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Abstract: Chemical process monitoring is essential for product quality, plant efficiency, and
safety. Conventional methods often prove inaccurate, particularly when dealing with nonlinear
process behaviour. This paper presents a new approach that combines data-driven nonlinear
system identification using smoothed L1 regularisation and a state prediction method using a
sequential importance resampling (SIR) particle filter to provide a basis for process monitoring.
The results obtained from the polycondensation reaction in an operator training simulator
(OTS) with real process conditions validate the effectiveness of the method in detecting
anomalies, addressing challenges in nonlinear process modeling, and reliable state prediction
for chemical process monitoring.
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1. INTRODUCTION

As industrial chemical processes grow increasingly com-
plex, the demand for reliable monitoring and diagnostic
methods has risen. This necessitates the implementation
of reliable system identification and prediction methods.
A significant trend is the shift from model-based to data-
driven methods, enhanced by modern sensors providing
large datasets. Deep learning, while effective at identifying
complex patterns and correlations in data, has difficulty in
understanding process dynamics due to hidden models and
their static nature (Guidotti et al. (2018)). However, data-
driven nonlinear process modelling remains challenging
due to unknown functional structures and lack of prior
knowledge (Santhakumaran et al. (2023)). In the area of
state estimation, well-established methods are developed
in Bayesian frameworks using state-space models, but not
often used in state prediction (Patwardhan et al. (2012)).

This paper introduces a new data-driven method for
nonlinear system identification and prediction. Therefore,
smoothed L1 regularisation is used to simultaneously per-
form structure identification and parameter estimation,
while initial regression is performed to preselect nonlinear
candidates. The identified model allows a multi-step-ahead
state prediction using a sequential importance resampling
(SIR) particle filter.

2. DATA-DRIVEN NONLINEAR SYSTEM
IDENTIFICATION

Data-driven system identification to be presented is
based on Koopman theory and extended dynamic mode
decomposition (eDMD). Koopman theory maps nonlinear

process dynamics to an augmented state space using the
Koopman operator and augmented state variables, called a
set of observables. eDMD complements this by addressing
infinite-dimensional challenges in Koopman theory using
eigenmode decomposition and a library of nonlinear func-
tions. Detailed derivations of both methods are provided in
Korda et al. (2020) and Williams et al. (2015). As eDMD
relies on using a set of observables, that may not always be
given, Brunton et al. (2016) demonstrated the feasibility of
eDMD using state variables. Based on these investigations,
consider a general nonlinear process that can be expressed
using a time-invariant, state-space model as

xk+1 = f(xk) + g(uk), (1)
where xk ∈ Rn are the state variables and uk ∈ Rm are
the controller outputs that exist in the state space Ω, and
f, g : Ω → Ω are the process and controller dynamics,
which are Lipschitz continuous. Using the results from
eDMD with measured data, the nonlinear process dynamic
can be described as

xk+1 =

Nk∑
k=1

akωkΨk,

= Ψ(xk)α, (2)
where the function library Ψ(xk) is given as Ψ(xk) =
[ψ1(xk) . . . ψNk

(xk)] ∈ RnxNk and Nk refers to the number
of function candidates ψ1:Nk

(xk) in a Hilbert space L2

with a general index set U . The weighting vector for
each function candidate ψ1:Nk

(xk) is represented by a ∈
RNk , while the Koopman eigenmodes, which include the
Koopman dynamics of evolution, are represented by ω ∈
RNk . The product of the Koopman eigenmodes ω and
the weighting vector a is represented by α ∈ RNk . In
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order to provide the state derivatives xk+1, the Savitzky-
Golay filter is used to perform numerical state estimation.
The feasibility and accuracy of using state derivatives has
been discussed and demonstrated in Santhakumaran et al.
(2022).

2.1 Smoothed L1 regularisation

As proportional-integral (PI) controllers are predom-
inantly used in process industries, a typical closed-loop
nonlinear process using Equation 1 can be written as

xk+1 = f(xk) + g(uk) +Kpzk +KIzk+1, (3)
zk = rk − yk, (4)
yk = d(xk). (5)

where Kp is the controller gain, KI is the controller reset
time, and zk is the control deviation and an auxiliary
state to consider the closed-loop dynamics. Note that
this reformulation is valid for a PI controller with a
parallel structure of the controller parameters. The process
dynamics of Equations 3-5 can be reformulated using the
results from Equation 2 as

xk+1 = Ψ1(xk)α1 +Ψ2(uk)α2 +Kpzk +KIzk+1,

zk = rk − yk,

yk = Ψ3(xk)α3. (6)
Reformulating Equation 6 in matrix notation gives[

xk+1

yk
zk

]
=

[
Ψ1(xk) Ψ2(uk) 0

0 0 Ψ3(xk)
0 0 0

][
α1

α2

α3

]

+

[
Kp KI

0 0
1 0

] [
zk
zk+1

]
,

X = Ψα+ c, (7)

where X =

[
xk+1

yk
zk

]
, Ψ =

[
Ψ1(xk) Ψ2(uk) 0

0 0 Ψ3(xk)
0 0 0

]
,

α =

[
α1

α2

α3

]
and c =

[
Kp KI

0 0
1 0

] [
zk
zk+1

]
.

Equation 7 shows that performing eDMD to a closed-
loop process results in nonlinear system identification,
combining functional structure identification and param-
eter estimation. However, using all function candidates in
Ψ may introduce inaccuracies due to potential inclusion of
irrelevant functions in the linear combination. Addition-
ally, since Ψ is singular, inversion for regression can lead
to numerical issues. Therefore, sparse regression methods
are able to deal with these challenges by choosing suit-
able functions from Ψ and decreasing its dimensionality.

Sparse regression combines an optimisation problem
with a regularisation term to shift the optimal solution,
achieving sparsity in the parameter estimates. Therefore,
a regularisation problem for Equation 7 can be expressed
as

min
α

{∥X− (Ψα+ c)∥22 + λ ||α||p}, (8)

where the regularisation term includes the hyperparameter
λ and ||·||p, which represents the Lp norm. For nonlinear
system identification, L1 regularisation method is suitable
due to its ability to select suitable function candidates
in Ψ by assigning zero to several model coefficients α

according to the properties of the L1-norm. As a result, it
efficiently eliminates unsuitable function candidates from
Ψ and performs feature selection. However, optimising L1

regularisation is challenging due to its nondifferentiability,
whereas L2 regularisation demands less effort but cannot
ensure a generally sparse solution.

Therefore, an approximation of the L1-norm based on
the L2-norm is developed for system identification to
combine both properties. In this context, Fan et al. (2001)
performed a comprehensive analysis using the Huber-Loss
regularisation, which uses a switching approach between
the L1 and L2 regularisations, to express an analytical
solution that combines the properties of both methods.
As a result, the following relationship was derived:

||α[1]|| = ||α[0]||+ 1

2
||α[0]||−1(α2 − (α[0])2), (9)

where α[0] is an initial vector, which needs to be set for
regularisation and α[1] is the next iteration. For a general
regression problem ∥y − Ab∥22 + λ ||α||1 that needs to
be solved using L1 regularisation, van Wieringen (2015)
demonstrated that using the quadratic approximation to
the absolute value function in the elements of α during
the kth update and using the properties from Equation 9
leads to an iterative L2 regularisation, that is

α[k+1] = [ATA+
1

2
λ||α[k]||−1]−1yTA. (10)

Using the result from Equation 10, an analytical solution
for Equation 7 can be obtained by solving the following
optimisation problem:

min
α[k+1]

{||(X− (Ψα[k+1] + c) ||22 +
1

2
λ||α[k]||−1(α([k+1]))2}

−2ΨTX+ 2ΨTΨα[k+1] + λ||α[k]||−1(α[k+1]) = 0

α[k+1] = [ΨTΨ+
1

2
λ||α[k]||−1]−1XTΨ (11)

The result of Equation 11 provides a suitable estimate
that has the properties of the L1 regularisation by achiev-
ing convergence of α. This result is defined as smoothed
L1 regularisation. Thus, smoothed L1 regularisation pro-
motes a sparse solution while structure identification and
parameter estimation are simultaneously performed.

The application of smoothed L1 regularisation would
allow an unlimited number Nk in the function library Ψ,
that can lead to a considerable computational effort. To
improve the performance, an initial regression is proposed
that starts with a polynomial regression using X. For
validation, R2 scores are calculated, defined as

R2 =
SSR

TSS
(12)

where SSR is the sum of squares due to regression that is
the difference between the predicted values and the mean
value, while TSS is the total sum of squares that measures
the total variance in the dataset. Polynomial regression
is performed by increasing the polynomial order until a
sufficiently high R2 is achieved. Based on this result, the
sum series of possible nonlinear functions ψ1:Nk

(xk) are
then compared and the suitable candidates are selected
using forward selection. The linear combination of the
nonlinear function candidates that exceed a R2 score of
0.95 are added to the function library Ψ (Burnham et al.
(2004)). Thus, Mk function candidates with Mk ≪ Nk are
preselected for the subsequent steps.
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3. STATE PREDICTION USING A SIR PARTICLE
FILTER

A sequential importance sampling (SIS) particle filter,
which is derived from a recursive Bayesian Filter, is used to
iteratively estimate the probability density function (PDF)
of process states from measurements. The filter priori-
tises real-time performance (Patwardhan et al. (2012), Se-
toodeh et al. (2022)). In practical applications, the sequen-
tial importance resampling (SIR) method is often preferred
due to its lower computational requirements for calculating
particle weights compared to SIS and its simpler particle
generation (Haßkerl et al. (2016)). Therefore, SIR particle
filtering will be used for state prediction.

Therefore, consider the nonlinear process model pro-
vided in Equation 6 and identified using the result from
Equation 11. The particle filter’s state estimation relies on
the fundamental framework of the Bayesian filter, which
is,
p(x1:k|y1:k) = p(x1:k−1|y1:k−1)p(xk|xk−1)p(yk|xk), (13)

where p(·) is the PDF and describes the probability of
the first variable, based on the observation of the second
variable, x1:k are the state variables and y1:k is the process
output obtained from time step 1 to k. Equation 13
outlines a method for estimating the state variable at time
k using the process outputs y1:k and past state variables
x1:k−1 based on sampling the related PDF. If the PDF
can be parametrically described with a known function,
it simplifies the generation of random variables. However,
this assumption does not hold when dealing with arbitrary
PDFs. In such cases, the SIS method is used to perform
Monte Carlo integration using a proposed density function,
known as the importance density (Haßkerl et al. (2016)),
that is

E{f(x)} =

∫ +∞

−∞

p(x)

q(x)
f(x)q(x)dx. (14)

where E{·} is the expectation operator, x are the samples
drawn, f(·) is the process dynamics, p(·) the related
PDF, q(x) is the proposed distribution, and the ratio
of p(x)

q(x) provides the degree of similarity between the
samples drawn from q(x) and p(x). In the context of SIS,
the samples drawn are called particles. The weight ω(x)
assigned to each particle is represented by

ω(x) =
p(x)

q(x)
. (15)

Using Equation 14, Equation 15 can be expressed as

E{f} =

∫ +∞

−∞
ω(x)f(x)q(x)dx ≈ 1

N

N∑
i=1

ω(x(i))f(x(i)),

(16)
Using Equation 16, Bayesian-filter state estimation

from Equation 13 can be performed by providing a pro-
posed density function q and thus providing particles.
However, the weights of the particle ω must be iteratively
obtained at each step resulting in increased computational
effort. Therefore, Equation 15 can be rewritten using
Bayes’ theorem to provide a recursive expression, that is,

ωk =
p(x

(i)
0:k|y0:k)

q(x
(i)
0:k|y0:k)

=
p(y0:k|x(i)0:k)p(x

(i)
0:k)

q(x
(i)
k , x

(i)
0:k−1|y0:k−1)

. (17)

Expanding Equation 17 using Bayes’ theorem and the
Markov assumption that each state depends only on the
current state and not on previous measurements, gives

ωk =
p(yk|x(i)k )p(y0:k−1|x(i)0:k−1)p(x

(i)
k |x(i)k−1)p(x

(i)
0:k−1)

q(x
(i)
k |x(i)0:k−1, y0:k−1)q(x

(i)
0:k−1|y0:k−1)

=
p(yk|x(i)k )p(x

(i)
k |x(i)k−1)

q(x
(i)
k |x(i)0:k−1, y0:k−1)

p(y0:k−1|x(i)0:k−1)p(x
(i)
0:k−1)

q(x
(i)
0:k−1|y0:k−1)

=
p(yk|x(i)k )p(x

(i)
k |x(i)k−1)

q(x
(i)
k |x(i)0:k−1, y0:k−1)

p(x
(i)
0:k−1|y0:k−1)

q(x
(i)
0:k−1|y0:k−1)

. (18)

Comparing Equation 18 with Equation 15, it can be
seen that a decomposition for the particle weights has
been performed. The first fraction represents an expression
based on the current measurements, while the second
fraction represents the weights from the previous iteration
step. Thus, a recursive expression for the particle weights
can be described as

ωk =
p(yk|x(i)k )p(x

(i)
k |x(i)k−1)

q(x
(i)
k |x(i)0:k−1, y0:k−1)

ωk−1. (19)

Initially, particles representing potential hypotheses
about the process state are generated using the importance
density. State estimation is performed using the process
model identified from Equation 11, and particle weights
are updated based on their correlation with measurements
using Equation 19. To address degeneracy issues, resam-
pling replaces low-weight particles with duplicates of high-
weight ones. This SIS and resampling (SIR) method im-
proves particle representation and approximates the state
probability distribution. The state estimate is derived by
averaging particles, neglecting the correction step in favor
of multi-step-ahead state prediction.

4. CASE STUDY

This case study examines chemical process monitor-
ing of a polycondensation reaction using the proposed
smoothed L1 regularisation and SIR particle filter. Figure
1 presents an overview of the polycondensation reaction
process.

Fig. 1. Overview of PET reaction unit

The focus is on polyethylene terephthalate (PET) pro-
duction, resulting from a reaction between carboxyl acid
and glycol. A by-product of this reaction is water that is
later distilled downstream. The reaction requires a catalyst
for initiation, accompanied by specific temperature control
using heating and cooling media. Efficient monitoring of
the reaction rate is crucial to ensure product quality and
plant safety. The simulation study is based on the use of
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an operator training simulator (OTS) that incorporates
plant dynamics and real-plant-related data, as well as an
emulated distributed control system (DCS) and emergency
shutdown system (ESD) from the plant setup. To evaluate
the effectiveness of state prediction and its contribution to
process monitoring, the OTS randomly activates a fouling
scenario within the prediction step.

4.1 Nonlinear system identification of a polycondensation
reaction

In order to provide a process model for the PET reaction
behaviour, data-driven nonlinear system identification is
performed using smoothed L1 regularisation. The process
is run in closed loop using four PI controllers to control
the reactant flows, the catalyst flow, reactor heating, and
reactor cooling. Table 1 describes the process parameters
used and Figures 2-4 show the process data used for system
identification.

Table 1. Process parameters used for the poly-
condensation reaction

Process parameters Description units
fr1 Flow of glycol t/h
fr2 Flow of carboxyl acid t/h
fc Flow of catalyst t/h
T Reactor temperature ◦C
rr Reaction rate %
C1 Flow controller of glycol -
C2 Flow controller of carboxyl acid -
C3 Flow controller of catalyst -
C4 Reactor temperature controller -
z1 Auxiliary variable for C1 -
z2 Auxiliary variable for C2 -
z3 Auxiliary variable for C3 -
z4 Auxiliary variable for C4 -

Fig. 2. Reactants and catalyst flow for the PET reaction

Figure 2 shows the flows of reactants and catalyst
during the process. At the beginning, glycol and carboxyl
acid are controlled using PI flow controllers with setpoints
of 3 and 5 t

h over 70 minutes. The catalyst is then added
with a setpoint of 1.5 t

h after 40 minutes for 25 minutes to
start the reaction. Figure 3 shows the reactor-temperature
profile. It can be seen that after 20 minutes, the reactor is
preheated to 40◦C. In order to prevent a safety shutdown,
the reactor temperature is controlled at 220◦C during the
reaction. The reaction rate of PET is shown in Figure 4.
The reaction rate refers to the amount of PET formed
during the process. After the catalyst is added to the
process, 20% PET is produced in the first 3 minutes.
Thereafter, the reaction rate increases directly to 91%

Fig. 3. Temperature behaviour of PET reaction

Fig. 4. Reaction rate of PET

PET and remains almost constant with uncertainties due
to the reactor temperature control and measurement. The
supply of reactants and catalyst is completed after 70
minutes, while the reaction is completed after 85 minutes.
The product is then discharged to the downstream process
for further processing and the process continues with the
next batch.

Based on the dataset obtained, smoothed L1 regular-
isation is performed to provide a process model. First,
an initial regression based on polynomial regression and
forward selection is performed in order to obtain a set of
nonlinear-function candidates. The preselected nonlinear
function candidates are shown in Table 2.

Table 2. Nonlinear-function candidates ob-
tained from initial regression

Nonlinear function candidates Regression fit (R2 score)
exp 0.68

(.) + (.)2 0.15
sin 0.07
cos 0.06

Total fit 0.96

Table 2 shows that the initial regression proposes a
superposition of an exponential (exp), sinusoidal (sin and
cos) and a second-order polynomial ((.) + (.)2) candidates
with a R2 score of 0.96 for the polynomial regression. Thus,
these candidates are considered for the next step.

Next, data-driven system identification is performed
using the preselected nonlinear-function candidates from
Table 2. Identification is performed using a 1000-fold cross-
validation, where the process data obtained is distributed
into 1000 uniform data packages of 630 data points each.
In this process, 950 data packages are used as the training
dataset for system identification and the remaining 50 data
packages are used as the test dataset for validation. This
procedure is performed 1000 times, with the training and
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test datasets randomly generated. The result of the cross-
validation is shown in Figure 5.

Fig. 5. Validation of smoothed L1 regularisation using
1000-fold cross-validation

The cross-validation shown in Figure 5 evaluates the
identified process models using the model order, which
evaluates the number of nonlinear function candidates con-
sidered in relation to the R2 score. The results show that
the process model with 9 nonlinear function candidates
has the best fit with an R2 score that ranges between
0.91 and 0.98. Thus, the process model with 9 candidate
functions shows that it was able to accurately capture
the process dynamics present. As there are variations in
the R2 score range, and thus variations in the parameter
estimates, the identified process parameters are selected
with the averaged R2 score of 0.955. The identified process
model for the R2 score of 0.955 can be described as
drr
dt

= −5.71 · 104r2r exp(−0.68T )− 1.8rr + 4 · cos(z4) + 79

dT

dt
= 8.21 · 105r2r exp(−0.93T ) + 3.2r2r − 14.3rr + C4

dfr1
dt

= 37.64 exp(0.58fr1) + 0.45 + C1

dfr2
dt

= 37.64 exp(0.43fr2) + 0.31 + C2

dfc
dt

= 37.64 exp(0.47fc) + 0.24 + C3

dz1
dt

= 120 + fr1

dz2
dt

= 120 + fr2

dz3
dt

= 120 + fc

dz4
dt

= 380− T

C1 = (120 + fr1) + 130z1
C2 = (120 + fr2) + 130z2
C3 = (120 + fc) + 130z3
C4 = −(380− T ) + 420z4 (20)

The result of smoothed L1 regularisation shows a
nonlinear relationship between the reaction rate and tem-
perature. As well, the flow behaviour is influenced by the
controller and the previous state of itself. In addition, it
can be shown that this approach allows the identification
of the controller parameters (Kp: 120 and -380/ KI : 130
and 420), if a PI controller structure is considered. This
property is useful in case the controller parameters cannot
be accessed. The behaviour of the model is shown by the

reaction rate in Figure 6.

Fig. 6. Process model behaviour resulting from smoothed
L1 regularisation

Figure 6 shows a parity plot, which visually assesses
the regression performance by evaluating the closeness of
the measurements to the identified process model along
the parity line. The close clustering of points around
this line indicates the accuracy of the process model in
capturing the inherent process dynamics. The comparison
between the process behaviour and the model behaviour
shows a reliable fit. Validation is further supported by
the 95% confidence interval, which reinforces confidence
in the accuracy of the model and confirms the efficency of
the smoothed L1 regularisation for data-driven nonlinear
system identification.

4.2 State prediction using SIR particle filter

In the first step of the SIR particle filter, the time
horizon is divided into two phases: training phase and
test phase. In the training phase, the particle weights
are estimated based on the process model identified from
Equation 20 and updated using measurements. In the test
phase, the correction step is neglected, and thus, state pre-
diction is performed using the process model identified. In
order to initialise the particle set, a univariate importance
density covering the measurement range of the reaction
rate is assumed and 1000 particles are randomly drawn.
The performance of state estimation is shown in Figure 7.

Fig. 7. State estimation using the SIR particle filter

The training phase, lasting one batch, begins with the
distribution of particles over the measurement range of the
reaction rate. Using the process model and measurement
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obtained, the particles gradually converge towards the true
process state. Particle weighting is performed every minute
using Equation 19, with higher weights given to states that
are more probable. Lower-weighted particles are resampled
to maintain the same number of particles within the range
of higher weights. After 12 minutes, precise tracking of the
particle set can be ensured in the batch, which demon-
strates the efficiency of this method for state estimation.
Based on the training, state prediction is performed using
the process model identified without a correction step. The
performance of the state prediction as well as the accuracy
of this approach are shown in Figure 8.

Fig. 8. State prediction using SIR particle filter

Figure 8 shows the prediction of the reaction rate over a
period of 5800 minutes. The red curve represents the train-
ing phase, that is shown and explained in Figure 7. The
yellow curve shows the measured reaction-rate behaviour,
while the violet curve shows the predicted reaction rate
using the SIR particle filter. It can be noted that the
prediction closely aligns with the reaction rate up to 1800
minutes, followed by a quasilinear decrease from 1800 to
4000 minutes, and an exponential decrease from 4000 to
5800 minutes. The prediction follows the process dynam-
ics using from the process model and remains similar to
the behaviour in the training phase. The pattern of the
reaction rate corresponds to the gradual fouling process
randomly activated in the OTS, that involves the accu-
mulation of fouling on reactor surfaces and pipes, reduces
the heat transfer and increases the energy consumption
and pressure. Consequently, these factors contribute to
the observed decrease in reaction rate. As a result, this
fouling can lead to overheating and reactor damage, re-
sulting in costly repairs and a decrease in product quality.
Therefore, by setting a threshold specific to the process
and performing smoothed L1 regularisation within the SIR
particle filter, accurate state prediction can be performed,
anomalies can be detected, and a maintenance plan can be
scheduled. Thus, the proposed method can help to monitor
chemical processes.

5. CONCLUSION

This paper has introduced and evaluated a data-
driven nonlinear system identification and state-prediction
method using smoothed L1 regularisation and SIR particle
filter for monitoring a polycondensation reaction process.
The study started with data-driven system identification
to capture the relevant process dynamics within a closed-
loop process. Subsequently, state prediction of the reaction

rate was performed based on the process model identi-
fied. The system identification was successfully performed,
yielding an averaged R2 score of 0.955, and the process
model was effectively used for state prediction. Notably,
the state prediction successfully detected a deviation re-
lated to fouling within the reactor, highlighting its ability
to detect anomalies.

The results highlight the significant role that data-
driven nonlinear system identification and state prediction
contribute to process monitoring. However, it is crucial
to incorporate appropriate threshold values and examine
model-based fault diagnosis and isolation approaches to
enhance the proposed method. Additionally, the applica-
bility of this framework across different chemical processes
and conditions should be investigated to establish and
develop further the scope.
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