
Soil Moisture Estimation for Large-scale
Agro-hydrological Systems with Model

Mismatch

Zhuangyu Liu ∗,∗∗ Xiaoli Luan ∗ Jinfeng Liu ∗∗ Shunyi Zhao ∗

Fei Liu ∗ Haiying Wan ∗

∗ Key Laboratory of Advanced Process Control for Light Industry,
Jiangnan University, Wuxi 214122, China (e-mail:

liuzy95@stu.jiangnan.edu.cn, xlluan@jiangnan.edu.cn,
shunyi@jiangnan.edu.cn, fliu@jiangnan.edu.cn,

whywan@jiangnan.edu.cn)
∗∗ Department of Chemical & Materials Engineering, University of

Alberta, Edmonton, AB, T6G 1H9, Canada. (e-mail:
zhuangyu@ualberta.ca, jinfeng@ualberta.ca)

Abstract: Developing a precise irrigation control strategy is essential for improving water
use efficiency, and this requires accurate soil moisture information. However, certain challenges
associated with state estimation must be addressed when dealing with large-scale fields. For
instance, a vast farmland may be composed of different types of soil, making it challenging
to obtain accurate parameters. Consequently, model mismatch becomes inevitable for agro-
hydrological systems. In this study, we focus on addressing the issue of state estimation under
such circumstance. A high dimensional nonlinear system is obtained by discretizing a 3D
polar Richards equation that characterizes water movement dynamics. The proposed approach
represents model mismatch as unknown inputs (UIs) relative to the state equations. To reduce
computational complexity, a recursive expectation-maximization (EM) approach is modified
from the existing batch EM algorithm to identify the UIs. The extended Kalman filter (EKF)
is applied to calculate the posterior expectation of the states. Furthermore, an appropriate
set of sensors is chosen to ensure complete observability of the system. The simulation results
demonstrate the efficacy of the proposed estimation method.
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1. INTRODUCTION

Population growth and climate change have brought about
water and food shortages, making it crucial to reduce the
water usage in agriculture. According to relevant statistics,
agricultural water consumption accounts for the utiliza-
tion of about 70% of the world’s accessible freshwater
resources, with irrigation emerging as the principal and
most substantial consumer in this regard. Regrettably, the
global mean efficiency in water consumption for irrigation
stands at a mere 50% Fischer et al. (2007), signifying a
significant profligacy of this vital resource. In light of the
escalating water scarcity issue, there exists an imperative
requirement to ameliorate the efficiency of water utiliza-
tion within irrigation practices. Closed-loop irrigation sys-
tems present a promising avenue for curtailing the strain
on water reserves and augmenting the well-being of crops
Mao et al. (2018). The establishment of such closed-loop
systems necessitates the availability of precise irrigation
models and instantaneous soil humidity data spanning the
entirety of the agricultural field, a task that often presents
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formidable challenges Nahar et al. (2019). Addressing this
difficulty involves estimating the soil moisture of the entire
field using limited sensor data as a possible solution.

To obtain accurate soil moisture estimates, measurements
from sensors alone are not sufficient. Various methods
have been proposed for soil water content estimation,
for example, the extended Kalman filter (EKF) Agyeman
et al. (2021); Lü et al. (2011), the ensemble Kalman
filter Moradkhani et al. (2005); Chen et al. (2015), the
sequential Monte Carlo filter Montzka et al. (2011); Pan
et al. (2008), and the moving horizon estimation (MHE)
Bo et al. (2020); Bo and Liu (2020). Nonetheless, the
precision of these estimations remains contingent upon the
caliber of the agro-hydrological model, a metric inevitably
influenced by model mismatch arising from the intricate
characteristics of soil parameters. The soil water dynamics
are elucidated through the utilization of the Richards
equation, a partial differential equation employed for the
comprehensive depiction of soil water content in relation to
spatial and temporal parameters, with particular emphasis
on its application in scenarios characterized by non-steady
flow conditions. Within the scope of this investigation, we
deploy a center pivot irrigation system, renowned for its ef-
ficacy in irrigating expansive agricultural plots. To encap-
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sulate the intricacies of water flow dynamics, we employ
the three-dimensional polar formulation of the Richards
equation. Nonetheless, ascertaining the parameters gov-
erning a hydrological system remains a formidable task,
largely due to the multifaceted nature of environmental
conditions. Consequently, the primary aim of this study
is to formulate a state estimation methodology capable
of mitigating the challenges posed by model mismatch
inherent to agro-hydrological systems, thereby furnishing
reliable soil moisture estimations.

In our previous work, we addressed the challenge of state
estimation for a 1D agro-hydrological system with model
mismatch Liu et al. (2023). We proposed the recursive EM
algorithm to estimate the states and unknown inputs, and
utilized the sensitivity matrix to determine the optimal
sensor placement. In this study, we extend the system
from 1D to 3D, creating a large system with thousands
of states. Due to the size of this system, the sensitivity
analysis method is not applicable. Therefore, the PBH
test method is adopted in this work. To summarize, the
research contributions can be encapsulated as follows:

• To accurately model the agro-hydrological systems is
challenging due to the difficulty in determining soil
property parameters and the significant impact of
external environmental factors on the system. This
study is dedicated to the resolution of the state
estimation challenge of 3D agro-hydrological systems
which is a high dimension system afflicted by model
mismatch.

• The expenses incurred in deploying sensors at every
node within an irrigation field can present formidable
financial constraints. Consequently, the conundrum
of sensor placement assumes paramount importance
in the realm of state estimation for agro-hydrological
systems. In addressing this challenge, a sensor se-
lection approach grounded in the modal degree of
observability is employed, ensuring that the chosen
set of sensors attains the observability criterion across
the entire system.

• The conventional EM algorithm is modified into a
recursive EM algorithm in order to estimate states
and model mismatch in real-time with computational
efficiency. The recursive EM algorithm is particu-
larly well-suited for high-dimensional systems, such
as agro-hydrological systems, making it a practical
and efficient choice for these types of applications.

2. AGRO-HYDROLOGICAL SYSTEM AND
PROBLEM FORMULATION

2.1 System Model Description

The scope of this study is focused on an agro-hydrological
system, which entails the transfer of water among plants,
soil, and the external environment. An illustration of this
system is presented in Figure 1. The movement of water in
the soil can be represented through the utilization of the
Richards equation Richards (1931):

∂θv
∂t

= C(h)
∂h

∂t
=

∂

∂z

[
K(h)

(
∂h

∂z
+ 1

)]
− S (h, z) (1)

Fig. 1. Schematic diagram of a polar agro-hydrological
system Agyeman et al. (2021).

where K(h) and C(h) are formulated in Van Genuchten
(1980). The explanations of the variables are listed below.

Table 1. Elements of Richards equation

Parameter Illustration Unit
θv moisture content m/m
z vertical position m
h capillary pressure head m

K(h) unsaturated hydraulic conductivity m/s
C(h) capillary capacity m−1

S(h, z) root water extraction rate m3m−3s−1

2.2 3D Coordinate Richards Equation

To incorporate the rotational motion of the center pivot
into the model, we adopt the cylindrical coordinate version
of the Richards equation to simulate a field that includes a
center pivot irrigation system. The Richards equation can
be expressed in cylindrical coordinates as Agyeman et al.
(2021):

C(h)
∂h

∂t
=
1

r

∂

∂r

[
rK(h)

∂h

∂r

]
+

1

r

∂

∂θ

[
K(h)

r

∂h

∂θ

]
+

∂

∂z

[
K(h)

(
∂h

∂z
+ 1

)]
− S(h, z)

(2)

The right-hand side of equation (2) represents the spatial
(r, θ, z) derivative of the capillary pressure head, while the
left-hand side represents its temporal derivative.

The correlation between θv and h is expressed as follows:

θv(h) = θr + (θs − θr)

[
1

1 + (−αh)n

]1− 1
n

(3)

where θs and θr are the saturated volumetric and residual
moisture content, respectively. n and α are the curve-
fitting soil hydraulic properties.

2.3 Finite Difference Model

Due to the nonlinearity of equation (2), it is challenging
to derive an analytical solution, so we turn to a numerical
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technique represented in Agyeman et al. (2021) to solve the
partial differential equation. The specific approximation
procedure is concluded by the following.

Firstly, the finite difference method is utilized to discretize
the derivatives of equation (2) with respect to the spatial
properties (r, θ, z). Subsequently, the computational tech-
nique of the backward Euler method was applied for the
determination of the temporal derivatives.

Equation (2) is solved using numerical methods with the
following boundary conditions, which are suitable for crop
fields with a center pivot irrigation system:

∂h(r, θ, z, t)

∂r

∣∣∣∣
(r=0,θ,z)

= 0

∂(h(r, θ, z, t))

∂z

∣∣∣∣
(r,θ,z=Hz)

= −1− uirr

K(h)

∂h(r, θ, z, t)

∂r

∣∣∣∣
(r=Hr,θ,z)

= 0

∂(h(r, θ, z, t) + z)

∂z

∣∣∣∣
(r,θ,z=0)

= 1

∂h(r, θ, z, t)

∂θ

∣∣∣∣
(r=0,θ,z)

= 0

h(r, θ = 0, z, t) = h(r, θ = 2π, z, t)

(4)

where Hr denotes the overall radius of the field, Hz

represents the height of the field column, and uirr (m/s)
is the manipulation variable as the irrigation rate.

The nonlinear state space model for the agro-hydrological
system can be expressed as follows:

ẋ = fc(x(t), u(t)) + ω(t) (5)

where x(t) ∈ RNx is the state vector, u(t) represents the
irrigation amount which is the manipulation input of this
system, ω(t) denotes the process noise to the system.

2.4 Problem formulation

In the scope of this study, we recognize the existence of
model mismatch, which may be construed as the incorpo-
ration of additional UIs into the dynamics of the system.
Fundamentally, the authentic representation of the system
can be expounded as follows:

ẋ = fc(x(t), u(t)) +Mca(t) + ω(t) (6)

where a(t) comprises the vector of UIs that signifies the
presence of model mismatch. The measurement function
is detailed as:

y(t) = Cx(t) + v(t) (7)

where C is the matrix which relates to the sensor location.
v(t) is the measurement noise. Then we can obtain the
discrete model by discretizing equations (6) and (7):

xk+1 =f(xk, uk) +Mak + ωk

yk+1 =Hxk+1 + vk+1

(8)

The aim of this research is to formulate a computationally
efficient method for estimating the state, specifically capil-
lary pressure head, even when there is a presence of model
mismatch represented by unidentified additive inputs.

3. PROPOSED EKF BASED RECURSIVE EM
ALGORITHM

Within the framework of the model expounded in the
preceding section, the overarching objective is to jointly
infer the states and UIs in order to address the challenge
of state estimation in agro-hydrological systems charac-
terized by model mismatch. In light of the intricacies in-
herent to high-dimensional agro-hydrological systems, we
have introduced a tailored adaptation of the classical EM
algorithm, imbuing it with a recursive essence to navigate
the inherent complexities. The ensuing section delineates
an elaborate exposition of this methodology, accompanied
by a set of notations to be employed throughout this
discourse: x0, · · · , xN denotes the array of states, while
y1, · · · , yN signifies the collection of measurements, and
a0:N constitutes the ensemble of UIs. In this context, E
represents the mathematical expectation, Tr signifies the
matrix trace, and N(µ, P ) denotes the Gaussian probabil-
ity function featuring the mean µ and covariance P . The
superscripts ’∧’ and ’∨’ are indicative of the estimation
and prediction aspects, respectively.

Initially, we shall provide a concise overview of the conven-
tional EM algorithm, often denoted as the batch EM algo-
rithm. Rooted in the principles of maximum likelihood, the
EM algorithm stands as an iterative optimization method-
ology employed for the purpose of estimating parameter
values and latent variable expectations. The batch EM
algorithm encompasses the subsequent procedural stages:

• Giving the UIs an initial guess a(0)

• For time instants k = 0, 1, 2, . . ., perform:
· E-step: compute Q

(
a, a(k)

)
.

· M-step: compute a(k+1) = argmax
a

Q
(
a, a(k)

)
.

The Q-function denotes the expectation of the log-
likelihood and can be elucidated within the context of the
Markov-chain structure inherent to the state-space model.
To be precise, the log-likelihood function can be calculated
as:

L0:N = log p (x0, . . . , xN , y1, . . . , yN | a0:N )

= log p (x0 | a0) +
N∑

k=1

log p (xk | xk−1, ak−1)

+

N∑
k=1

log p (yk | xk)

(9)

The batch EM algorithm is not ideal for real-time appli-
cations and large scale systems due to its computational
complexity, as it requires processing all historical data
in each optimization implementation Liu et al. (2022).
This impracticality is particularly evident when applying
the batch EM algorithm to estimate the state and UIs
in high-dimensional agro-hydrological processes. However,
the complexity of the EM algorithm can be reduced by
using a recursive approach to calculate the Q-function.
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The focus of this paper is on proposing a recursive EM
algorithm that utilizes an EKF-based strategy to achieve
online state estimation and identification of UIs. By signif-
icantly reducing computational complexity, the proposed
approach becomes practical for real-time applications and
large-scale systems.

3.1 Recursive Q-function

Within this section, we shall expound upon the process
of deducing a recursive manifestation of the Q-function.
In circumstances where data accrues sequentially over
time, one can harness the collected samples and the
pre-established parameters to undertake an E-step with
each individual measurement. This inherent characteristic
serves as the fundamental underpinning for the ensuing
derivation. The Q-function, employed for the computation
of the expectation in equation (9), can be expressed as
follows:

QN

(
a, aold

N

)
=E(log p (x0 | a0)

+

N−1∑
k=1

log p (xk | xk−1, ak−1)

+

N−1∑
k=1

log p (yk | xk)

+ log p (xN | xN−1, aN−1)

+ log p (yN | xN ))

(10)

In this equation, the subscript N signifies the current
temporal moment, whereas a represents the set of UIs
slated for estimation at the present time step. The variable
aoldN pertains to the solution derived at the time index
N−1, which plays a pivotal role in computing the posterior
expectation at the current temporal instance, denoted as
N . The superscript ’old’ denotes that the estimation of
UIs was performed during last time step. Consequently,
by calculating the item of the last time step separately, we
can obtain:

QN

(
a, aold

N

)
=QN−1

(
a, aold

N−1

)
+ E(log p (xN | xN−1, aN−1)

+ log p (yN | xN ))

(11)

Equation (11) can be classified as quasi-recursive, given
that the E-step exhibits consistency across various tempo-
ral indices. By encapsulating the temporal mean of QN in
equation (11), we can obtain:

Q̃N

(
a, aold

N

)
=

1

N
QN

(
a, aold

N

)
(12)

Upon substituting equation (12) into equation (11), we de-
rive the subsequent expression for the recursive likelihood
of the complete dataset:

Q̃N

(
a, aold

N

)
=(1− 1

N
)Q̃N−1

(
a, aold

N−1

)
+

1

N
E(log p (xN | xN−1, aN−1)

+ log p (yN | xN ))

(13)

While the inherent step size naturally diminishes over
time, it is not the optimal strategy. To counter this issue,
we introduce a fixed step-size, analogous to a learning
rate, as a hyperparameter that can be tailored to replace
the diminishing factor of 1/N . Drawing upon principles
of stochastic approximation, as expounded in Chen et al.
(2020), we incorporate an artificial step-size denominated
as γN to supplant 1/N in equation (13). Subsequently, the
recursive computation of the expectation can be articu-
lated as follows:

Q̃N

(
a, aold

N

)
=(1− γN )Q̃N−1

(
a, aold

N−1

)
+ γNE(log p (xN | xN−1, aN−1)

+ log p (yN | xN ))

(14)

Equation (14) can be further elaborated by considering all
the components in the calculation as:

Q̃N

(
a, aold

N

)
=

N∏
t=2

(1− γt)E(G1)

N−1∑
k=2

[
N∏

t=k+1

(1− γt)

]
γkE(Gk)

+ γNE(GN )

(15)

where

E (G1) =E (log p (x0 | a0) + log p (x1 | x0, a0)

+ log p (y1 | x1))
(16)

E (Gk) = E (log p (xk | xk−1, ak−1) + log p (yk | xk))(17)

E (GN ) =E (log p (xN | xN−1, aN−1)

+ log p (yN | xN ))
(18)

To perform the calculations outlined in equations (16)-
(18), it is imperative to possess the conditional probability
density functions of p (x0 | a0), p (xk | xk−1, ak−1), and
p (yk | xk). These functions can be expressed as follows,
with the underlying assumption of Gaussian-distributed
system noise and measurement noise:

p (x0 | a0) = N (x̂0, P0) (19)

p (xk | xk−1, ak−1) =N(f(xk−1, uk−1) +Mak−1,

Qk)
(20)

p (yk | xk) = N (Hxk, Rk) (21)

Subsequently, we can proceed to deduce the log-likelihood
for the aforementioned equations (19)-(21) in the following
manner:

log p (x0 | a0) =− n

2
log(2π)− 1

2
log |P0|

− 1

2
D (x0 − x̂0, P0)

(22)
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log p (xk | xk−1, ak−1) =− n

2
log(2π)− 1

2
log |Qk|

− 1

2
D (xk − f (xk−1, uk−1)

−Mak−1, Qk)

(23)

log p (yk | xk) =− m

2
log(2π)− 1

2
log |Rk|

− 1

2
D (yk −Hxk, Rk)

(24)

here the notation D is utilized as a shorthand to represent
the matrix operation defined as D(x, P ) = xTP−1x.

The ensuing statements denote the expected value of the
likelihood function:

E (log p (x0 | a0)) = −n

2
log(2π)− 1

2
log |P0| −

n

2
(25)

E (log p (xk | xk−1, ak−1)) =− n

2
log(2π)− 1

2
log |Qk|

− 1

2
Tr

{
Q−1

k

{
C (x̂k

−f (x̂k−1, uk−1)−Mak−1)

+
(
P̂k − FkP̌k

)
−
(
P̌kFk

T − FkP̂k−1Fk
T
)}}

(26)

E (log p (yk | xk)) =− m

2
log(2π)− 1

2
log |Rk|

− 1

2
Tr

{
R−1

k

[
C (yk −Hx̂k)

+
(
HP̂kH

T
) ]} (27)

In this context, Fk signifies the Jacobian matrix associated
with f(·) at the time step denoted by k. Additionally, the
symbol C is employed to abbreviate a matrix operation
C (x) = xxT.

Upon replacing the expressions in equations (25)-(27) with
those in equations (16)-(18), we derive the following:

E (Gk) =− m+ n

2
log(2π)− 1

2
(log |Qk|+ log |Rk|)

− 1

2
log

∣∣∣P̂k

∣∣∣− 1

2
Tr

{
Q−1

k{
C
(
x̂k − f(x̂k−1, uk−1)−Mak−1

)
+
(
P̂k − FP̌k

)
−
(
P̌kF

T − FP̂k−1F
T
)}}

− 1

2
Tr

{
R−1

k

{(
HP̂kH

T
)

+ C
(
yk −Hx̂k

)}}

(28)

The computation of E(G1) and E(GN ) is akin to that of
E(Gk), and the specific methodology is omitted for brevity.
Within equation (15), the term

∏N
t=k+1 (1− γt) represents

the cumulative product of step sizes ranging from time

k + 1 to N , where t designates the respective time index.
This concludes the derivation process for the recursive Q-
function.

Algorithm 1 EKF based REM Algorithm
Input: yN
Output: x̂N , aN
1: Initialize the guess of states and unknown inputs: a1
2: for N = 2 : k do
3: E-step Update the recursive Q-function:

Q̃N

(
a, aold

N

)
= (1 − γN )Q̃N−1

(
a, aold

N−1

)
+

γNE(log p (xN | xN−1, aN−1) + log p (yN | xN ))
4: Prediction

x̌N = f (x̂N−1, uN−1) +MaN−1

P̌N = FP̂N−1F
T +QN−1

5: Update
KN = P̌NHT

(
HP̌NHT +RN

)−1

x̂N = x̌N +KN (yN −Hx̌N )

P̂N = (I −KNH) P̌N

6: M-step Maximize the expectaion:
∂Q̃N(a,aold

N )
∂aN

= 0

aN = (1− γN ) aN−1 +
γN

(
M−1 (x̂N − f (x̂N−1, uN−1))

)
7: end for

3.2 State and Covariance Prediction and Update

In order to compute equation (15), an evaluation of the
posterior probability and prediction for xN is required,
along with its corresponding PN . Previous research has
employed smoothers to determine the posterior distribu-
tion within the Q-function, as exemplified in citations such
as Lan et al. (2013) and Khan et al. (2019). However,
while smoothers offer an effective method for batch pro-
cessing in state estimation, their practicality for real-time
computation is limited. In light of this, our study adopts
the EKF for state estimation, given its recursive compu-
tational capacity. The EKF demonstrates proficiency in
providing suboptimal state estimates, particularly for non-
linear stochastic systems. The EKF’s inherent recursive
calculation ability aligns it with seamless integration into
the REM algorithm, and its representation is as follows:

Prediction:

x̌N = f (x̂N−1, uN−1) +MaN−1 (29)

P̌N = FP̂N−1F
T +QN−1 (30)

Update:

KN = P̌NHT
(
HP̌NHT +RN

)−1
(31)

x̂N = x̌N +KN (yN −Hx̌N ) (32)

P̂N = (I −KNH) P̌N (33)

From equation (29) to (33), we can calculate the value of
posterior of the states given the UIs estimated at preceding
time instant.
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3.3 Maximization of recursive EM

In pursuit of the optimal estimation solution, we undertake
the computation of partial derivatives of the recursive
Q-function in relation to the UIs. Setting this partial
derivative to zero facilitates the determination of the local
maximum within the UIs vector, denoted as ak within the
model.

∂Q̃N

(
a, aold

N

)
∂aN

= 0 (34)

Subsequently, through the substitution of equation (15)
into equation (34), we can derive

∂Q̃N

(
a, aold

N

)
∂aN

=
∂

∂aN

{
N∏
t=2

(1− γt)E(G1)

+

N−1∑
k=2

[
N∏

t=k+1

(1− γt)

]
γkE(Gk)

+ γNE(GN )

}
= 0

(35)

Finally, by calculating the above equation, we can get

aN =(1− γN ) aN−1

+ γN
(
M−1 (x̂N − f (x̂N−1, uN−1))

) (36)

Hence, the derivation of the M-step within the EKF-based
REM algorithm is concluded. The outlined methodology
is encapsulated in the pseudocode, as delineated in Algo-
rithm 1.

4. SIMULATIONS

In the present study, we examine a field with the overar-
ching radius, denoted as Hr, measured at 50 meters, and
the vertical extent, represented as Hz, height of 0.3 meters.
The discretization of this field into a total of 3, 840 nodes is
systematically achieved through the application of the fi-
nite difference method. This discretization is implemented
with a distribution of 6 nodes in the radial direction, 40
nodes in the azimuthal direction, and 16 nodes in the
vertical direction, respectively.

In order to identify suitable locations for sensor installa-
tion in agricultural fields, we employ the algorithm de-
tailed in Sahoo et al. (2019), which relies on the concept
of modal degree of observability. The Popov-Belevitch-
Hautus (PBH) test forms the foundation for the modal
degree of observability, which assesses a sensor node’s
ability to estimate other nodes within a system. Figure 2
visually represents the ranked average modal observability.
To make sure the whole system for states and UIs are
observable, we select 2000 nodes with the highest rank to
place sensors.

The efficacy of the EKF-based REM algorithm is empir-
ically substantiated through simulation. The simulation
encompasses instances of model mismatch, arising from
erroneous estimations of critical parameters such as the
crop coefficient (Kc) and evapotranspiration values (Et),

Fig. 2. The average degree of observability calculated for
different nodes in the system.

both integral components within the sink term S(h, z).
The true values for Kc range from 0.75 to 0.88 for the 7-
day simulation period, while the true values for Et range
from 0.57mm/day to 1.4mm/day. The guessed values for
Kc and Et are fixed 1.08 and 1.4mm/day, respectively.
It is assumed that the parameters for soil properties, for
example, the saturated volumetric moisture content θs, the
saturated hydraulic conductivity Ks, vary across different
soil columns. The velocity of the center pivot is 0.022m/s
and supplies an irrigation amount of 4mm/day. Figure 3
demonstrates the effectiveness of the proposed algorithm
by displaying certain states. The true trajectories of the
simulated pressure head are depicted using a red solid line.
In this simulation, the openloop states are the response
with an incorrect initial guess of the states and error
parameters of Kc and Et. As shown in the figure, the
discrepancy between the true states and the openloop
response is significant. The blue dot-dashed lines in the fig-
ure depict the results of the estimation using the proposed
EKF-based REM algorithm. The estimates demonstrate
excellent performance in tracking the true values of the
states, converging to the states within a few days of simu-
lation. The figure also includes estimations obtained solely
through the use of the EKF method. It is apparent that
the EKF method converges at a slower rate than the pro-
posed EKF-based REM algorithm. When model mismatch
occurs, the EKF method exhibits a steady error. In other
words, the proposed algorithm provides better estimation
performance than the EKF method in the presence of
model mismatch.

Given the inherent complexity of the high-dimensional
3D polar agro-hydrological system, presenting simulation
results can be somewhat intricate. To create soil moisture
maps, we transform pressure head data into moisture
content using the equation (3). As showing from Figure
4 to Figure 7, the errors between the actual states and
the estimated states decrease as the simulation progresses.
This demonstrates that the proposed EKF-based REM
algorithm can effectively estimate both the top and bottom
layers with good performance.
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Fig. 3. Trajectories for chosen process states, open-loop
state responses incorporating error parameters, and
state estimates with proposed algorithm.

Fig. 4. Soil moisture maps of the top layer after 1 day
simulation

Fig. 5. Soil moisture maps of the top layer after 3 days
simulation

Fig. 6. Soil moisture maps of root zone (depth of 0.3m)
after 2 days simulation

5. CONCLUSIONS

This paper endeavors to confront the intricate problem of
state estimation characterized by model mismatch, an in-
herent challenge in agro-hydrological systems attributable
to the intricate nature of soil properties and the influence
of external environmental factors. To mitigate this prob-
lem, we propose the EKF-based REM algorithm for imple-
menting state estimation in large-scale agro-hydrological

Fig. 7. Soil moisture maps of root zone (depth of 0.3m)
after 6 days simulation

systems. Our approach involves adapting the batch EM
algorithm into a recursive EM algorithm that enables real-
time estimation. Additionally, we utilize the modal degree
of observability method to select an appropriate sensor
set. Lastly, a soil moisture map is generated during the
simulation phase to demonstrate the effectiveness of the
proposed algorithm in estimating soil water content.
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