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Abstract: This paper proposes a novel approach to tackle uncertainties in model parameters
and noise statistics for state estimation. The proposed method leverages transfer learning to
combine the strengths of the unbiased finite impulse response (UFIR) filter and the Kalman
filter (KF), with UFIR serving as the source domain filter and KF as the target domain
filter. To bolster the robustness of state estimation within the target domain, the proposed
method transfers the predicted state probability density functions (pdfs) from UFIR and fine-
tunes the error covariance of the KF filter to achieve seamless integration. Unlike conventional
fusion techniques, this method avoids the need for UFIR’s error covariance, thus mitigating its
adverse impact on estimation accuracy. We demonstrate the competitiveness of this transfer
state estimator in handling parameter uncertainties through moving target tracking, showing
superior performance compared to existing fusion methods for state estimation.
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1. INTRODUCTION

State estimation serves as a crucial step for the effective
implementation of advanced control and monitoring tech-
niques across various engineering applications (Xu and
Mannor, 2009; Becis-Aubry et al., 2008). The Kalman
filter (KF) stands as a powerful tool for reconstructing
unmeasurable variables, providing an optimal estimate
for linear systems in the minimum mean square error
(MSE) sense (Särkkä and Svensson, 2023). Nonetheless,
the optimal KF exhibits limitations in robustness, yielding
significant errors when the noise sources are not white
Gaussian and the model does not match the process ex-
actly or experiences unforeseen temporary changes. These
scenarios are inherent to real-world applications, prompt-
ing decades of dedicated efforts aimed at enhancing the
KF performance including finite-horizon (Fu et al., 2001),
adaptive estimation (Xue et al., 2022), and guaranteed-
cost filters (Xie et al., 1994; Yang et al., 2015).

Lately, the transfer learning strategy, originally applied
in machine learning to address the challenge of balancing
complex modeling and the scarcity of labeled data, has
found its way into the realm of state estimation to enhance
robustness (Karbalayghareh et al., 2018; Quinn et al.,
2016). The fundamental concept behind this strategy is
to utilize the probability density function from the source
domain to refine the posterior distribution in the target
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domain, effectively formalizing knowledge transfer. No-
tably, Papež and Quinn (2020) proposes a data-predictor
with a student-t distribution that is transferred to the
Bayesian posterior distribution, leading to improved ro-
bustness against outliers. To mitigate the adverse effects
of unknown statistical properties, a probabilistic state
predictor driven by a uniform distribution in the source
domain, is integrated into the target filter via a knowledge-
constrained transfer mechanism (Pavelková et al., 2022).
However, it is essential to acknowledge that these fil-
ters exhibit infinite impulse response (IIR) characteristics,
which may limit their robustness when faced with model
mismatches. This limitation implies that estimation errors
may persist and accumulate indefinitely with each subse-
quent time step.

In contrast to the IIR filter, the finite impulse response
(FIR) filter only involves measurements within a prede-
fined horizon and cuts off the propagation of errors beyond
the horizon (Shmaliy et al., 2017). Accordingly, this type of
filter inherently possesses better robustness against abrupt
changes in model parameters. One particularly notable
FIR filter is the unbiased FIR (UFIR) filter, introduced
by Shmaliy (Shmaliy, 2011), which has fascinated the
engineering field due to its simple structure and universal
noise assumption. This filter employs an optimal horizon
length to minimize the estimation error in the MSE sense.
It is worth noting that while the UFIR filter is more
robust than the KF filter, it does not claim optimality.
Consequently, researchers have delved into fusion methods,
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seeking to combine the strengths of both filters to create
a more versatile and comprehensive solution.

One prevalent fusion approach is weighting fusion, where
a mixing probability is computed using the residual and
its covariance from two distinct class filters, as demon-
strated in previous works (Cho and Kim, 2008; Zhao
et al., 2016; You et al., 2019). While these methods have
proven effective, they do come with certain limitations
that hinder their broad applicability: 1) The estimation
performance of the fused filter represents a compromise
between two individual filters. This loose fusion approach
makes it challenging to fundamentally eliminate perfor-
mance degradation resulting from model inaccuracies. 2)
The fusion process relies on the second-order moment of
the residual, which is not provided by the UFIR filter.
When the error covariances are computed inaccurately, the
weighted fusion becomes inefficient.

Motivated by these challenges, this paper presents a novel
approach that leverages the strengths of the UFIR filter
to enhance the robustness of the KF, which can address
the above problems. Specifically, the proposed method
transfers the predicted state probability density functions
(pdfs) from the UFIR filter and fine-tunes the error co-
variance of the KF filter to achieve seamless integration.
To the best of our knowledge, this is the first attempt to
employ a transfer strategy for combining and preserving
the advantages of the UFIR filter and KF. The key contri-
butions of this work can be summarized as follows: 1) This
proposed method overcomes the limitations of loose fusion
by transferring the state prediction of the UFIR filter,
thereby improving the estimation performance. 2) To im-
prove robustness, the tuning factor is introduced to modify
the error covariance of KF, which is obtained through
variational Bayesian inference using measurements in the
target domain. This enables the estimator to account for
the unique characteristics and uncertainties of the target
domain, ensuring better adaptation and more reliable state
estimation. 3) Only the first-order moment of the UFIR
filter is projected into the KF, reducing the adverse effects
of unknown noise covariance on the estimation accuracy.

The subsequent sections of this paper are organized as fol-
lows: Section 2 lays out the problem formulation. Section
3 presents the proposed transfer state estimator in detail.
The properties of the proposed algorithm are extensively
explored in Section 4. Verification results are presented in
Section 5, and finally, conclusions are drawn in Section 6.

In this paper, the following notations are utilized:N (x; x̂,P)
stands for the Gaussian distribution of x with mean x̂
and covariance P, Ef(·)[g(·)] or ⟨g(·)⟩f(·) represents the
expectation of the probability density function (pdf) g(·)
with respect to the pdf f(·), DKL(q(·)∥p(·)) denotes the
KL divergence of pdf q(·) with respect to pdf p(·), tr(·)
is the trace operator, and exp(·) denotes the exponential
function.

2. PRELIMINARIES AND PROBLEM
FORMULATION

Let us consider a scenario where a process can be repre-
sented using the following state-space model:

UFIR
KF

Predicted 

state

Transferring

Source domain Target domain

Fig. 1. A schematic description of transfer learning with
respect to state estimation.

xn =Fnxn−1 +Gnwn−1 , (1)

yn =Hnxn + vn , (2)

where n signifies the time index, xn ∈ Rdx denotes the
state vector, R is the Euclidean space, yn ∈ Rdy denotes
the measurement vector, and Fn, Gn, and Hn are system
matrices. The process noise wn follows a white Gaussian
distribution, denoted aswn ∼ N (wn; 0,Qn), and the mea-
surement noise vn also follows a white Gaussian distribu-
tion, written as vn ∼ N (vn; 0,Rn). To construct a stable
filter, it is assumed that the system is both uniformly
detectable and stabilizable, as discussed by Anderson and
Moore (1981).

While the full-information-based KF remains the optimal
choice when the model (1) and (2) are available and reli-
able, practical scenarios often present challenges where this
strategy’s performance becomes unacceptable, particularly
when unpredictable dynamics come into play. To mitigate
the effects of these uncertainties, transfer learning provides
a promising avenue by leveraging knowledge from other
sources. By tapping into existing knowledge or information
from similar domains, we can enhance the performance
and robustness of the state estimator when faced with
parameter uncertainties.

The problem at hand can be concisely formulated as
follows: With the UFIR filter serving as the source domain
filter and the KF as the target domain filter, the primary
goal is to develop a robust state estimator within the
target domain. This estimator can effectively transfer vital
model knowledge from the UFIR, ultimately achieving
both optimality and robustness. A schematic description
of the transfer learning process in the context of state
estimation is depicted in Fig. 1.

3. THE PROPOSED APPROACH

In this section, we provide a detailed introduction to a
transfer state estimator that leverages transfer learning to
enhance the robust performance of the KF by transferring
the predicted state probability density functions (pdfs)
from the UFIR filter. We will first introduce the source
domain filter and then proceed to formulate the target
domain filter.
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3.1 Source domain filter

The FIR-type filter simultaneously processes N measure-
ments from the horizon [m = n−N+1, n]. The extension of
(1) and (2) can be achieved following the method described
in Shmaliy and Ibarra-Manzano (2012), leading to the
following representations:

Xn,m =Fn,mxm−1 +Gn,mWn−1,m−1 , (3)

Yn,m =Hn,mxm−1 + Ln,mWn−1,m−1 +Vn,m . (4)

Here, the extended vectors are defined as Xn,m =
[xT

n ,x
T
n−1, · · · ,xT

m]T, while Yn,m,, and Vn,m are the same

as Xn,m if we replace xT
t with yT

t , and vT
t , respec-

tively, t ∈ [m,n]. The extended vector Wn−1,m−1 =
[wT

n−1,w
T
n−2, · · · ,wT

m−1]
T. And the extended matrices

Fn,m,Gn,m, Ln,m and Hn,m are denoted as

Fn,m = [(Fm
n )T, (Fm

n−1)
T, · · · , (Fm

m+1)
T, (Fm

m )T]T, (5)

Gn,m =


Gn Fn

nGn−1 · · · Fm+1
n Gm

0 Gn−1 · · · Fm+1
n−1 Gm

...
...

. . .
...

0 0 · · · Fm+1
m+1Gm

0 0 · · · Gm

 , (6)

Hn,m = H̄n,mFn,m, (7)

Ln,m = H̄n,mGn,m, (8)

where the auxiliary variables H̄n,m and F j
i are de-

fined by H̄n,m = diag (Hn,Hn−1, · · · ,Hm), and F j
i =

FiFi−1 · · ·Fj , respectively.

The FIR filtering estimate at time step n can be computed
using discrete convolution, as indicated in Kwon and Han
(2005), and is represented as:

x̂S
n = KS

nYn,m . (9)

Here, x̂S
n represents the estimate at time step n based onN

measurements taken from m to n. To ensure an unbiased
estimate, which means that E{xn} = E{x̂S

n}, we can derive
the UFIR filter gain as follows:

KS
n = Fm

n (HT
n,mHn,m)−1HT

n,m. (10)

Following Shmaliy (2011), we can derive an alternative
iterative expression as follows:

x̂S−
t =Ftx̂

S
t−1 , (11)

MS
t = [HT

t Ht + (FtM
S
t−1F

T
t )

−1]−1 , (12)

KS
t =MS

t H
T
t , (13)

x̂S
t = x̂S−

t +KS
t (yt −Htx̂

S−
t ) , (14)

where g = m+ dx − 1, t ∈ [g+1, n], dx is the dimension of
states, and

MS
g =Fm

g (HT
g,mHg,m)−1Fm

g
T , (15)

x̂S
g =Fm

g (HT
g,mHg,m)−1Hg,m

TYg,m . (16)

It is worth noting that x̂S
n is independent of information

beyond the horizon and does not depend on the second
moment of noise.

3.2 Target domain filter

After formulating the source domain filter, we proceed
with the assumption that the predicted state probabil-
ity density functions (pdfs) in the UFIR, denoted as
p(xn|ym:n−1) = N (xn; x̂

S−
n ,PS−

n ), serve as the transferred
knowledge from the source domain to the target domain.
It is important to note that the PS−

n cannot be directly ob-
tained from UFIR. As a result, only the first-order moment
of this distribution is transferred, and this transferred
knowledge is used to replace the prediction step of the
KF in the target domain.

Furthermore, to adapt the source knowledge to the target
domain and enhance robustness, we introduce a positive
random variable gn that governs the predicted error covari-
ance P−

n of the KF in the target domain, as proposed in
Gao et al. (2023). To maintain the positive property of this
tunning factor and enable coherent Bayesian derivations, it
is assumed that gn follows an inverse Gamma distribution.
Hence, the predicted pdfs in the target domain can be
depicted as:

p(xn|gn,ym:n−1) =N (xn; x̂
S−
n , gnP

−
n ) , (17)

p(gn|ym:n−1) = I(gn;α−
n , β

−
n ) . (18)

Here, x̂S−
n represents the transferred predicted state, orig-

inating from the source domain filter UFIR. Additionally,
I(·) denotes the inverse Gamma distribution, with α−

n > 0
and β−

n > 0 representing the shape and scale parame-
ters, respectively. These parameters can be calculated as
α−
n = ταn−1 and β−

n = τβn−1, where 0 < τ ≤ 1 is the
heuristic model used.

To determine the tuning parameter gn in the target do-
main, we introduce a set that includes the target vari-
ables, denoted as θn = {xn, gn}. We then use proposal
distributions q(xn) and q(gn) to approximate the joint
posterior distribution p(θn|ym:n). With this approach, we
can approximate the posterior probability density function
p(θn|ym:n) in the target domain as

p(θn|ym:n)≈ q(θn) = q(xn)q(gn) . (19)

Specifically, the Kullback-Leibler (KL) divergence (Kul-
havỳ, 1990) is employed to evaluate the effectiveness of
this approximation. The proposal distributions can be
obtained by minimizing the corresponding KL divergence,
i.e.,

arg min
q(xn)q(gn)

DKL(q(θn)∥p(θn|ym:n))

= arg min
q(xn)q(gn)

∫
q(θn) ln

q(θn)

p(θn|ym:n)
dθn . (20)

Using the equality that

ln p(yn|ym:n−1) =DKL(q(θn)∥p(θn|ym:n))

+L(yn|ym:n−1), (21)

the minimum of (20) can be obtained as

q(xn)∝ exp
(
Eq(gn)

[
ln p(yn, θn|ym:n−1)

])
, (22)

q(gn)∝ exp
(
Eq(xn)

[
ln p(yn, θn|ym:n−1)

])
. (23)
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The updated functions (22) and (23) with respect to target
variables strikes a balance between likelihood and prior,
ensuring that the posterior approximation captures the
information from both the source domain and the target
domain.

Utilizing the aforementioned predicted pdfs and using the
dependencies between different variables (xn, gn), we can
express equation (22) in a more compact manner as:

ln q(xn)∝Eq(gn)

[
ln p(xn|gn,ym:n−1)

]
(24)

+ ln p(yn|xn) .

By setting p(gn|ym:n−1) as an initializer and referring to
the derivations provided in Appendix A, the variational
distribution of xn at lth iteration is derived as

q[l](xn) =N (xn; x̂
[l]
n ,P[l]

n ) , (25)

where the mean and covariance are specified by, respec-
tively,

x̂[l]
n = x̂S−

n +Kn(yn −Hnx̂
S−
n ) , (26)

Kn = ⟨gn⟩P−
nH

T
n (Hn⟨gn⟩P−

nH
T
n +Rn)

−1 , (27)

P[l]
n = ⟨gn⟩P−

n −KnHn⟨gn⟩P−
n , (28)

where ⟨gn⟩ = β
[l−1]
n /(α

[l−1]
n − 1).

Reasoning similarly, employing the fixed variational distri-
bution with respect to xn, the variational distribution of
gn at the lth iteration can be decomposed as

ln q(gn)∝Eq(xn)

[
ln p(xn|gn,ym:n−1)

]
+ ln p(gn|ym:n−1) . (29)

According to Appendix A, we can get the updated distri-
bution of gn at lth iteration as

q[l](gn) = I(gn;α[l]
n , β[l]

n ) , (30)

where the parameters involved are computed as follows:

α[l]
n = α−

n +
dx
2

, (31)

β[l]
n = β−

n +
1

2

[
(x̂[l]

n − x̂S−
n )TP−

n (x̂
[l]
n − x̂S−

n )

+tr
(
P[l]

n (P−
n )

−1
) ]

. (32)

Now, we can summarize the proposed method in Algo-
rithm 1.

4. PERFORMANCE ANALYSIS

Let’s turn our attention to line 5 of Algorithm 1, specif-
ically on the variable Pn, which is similar to the covari-
ance update in the standard KF. However, a significant
difference is that Pn is modified by the key quantity ⟨gn⟩.
This modification aims to increase the mixed covariance,
thereby containing more uncertainties to improve robust-
ness. Notably, the parameter ⟨gn⟩ can be adjusted through
α and β. In this regard, we consider two primary scenarios:

• when α− 1 → 0 and β → ∞, resulting in β
α−1 → ∞.

In this case, the Kalman gain, denoted as K → H−1

is constant.

Algorithm 1 The Proposed Transfer Filter Algorithm

Inputs: x̂n−1, Pn−1, and yn, αn−1, and βn−1

1: Run UFIR to get the transferred predicted state x̂S−
n ;

2: Run KF prediction steps to get the predicted covari-
ance P−

n = FnPn−1F
T
n +GnQnG

T
n ;

3: α−
n = ταn−1, β

−
n = τβn−1, and set them as initializers;

4: for l = 1, 2, 3, · · · , L do

5: Calculate x̂
[l]
n and P

[l]
n as (26) and (28);

6: Calculate α
[l]
n and β

[l]
n as (31) and (32);

7: end for
8: x̂n = x̂

[L]
n , Pn = P

[L]
n , αn = α

[L]
n , and βn = β

[L]
n ;

Outputs: x̂n, Pn, αn, and βn

• when α−1 = β, giving β
α−1 = 1. This scenario reverts

to the conventional KF.

It is essential to note that the term ⟨gn⟩ converges to
optimal values over iterations. Therefore, any adjustments
will have a limited impact on the predicted covariance of
the KF.

Furthermore, it is important to emphasize that when the
time step is less than m, the UFIR does not generate
estimates, and consequently, the knowledge transfer does
not take place. In cases where the model is perfect, there is
no requirement for knowledge transfer either. Both of these
scenarios fall into Scenario 2, which essentially reverts to
the conventional KF.

5. SIMULATIONS

In this section, we assess the estimation performance of
Algorithm 1, denoted as TF, and compare it with the
fusion (FU) filter developed in Zhao et al. (2016). We
use a scenario in which the robot operates within a 2-
D surveillance region, and the dynamic state-space model
can be defined as (1) and (2), with H = [I, 02×2], and

F =

 1 0 sin(λϵ)/λ −(1− cos(λϵ))/λ
0 1 −(1− cos(λϵ))/λ sin(λϵ)/λ
0 0 cos(λϵ) − sin(λϵ)
0 0 sin(λϵ) cos(λϵ)

 .

In this scenario, the values of the parameters are set
as follows: λ = 0.05 and ϵ = 0.2. The process
noise characterized by wn ∼ N (wn; 0,Qn), with Q =
diag(0.01, 0.001, 0.001, 0.01). The measurement noise is
represented as vn ∼ N (vn; 0,Rn), where R = [R1,R2]
with R1 = [10, 1]T and R1 = [1, 80]T. The process runs for
500 time steps, starting from an initial state x0 = [0000]T

and P0 = 0.01I with a sampling time of 1 second.

1) Case 1: Effect of Uncertain Noise Statistics: It is a
common practical challenge that noise statistics are un-
certain and often unavailable to engineers. In this con-
text, we assume that the noise covariances take values
Q = diag(1, 0.1, 0.1, 1) and R = [2, 1; 1, 2]. However, all
the algorithms in our study still rely on the aforementioned
covariance values. For the simulated data, the optimal
horizon for the UFIR filter was determined to be Nopt =
50, as observed in Fig. 2. In fact, variations in the range
of N = [50, 53] within the ellipse have minimal impact
on the tracking accuracy. A sample visualization of the
tracking results is presented in Fig. 3. Notably, the pro-
posed approach exhibits the closest tracking to the actual
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Fig. 2. Effect of estimation horizon N in the UFIR filter
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Fig. 3. Example of the tracking results.

trajectory. The average root-mean-square errors (RMSEs)
calculated over 150 Monte Carlo (MC) runs for each time
step are displayed in Fig. 4. and Fig. 5, corresponding to
cases of uncertain process noise and measurement noise,
respectively. As observed, the FU filter manages to achieve
accuracy close to the most precise subfilter. It essentially
represents a compromise between the KF and UFIR. In
contrast, the proposed method outperforms both the KF
and UFIR, even surpassing the FU filter in terms of accu-
racy.

2) Case 2: Model Errors: In this case, we evaluate the
proposed method under the assumption of model uncer-
tainties that can arise from various factors such as dis-
turbances, short-term environmental changes, and other
sources of parameter variability. Specifically, we assume
that the model experiences unpredictable changes in the
parameter λ, with λ = 0.02. However, all the algorithms
continue to operate using the value of λ = 0.05 over the
course of 500 generated data points. The RMSEs produced
by the algorithms and averaged over 50 MC runs are de-
picted in Fig. 6. Once again, we observe that the proposed
method (TF) delivers higher accuracy compared to the
best of the two subfilters. It exhibits greater robustness
than the FU. This finding aligns with the conclusions
drawn in Case 1, emphasizing the robustness and accuracy
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Fig. 4. RMSEs of different algorithms with uncertain
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of the TF method in the presence of model errors and
uncertainties.

6. CONCLUSION

This paper proposes a novel method to tackle uncertainties
in model parameters for state estimation by utilizing trans-
fer learning. By leveraging the knowledge from the source
domain filter UFIR, which exhibits robust properties, the
proposed method significantly enhances the robustness of
the KF in the target domain. Thus, this work enriches the
growing body of literature on applying transfer learning
to state estimation under parameter uncertainties. Future
research will focus on investigating strategies for effective
knowledge transfer and adaptation across a wide array of
real-world applications.
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Appendix A. DERIVATIONS IN SECTION 3.2

Considering the property that ln p(xn|gn,ym:n−1) ∝
−0.5(xn − x̂−

n )
T(gnP

−
n )

−1(xn − x̂−
n ) and ln p(yn|xn) ∝

−0.5(yn − Hnxn)
T(Rn)

−1(yn − Hnxn), we can rewrite
the target marginal distribution with respect to xn in to
a more compact form as

ln q(xn)∝−1

2
(xn − x̂−

n )
T
(
⟨gn⟩P−

n

)−1
(xn − x̂−

n ) (A.1)

−1

2
(yn −Hnxn)

T(Rn)
−1(yn −Hnxn) ,

where ⟨gn⟩ = βn(αn−1)−1. Recovering (A.1) as a Gaussian
distribution, we can get (25).

Once q(xn) = q[l](xn) is available, the variational distri-
bution q[l](gn) becomes

ln q(gn)∝−dx
2

ln gn|P−
n | −

1

2

{
(x̂n − x̂S−

n )T

×(P−
n )

−1(x̂n − x̂S−
n ) + tr

(
Pn(P

−
n )

−1
) } 1

gn

−(α−
n + 1) ln gn − β−

n /gn . (A.2)

Utilizing the property I(g;α, β) ∝ g−(α+1)e−β/g, we can
rewrite (A.2) equivalently as

ln q(gn)∝−(
dx
2

+ α−
n + 1) ln gn − 1

gn

{
β−
n

+
1

2

{
(x̂n − x̂S−

n )T(P−
n )

−1(x̂n − x̂S−
n )

+
1

2
tr
(
Pn(P

−
n )

−1
) }

. (A.3)

By employing some approximations, we can recover a
inverse Gamma distribution as given in (30), and thus
complete the derivations.
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