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Abstract: Estimating or predicting the concentrations of bacteria cells is crucial for achieving
better control of the operation of wastewater treatment plants. However, measuring the bacterial
concentration along the influent wastewater stage to the treated effluent process is challenging
as it involves lab access and trained personnel. Additionally, wastewater plants are generally
nonlinear systems involving time-varying physical and biological characteristics, increasing the
difficulty in estimating the bacterial concentration from a model-based approach. This paper
proposes data-driven models based on four machine-learning models to estimate the bacterial
cell density with a limited dataset in a wastewater treatment plant. The performance results
demonstrate that the machine-learning models (i.e., K-Nearest Neighbour (kNN), Random
Forest (RF), Gradient Boosting Regression (GBR), Extreme Gradient Boosting (XGB)) have
the potential to estimate accurately the bacterial concentration. RF displays better bacteria
estimation in the influent by 10.7% compared to GBR and 7.4% compared to XGB and kNN.
Whereas for the effluent, XGB improved the estimation by 12.8%, 2.4%, 14.6% compared to
GBR, RF, and kNN, respectively. Also, results show that conductivity as a single feature is the
most significant parameter affecting the bacterial cell estimation in the influent stage for the
four machine learning algorithms. Similarly, the chemical oxygen demand (COD) and turbidity
have pronounced effects in the effluent stage. These results reveal potential signs of designing a
universal data-driven model-based approach applicable for bacteria estimation at influent and
effluent based on the minimum feature combinations (conductivity, COD, and turbidity).

Keywords: Wastewater treatment plant, data-driven models, bacterial estimation models,
machine learning algorithms

1. INTRODUCTION

The primary objective of a wastewater treatment plant
(WWTP) is to reduce nutrient and pollutant concentra-
tions as vectors for spreading the transmission of bacterial
and viral contaminants. WWTPs are generally nonlin-
ear systems involving time-varying physical and biological
characteristics and exhibiting significant input variability
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in the influent stage. Therefore, estimating bacterial con-
centration is challenging due to the difficulty of building
predictive mathematical models of the bacterial output
and the non-availability of variables of interest in WWTP.
Sample taking and laboratory analysis are the conven-
tional methods to measure bacterial concentrations, which
are time-consuming and do not reflect the state of the
process in real-time (Manti et al., 2008). Hence, designing
algorithms to estimate accurately and monitor the bacte-
rial concentration through a soft sensor model is crucial to
alleviate this problem and support the plant operators in
WWTPs.
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Model-based estimation approaches provide an efficient
strategy for assessing the variables of interest, including
state, parameters, and unknown faults and disturbances
(Dochain, 2003). However, the identification and model
representation of accurate process models, along with the
assumptions in the model derivation, for example, mi-
croorganism concentrations and reaction rates of WWTP
systems, are the bottlenecks of the model-based approach.
In this context, data-driven methods can circumvent ana-
lytical and model-based design methods by characteriz-
ing dominant underlying patterns in WWTPs (see, for
instance, (Farhi et al., 2021; Pisa et al., 2019; Mokhtari
et al., 2020; Alharbi et al., 2022b; Ekundayo et al., 2023;
Wang et al., 2022; Alharbi et al., 2022a) and references
therein). Data-driven models is currently revolutionizing
how we model, predict and control complex systems. For
instance, a key benefit of decision tree models is identifying
models that contain the most required nonlinear terms
(Cheng et al., 2023).

Different from our previous effective results on bacterial
sensing for large data based on sliding window neural
network (Alharbi et al., 2022b), the data-driven based
estimation models here do not consider input-output data
generation and work effectively with limited data, which
is crucial for rapid identification and estimation of the
bacterial concentration model. Furthermore, the work in
(Alharbi et al., 2022b) relies inherently on the dependence
on the last three water quality samples (during three
months) to estimate bacteria, which is challenging to cap-
ture the relationship between water quality and bacteria
without using data generation. More importantly, the syn-
ergy between data-driven based identification and model-
based estimation approach promotes the generalization of
the bacterial concentration beyond the training data. In
line with this, we propose data-driven models for bacterial
concentration estimation by considering two datasets from
two WWTPs in Saudi Arabia. We evaluate four mod-
els (K-Nearest Neighbour (kNN), Random Forest (RF),
Gradient Boosting Regression (GBR), Extreme Gradient
Boosting (XGB)), and compare their performances. These
data-driven models are mainly based on a decision tree
framework and have the advantage of capturing the dom-
inant underlying features of the influent and effluent bac-
terial concentration within limited samples. Subsequently,
they have the merit to prevent overfitting and the ability
to encompass good generalization when combined with
a model-based approach. The main contributions of this
paper are summarized as follows:

• Develop four data-driven models for bacterial con-
centration estimation on a combined dataset of two
WWTPs.

• Estimate the concentrations of influent and effluent
bacterial biomass based on the minimum feature
combinations (conductivity, COD, turbidity).

• Reveal the importance of developing a universal data-
driven model-based estimation based on these domi-
nant features.

The paper’s outline is organized as follows: Section 2
describes the process of the wastewater treatment plant,
including the water quality factors. Section 3 provides the
data preprocessing and introduces the machine-learning
algorithms. Section 4 discusses the bacteria estimation

Fig. 1. The flow diagram for the Conventional Activated Sludge
(CAS) process with tertiary treatment located in Saudi Arabia
illustrates the process of untreated water flowing in the anoxic
tank as influent and treated in the tertiary tank as effluent.
Furthermore, the air compressor diffuses bubbles in the aeration
tank, and the activated sludge recycles to the aeration tank
using the pump.

Table 1. Statistics of water quality factors and
bacteria concentrations

Variables Mean ± Standard deviation (SD)
Influent Effluent

pH 7.28± 0.22 7.67± 0.46
TDS (mg/L) 876.27± 419.43 755.56± 372.57
Conductivity (µS/cm) 1239.36± 592.43 1068.08± 526.84
COD (mg/L) 135.84± 66.29 12.51± 5.56
Turbidity (NTU) 57.14± 34.08 2.10± 1.30
Bacteria levels (cell/L) 8.31± 0.55 7.52± 0.86

results. Finally, the article summarizes the main contri-
butions and future works in Section 5.

2. MATERIALS

This study aims to predict bacteria concentrations based
on accessible measurements of influent and effluent in
wastewater treatment plants in Saudi Arabia. The plant
has three stages: anoxic, aeration, and tertiary tanks.
Fig. 1 presents the process of wastewater as influent to
treated water as effluent. The influent enters an anoxic
tank where the objective is to reduce nitrate (NO

�
3 ) and

nitrite (NO
�
2 ) by denitrification process. Then, the water

that has reduced nitrogen content flows to an aeration
tank, which is high in dissolved oxygen due to the air
compressor and reduces Biochemical Oxygen Demand
(BOD). Once the water exits the aeration tank, it flows to
the tertiary tank, removing solids and polishing the water
as effluent. The remaining activated sludge is recycled
into the aeration tank using a pump, and the process is
repeated.

The main monitoring water quality factors are pH (po-
tential of hydrogen), COD (chemical oxygen demand),
TDS (total dissolved solids), turbidity, and conductivity.
Table 1 summarizes the statistics of these factors including
bacteria concentration, which has been determined in the
lab by flow cytometry protocols as in (Timraz et al., 2017).
The data were collected from July 1, 2020, to July 20,
2022. The total samples of these data is 64 samples. All the
values of the bacteria cells are converted to a logarithmic
scale.
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(a) (b)
Fig. 2. Correlation matrix between water quality features. Fig. 2(a) influent feature correlation where (TDS, Conductiv-

ity) present high correlation. Fig. 2(b) effluent features correlation, which also illustrates high correlation between
(TDS, Conductivity)

Table 2. Optimal hyper-parameter tuning using Optuna for the four machine-learning algorithms
at the influent and efflunt stages.

Algorithm Best input features Parameters

kNN Influent (Conductivity) n_neighbors: 1, weights: uniform
Effluent (COD, Conductivity, Turbidity) n_neighbors: 1, weights: uniform

RF Influent (Conductivity) n_estimators: 60, max_depth: 10,
min_samples_split: 2

Effluent (COD, Turbidity) n_estimators: 50, max_depth: 9,
min_samples_split: 2

GBR Influent (Conductivity) n_estimators: 150, learning_rate:
0.197, max_depth: 10

Effluent (pH, COD, Conductivity) n_estimators: 133, learning_rate:
0.178, max_depth: 10

XGB Influent (pH, Conductivity) n_estimators: 128, learning_rate:
0.096, max_depth: 10

Effluent (COD, Conductivity, Turbidity) n_estimators: 108, learning_rate:
0.149, max_depth: 5

3. METHODS

3.1 Data preparation

The objective is to build sufficient models to predict bacte-
ria concentrations based on these measurements. Investi-
gating the correlation is essential to achieve this objective
and reduce feature redundancy. The correlation aids in
understating how two variables/features are linearly close.
The correlation is formulated as follows

r =

P
(xi � x̄)(yi � ȳ)pP

(xi � x̄)2
P

(yi � ȳ)2
, (1)

where xi and yi are the samples of features x and y,
and x̄ and ȳ are the mean values of the features x and y.
Highly correlated two features result in r being near to 1.
Fig. 2 illustrates the correlation between the features of the
influent and effluent. The correlation between conductivity
and TDS is very high for influent and effluent datasets,
suggesting that one of these features should be eliminated.
Therefore, TDS is excluded, and the utilized features are
pH, COD, conductivity, and turbidity for the rest of our
analysis.

3.2 Machine learning algorithms

In the model development process, machine learning algo-
rithms such as K-Nearest Neighbour (kNN), Random For-
est (RF), Gradient Boosting Regression (GBR) and Ex-
treme Gradient Boosting (XGB) have been implemented

for regression model screening. Note that other machine
learning algorithms, such as support vector regression
(SVR), multivariate adaptive regression spline (MARS),
and multi-layer perception (MLP), have been evaluated in
our dataset. However, their estimation performances were
not accurate during the testing stage.

3.3 Performance measures

To evaluate the performance during training and testing,
four quantitative error metrics are calculated: Root-Mean-
Square-Error (RMSE), Mean-Squared-Error (MSE), Mean
Absolute Error (MAE), and Mean-Absolute-Percentage-
Error (MAPE) as follows:

RMSE =

vuut
nX

i=1

(yi � ŷi)2

n
, MSE =

1

n

nX

i=1

(yi � ŷi)
2

MAE =
1

n

nX

i=1

|yi � ŷi| , MAPE =
1

n

nX

i=1

����
yi � ŷi

yi

����

where yi refers to the real output at sample i, ŷi denotes
the predicted output at sample i.

4. RESULTS AND DISCUSSION

The four machine-learning algorithms have been imple-
mented using limited data samples where the data was
split into (80%, 20%) for training and testing. The first
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(a) (b)
Fig. 3. Mean RMSE for influent and effluent using five K-folds for the four machine-learning algorithms. Fig.3(a)

suggests the optimal feature combinations that resulted in minimum mean RMSE for GBR is (Conductivity),
XGB is (pH, Conductivity), RF is (Conductivity), and kNN is (Conductivity). Fig. 3(b) suggests the optimal
feature combinations that resulted in minimum mean RMSE for GBR is (pH, COD, Conductivity), XGB is (COD,
Conductivity, Turbidity), RF is (COD, Turbidity), and kNN is (COD, Conductivity, Turbidity). This study shows
that conductivity and COD/turbidity are crucial in estimating the bacterial concentration in the influent and
effluent stages, respectively.

objective is determining each algorithm’s best hyper-
parameter and feature combinations. This step has been
done using a well-known library in Python called Optuna

Akiba et al. (2019). Table 2 presents the optimal fea-
ture combinations and hyper-parameter tuning using 1000
trials. It is noticeable that conductivity is an important
feature, which appears alone or in combination with other
features in most of the influent and effluent, except for RF
effluent. The most essential feature combinations for the
effluent include COD and turbidity.

For further analysis, we utilized the concept of K-folds
to generalize the performance of the algorithms. In ad-
dition, we focused on the RMSE metric to evaluate the
performance of the models. Fig. 3 illustrates mean RMSE
for influent and effluent using five K-folds for the four
machine-learning algorithms where Figs. 3(a) and (b) refer
to influent and effluent, respectively. Fig. 4 shows the
results of bacteria estimation for the four algorithms in the
training and testing stages. Figs. 4(a), (c), (e), and (g) il-
lustrate the training stage with used feature combinations
for influent using GBR, XGB, RF, and kNN, respectively.
One the other hand, Figs. 4(b), (d), (f), and (h) present
the testing stage. Similarly, Fig. 5 shows the training and
testing results for the effluent. In the influent case, the
minimum mean RMSEs for each algorithm are 0.28, 0.27,
0.25, and 0.27 for GBR, XGB, RF, and kNN, respectively.
Suggesting that RF resulted in minimum RMSE which
has improved the estimation error by 10.7% compared to
GBR and 7.4% compared to XGB and kNN. The feature
conductivity is distinguishable and performs well alone in
GBR, RF, and kNN and combination with pH in XGB.
For the effluent case, the minimum RMSE for GBR is

0.47, XGB is 0.41, RF is 0.42, and kNN is 0.48. XGB
present good estimation compared to GBR by 12.8%, RF
by 2.4%, and kNN by 14.6%. COD and turbidity features
resulted in minimum RMSE in three algorithms whether
in combination with each other alone as in RF, or with
conductivity as in GBR and kNN.

5. CONCLUSION

In this work, we proposed data-driven models based on K-
Nearest Neighbour (kNN), Random Forest (RF), Gradient
Boosting Regression (GBR), and Extreme Gradient Boost-
ing (XGB) models to estimate the bacterial cell density in
a wastewater treatment plant. The four machine learning
models displayed good bacteria estimation performance.
We also demonstrated that conductivity as a single feature
is the most significant parameter affecting the bacterial cell
estimation in the influent stage. Similarly, the chemical
oxygen demand (COD) and turbidity have pronounced
effects in the effluent stage. The proposed data-driven
models based primarily on traditional machine learning
models could provide a timely and rapid assessment of the
rate of the bacterial concentration density. These results
also implied that leveraging data-driven models with domi-
nant underlying conductivity, COD and turbidity patterns
could benefit from model-based methods to provide an
evidence-based strategy to tackle the universality of the
proposed models, which are essential to the operation of
wastewater treatment plants.
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Fig. 4. Training and testing for bacteria concentration for the influent using the four machine-learning algorithms. On

the left column of Figs. 4 (a, c, e, g) is the training stage for GBR, XGB, RF, and kNN. Whereas on the right
column of Figs. 4 (b, d, g, h) is testing stage. RF shows better bacteria estimation in the influent by 10.7% compared
to GBR and 7.4% compared to XGB and kNN in the mean RMSE criteria (See heatmaps in Fig. 3).
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Fig. 5. Training and testing for bacteria concentration for the effluent using the four machine-learning algorithms. On

the left column of Figs. 5 (a, c, e, g) are the training stage for GBR, XGB, RF, and kNN, respectively. Whereas on
the right column of Figs. 5 (b, d, f, h) are the testing stage. XGB improved the estimation by 12.8%, 2.4%, 14.6%
compared to GBR, RF, and kNN in the effluent case in the mean RMSE criteria (See heatmaps in Fig. 3).
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