,
linearization length H and maximum time step tmax.

Output: Process output y(t).
while t ≤ tmax do

Update the gradient estimation Φ̂ΦΦH(t) by (22) with

ϑ(t− 1) replaced by its estimation ϑ̂(t− 1);

if ∥Φ̂ΦΦH(t)∥2 ≤ ε or ∥∆uuuH(t − 1)∥2 ≤ ε or

sign(Φ̂ΦΦH(t)) ̸= sign(Φ̂ΦΦH(0)) then

Φ̂ΦΦH(t) = Φ̂ΦΦH(0);
end if
Update the AESO by (24);
Compute

ζ̄(t) = ρϕ̂1(t)(yd(t+ 1)− y(t)− ϑ̂(t))/(λ+ ϕ̂2
1(t))

− ρϕ̂1(t)

H∑
i=2

ϕ̂i(t)∆u(t− i+ 1)/(λ+ ϕ̂2
1(t));

if |ζ̄(t)| ≤ β∆u then
Update the control input by u(t) = u(t−1)+ζ̄(t);

else if |ζ̄(t)| > β∆u then
Update the control input by u(t) = u(t − 1) +

β∆usign(ζ̄(t));
end if
Apply the control input u(t) to the system in (1);

end while

Theorem 12. Consider the nonlinear system described by
(1) under Assumptions 1-3, where the PFDL-based AESO-
DDADC scheme in Algorithm 2 is applied. If the param-
eter ρ and λ are properly chosen, then the tracking error
e(t) converges to a finite bound as t → ∞.

Proof. By letting h̄(t) = ∆u(t)

ζ̄(t)
, it follows that h̄(t) = 1 if

|ζ̄(t)| ≤ β∆u and h̄(t) ∈ (0, 1) if |ζ̄(t)| > β∆u. According
to the control law in Algorithm 2, one has

∆uuuH(t) = A (t)∆uuuH(t− 1) +NNN(t), (25)

where NNN(t) = [N1(t) 0 . . . 0]⊤, κi(t) = −ρh̄(t)ϕ̂1(t)ϕ̂i(t)

λ+ϕ̂2
1(t)

, i =

2, . . . ,H, N1(t) =
ρh̄(t)ϕ̂1(t)(yd(t+1)−y(t)−ϑ̂(t))

λ+ϕ̂2
1(t)

and

A (t) =


κ2(t) κ3(t) · · · κH(t) 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

Owing to the boundedness of ΦΦΦH(t) and Φ̂ΦΦH(t), there exist
finite constants Mi, i = 2, 3, 4 and a proper λ such that∣∣h̄(t)ϕ̂1(t)/(λ+ ϕ̂2

1(t))
∣∣ ≤ 1

2
√
λ

≜ M1 <
0.5

βΦΦΦ
,

0 < M2 ≤

∣∣∣∣ h̄(t)ϕ1(t)ϕ̂i(t)

λ+ ϕ̂2
1(t)

∣∣∣∣ ≤ βΦΦΦ

2
√
λ

< 0.5,

M1∥ΦΦΦH(t)∥ ≤ M3 < 0.5, M2 +M3 < 1,(
H∑
i=2

∣∣h̄(t)ϕ̂1(t)ϕ̂i(t)/(λ+ ϕ̂2
1(t))

∣∣) 1
H−1

≤ M4,

(26)

By properly taking the parameter ρ, it follows that
H∑
i=2

ρ
∣∣∣h̄(t)ϕ̂1(t)ϕ̂i(t)/(λ+ ϕ̂2

1(t))
∣∣∣ ≤ ρMH−1

4 ≜ M5 < 1,

which, by Lemma 11 and Theorem 4.3 in Hou and Jin

(2013), gives ∥A (t)∥ < s(A ) + ϵ ≤ ρ
1

H−1M4 + ϵ < 1,
where ϵ is a sufficiently small positive constant.

Taking the norm on both sides of (25) gives

∥∆uuuH(t)∥ ≤ ∥A (t)∥∥∆uuuH(t− 1)∥+ ρM1

(
2βd

+ βϑ̂ + |e(t)|
)
≤ ρM1

t∑
i=1

σt−i
1 |e(i)|+ c1,

where σ1 ≜ ρ
1

H−1M4+ϵ, c1 = ρM1

1−σ1
(2βd+βϑ̂) and ∆uuuH(0)

is set as zero.

Moreover, it follows from (19) and (25) that

e(t+ 1) =

[
1−

ρh̄(t)ϕ1(t)ϕ̂1(t)

λ+ ϕ̂2
1(t)

]
e(t) + ∆yd(t+ 1)− ϑ(t)

−
ρh̄(t)ϕ1(t)ϕ̂1(t)

λ+ ϕ̂2
1(t)

(∆yd(t+ 1)− ϑ̂(t))−ΦΦΦ⊤
H(t)A (t)∆uuuH(t− 1).

By properly taking ρ ∈ (0, 1), it follows from (26) that∣∣∣1− ρh̄(t)ϕ1(t)ϕ̂1(t)/(λ+ ϕ̂2
1(t))

∣∣∣ ≤ 1− ρM2 ≜ σ2 < 1.

Thus, one has

|e(t+ 1)| ≤ g(t+ 1) + c2/(1− σ2), (27)

where c2 ≜ 2βd + βϑ + 0.5ρ(2βd + βϑ̂) + βΦΦΦσ1c1, g(t +

1) ≜ σt
2|e(1)| + σ3

∑t−1
j=1 σ

t−1−j
2

∑j
i=1 σ

j−i+1
1 |e(i)| with

g(2) = σ2|e(1)| and σ3 ≜ ρM3.

Consequently, it can be deduced that

g(t+ 2) = σt+1
2 |e(1)|+ σ3

t∑
j=1

σt−j
2

j∑
i=1

σj−i+1
1 |e(i)|

≤ σ2g(t+ 1) + p(t) + c3,

(28)

where p(t) = σ3σ
t
1|e(1)| + · · · + σ3σ

2
1 |e(t − 1)| + σ3σ1g(t)

and c3 ≜ σ3σ1c2
1−σ2

. Since M2 + M3 < 1, one has σ2 = 1 −
ρM2 > ρ(M2 +M3)− ρM2 = σ3, which implies that

p(t) < σ3σ
t
1|e(1)|+ · · ·+ σ3σ

2
1 |e(t− 1)|+ σ2σ1g(t)

= σ1

[
σt
2|e(1)|+ σ3

t−1∑
j=1

σt−1−i
2

j∑
i=1

σj−i+1
1 |e(i)|

]
=σ1g(t+ 1).

Thus, it follows that

g(t+ 2) ≤ (σ1 + σ2)g(t+ 1) + c3. (29)

By properly taking ρ such that ρ
1

H−1M4 < ρM2, one has

0 < 1 − ρM2 + ρ
1

H−1M4 < 1. Therefore, there stands

σ1 + σ2 = 1 − ρM2 + ρ
1

H−1M4 + ϵ < 1 with a sufficiently
small ϵ. Therefore, it follows from (29) that

g(t+2) ≤ (σ1+σ2)
tg(2)+

c3
1− (σ1 + σ2)

→ c3
1− (σ1 + σ2)

,

as t → ∞, which, together with (27), indicates the
bounded convergence of tracking error e(t). This completes
the proof. ■

5. AN ILLUSTRATIVE EXAMPLE

Consider a nonlinear system studied in Hou and Jin
(2013); Chi et al. (2020, 2021)
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Fig. 1. Control results by different methods

y(t+1) =


y(t)/(1 + y2(t)) + u3(t) + d(t), t ≤ 300,
y(t)y(t− 1)y(t− 2)u(t− 1)(y(t− 2)− 1)

1 + y2(t− 1) + y2(t− 2)

+
a(t)u(t)

1 + y2(t− 1) + y2(t− 2)
+ d(t), t > 300,

where a(t) = round(t/500). The desired trajectory is set
as yd(t)=(−1)round(t/300+0.5) and the disturbance is taken
as d(t) = 0.2sin(t/10). For illustration, the parameters in
Algorithm 1 are taken as µ = 1, λ = 0.1, ρ = 0.3, η = 0.1,
ε = 1 × 10−5, β∆u = 0.2, L = [0.8, 0.2]⊤, and the initial

values are u(0) = 0, y(0) = 0, x̂(0) = [0, 0]⊤ and ϕ̂(0) = 1.
It can be verified that convergence conditions in Theorem
8 hold. For comparison, the existing CFDL-MFAC (Hou
and Jin (2013)) and CFDL-based DESO-MFAC (Chi et al.
(2020)) are also applied under the same parameter set-
tings. The simulation results are shown in Fig. 1. It is
seen that the proposed AESO-DDADC scheme exhibits
an improved tracking performance compared with CFDL-
based DESO-MFAC and CFDL-MFAC, respectively.

Moreover, the proposed PFDL-based AESO-DDADC de-
sign along with PFDL-MFAC (Hou and Jin (2013)) and
PFDL-based DESO-MFAC (Chi et al. (2020)) are also
performed by taking the linearization length as H = 2
to satisfy the conditions in Theorem 10 and the initial

value of gradient vector as Φ̂ΦΦH(0) = [0.5, 0.1]⊤. The
rest parameters are chosen as the same with the above
case. The corresponding simulation results are also shown
in Fig. 1. It is seen that the steady-state tracking per-
formance by the proposed PFDL-based AESO-DDADC
scheme outperforms those by PFDL-MFAC and PFDL-
based DESO-MFAC, while all the PFDL-based methods
deliver improved steady-state tracking performance com-
pared with the CFDL-based ones. Note that the output
responses with smaller oscillation at the jumping point
(t = 300) are obtained by both of the proposed designs
by taking into consideration of the constraint on input
variation rate, compared to the severe oscillation by the
PFDL-MFAC and PFDL-based DESO MFAC methods.

6. CONCLUSIONS

For nonlinear systems with unknown dynamics subject to
external disturbance, this paper has proposed two new
AESO-based DDADC schemes based on CFDL and PFDL

data models, respectively. To estimate the residual term
in the CFDL/PFDL model for active compensation in
the parameter estimation algorithm and counteraction by
the feedback control law, a new AESO is developed by
using the PD/gradient estimation at the previous time
step, rather than the current time step in the existing
data-driven ESO (e.g., Chi et al. (2020, 2021, 2023); Chen
et al. (2022); Shen et al. (2023)). Robust convergence of
the proposed schemes has been analyzed rigorously. An
illustrative example from the literature has well validated
the efficacy and advantages of the proposed schemes.
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