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Abstract: Multiscale hybrid modelling of biosystems utilises advantageous aspects of several modelling 

approaches, from the physical interpretations of kinetic modelling to the power of a data-driven Artificial 

Neural Network (ANN). This study implements multiscale modelling to gain insight into the production of 

Trastuzumab (Herceptin) from Chinese Hamster Ovary (CHO) cells under challenging dynamics. A 

reduced metabolic network is subject to enzyme constraints with a Dynamic Metabolic Flux Analysis 

(ecDMFA) approach and integrated within a macro-scale hybrid kinetic model. The model can simulate 

fed-batch processes with optimized feed control, as well as providing insight into the control gained by 

alteration to the cell culture media. On the intracellular level, the influence from extracellular perturbations 

can be observed, in addition to giving an estimated production rate of unmeasured by-products. Overall, 

this model can be used as a reliable digital twin to estimate the underlying fed-batch process dynamics for 

future model predictive control and process optimisation. 
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1. INTRODUCTION 

1.1 Motivation 

Bioprocesses link masses of global research interests, 

including the production of renewable fuels, plastics, and 

many other high value bioproducts. From an economic 

standpoint, the UK bioeconomy alone is worth roughly £220 

billion (as of 2018), and is set to double by 2030, providing a 

lucrative research platform (Harrington, 2018). Such growth 

requires overcoming many challenges, including deficient 

metabolic and secretory phenotypes for protein production, 

low yields in reactor scale-up, by-product accumulation 

(leading to heightened separation costs and product loss), and 

finally significant batch-to-batch variation, generating quality-

control challenges. These are currently the main hurdles to 

conquer in the field of metabolic engineering and 

understanding both the metabolic pathways and macro-scale 

system, as well as how they are interlinked, is essential to 

overcoming such challenges. Reaching these goals will lead to 

the development of industrially desired microbial strains for 

large scale fermentation. 

With the fourth industrial revolution becoming ever prevalent, 

the transition to digitalisation is underway. The utilisation of 

digital twins has enormous potential for design of experiments, 

process control, and process optimisation. The concept of 

machine learning is continuously being employed in new ways 

to uncover safer, more economical, sustainable, and efficient 

chemical processing approaches. With the current growth of 

interest within the fields of both artificial intelligence and 

bioprocess engineering, there has never been a better time to 

combine and harness the advantages of each. Mammalian cell 

lines alone account for around 70% of therapeutic recombinant 

protein production (O’Flaherty et al., 2020), despite being 

inherently complex systems; utilising machine learning can 

play a key role in accurately simulating, controlling, and 

optimising these complex cell lines, where mechanistic models 

can struggle to find a balance between oversimplification and 

over parameterisation.  

1.2 Aims 

This study aims to unite the macro-scale and micro-scale 

aspects of a batch cell culture, while incorporating the 

advantages of an ANN to overcome dynamics that are 

challenging for physically derived bio-kinetic models to 

capture. The design of a stable model is key for plausible 

simulations of the macro-scale and micro-scale systems, upon 

which further insight can be made regarding relationships 

between control parameters and the system, process 

optimisation, and process control. Another challenge to 

overcome is the infinitely possible solution space in flux-based 

modelling – it is essential to add constraints and an objective 

function that greatly narrows the solution space into a region 

of plausible simulations. 
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This modelling methodology aspires to be simple in 

application, with minimal data requirement and computational 

expense, while maximising simulation accuracy, process 

insight, and extrapolation potential for process control and 

optimisation. This will make the modelling methodology 

described in this work best applicable to complex 

bioprocesses, such as mammalian cell lines, and new 

bioprocesses, where knowledge is limited but rapid scale-up is 

desired. With 20-30 new mammalian made products gaining 

FDA approval each year (O’Flaherty et al., 2020), there is 

certainly demand for modelling processes based on limited 

knowledge. 

1.3 Case study 

The study at hand looks at the growth of glucose-fed CHO 

cells across a period of 10 days, with measurements of twenty-

nine medium component concentrations (including biomass, 

glucose, glutamine, lactate, ammonia, Trastuzumab and other 

amino acids) taken every 24 hours, provided by a previous 

study (Torres et al., 2019). The modelling focuses on the first 

6 days, which are of particular interest since substrate 

depletion, and therefore cell death, occurs beyond this period. 

In this work, the term hybrid modelling refers to the 

combination of a mechanistic (or white-box) model, with a 

data-drive (or black-box) model to make a combined hybrid 

(or grey-box) model for the macro-scale simulation. 

2. METHODOLOGY 

2.1 Macro-scale kinetic modelling 

Due to the lack of observable substrate inhibition and cell 

death, a basic Monod-inspired model was applied to the 

dynamic extracellular medium. The extracellular medium 

concentrations of 6 key components were chosen to be 

simulated: biomass (𝑋), glucose (𝐺), glutamine (𝐺𝑙𝑛), 

Trastuzumab (𝑃), lactate (𝐿𝑎𝑐) and ammonia (𝐴𝑚𝑚). The 

remaining components are simulated with a data-driven 

model. The system of 6 Ordinary Differential Equations 

(ODEs) is described as in 

𝑑𝑋

𝑑𝑡
= 𝑋 𝜇max𝐺

 
𝐺

𝐾𝐺 + 𝐺
(1) 

𝑑𝐺

𝑑𝑡
= − 𝑋 𝑣max𝐺

 
𝐺

𝐾𝐺 + 𝐺
(2) 

𝑑𝐺𝑙𝑛

𝑑𝑡
= − 𝑋 𝑣max𝐺𝑙𝑛

 
𝐺𝑙𝑛

𝐾𝐺𝑙𝑛 + 𝐺𝑙𝑛
(3) 

𝑑𝑃

𝑑𝑡
= 𝑋 𝑌𝑃𝑋 (4) 

𝑑𝐿𝑎𝑐

𝑑𝑡
= 𝑋 𝑌𝐿𝑎𝑐𝐺

′  
𝐺

𝐾𝐺 + 𝐺
(5) 

𝑑𝐴𝑚𝑚

𝑑𝑡
= 𝑋 𝑌𝐴𝑚𝑚𝑋 (6) 

 

where 𝜇max𝐺
 refers to the maximum specific growth rate of 

biomass, with vmax being the maximum substrate uptake flux, 

𝐾𝑖   being the affinity constant for a given substrate 𝑖, and 𝑌𝑖𝑗  

being the yield coefficient between products 𝑖 and 𝑗. It should 

be noted that an alteration is made to the production rate of 

lactate due to the strong link between glucose and lactate via 

the central carbon metabolism pathway within the metabolic 

network. It is of utmost importance that all parameters remain 

positive in value to retain physical interpretability, as in 

𝛃 ≥ 𝟎 (7) 

where 𝛃 is the vector of parameters. For essential amino acids, 

model structures were trialled based on concepts of constant 

requirement for growth, constant cell consumption rate, and 

treating amino acids like a secondary substrate (similar to the 

glutamine model in Equation 3). Parameters were found using 

a stochastic optimisation algorithm, Particle Swarm 

Optimisation (PSO), that minimised a mean squared error 

objective function, 𝑍, as in 

min 𝑍         st.

𝑍 =
1

𝑛
∑ ((

𝑋𝑡 − 𝑋𝑚𝑒𝑎𝑠𝑡

𝜎𝑋 
)

2

+ ∑ (
𝐶𝑖𝑡

− 𝐶𝑖𝑚𝑒𝑎𝑠𝑡

𝜎𝑖  
)

2

𝑖

)

𝑡,𝑚𝑒𝑎𝑠

(8) 

where 𝑛 is he number of datapoints. The objective function 

minimises the difference between the simulated extracellular 

concentration profiles and the measured averages at each 

timepoint; each term is weighted by the experimental standard 

deviation of component 𝑖; 𝜎𝑖. 

2.2 Hybrid modelling 

Challenging growth dynamics in the initial 3 days lead to the 

requirement of time-varying parameters. However, parameters 

allowed to vary over time are not defined as functions of time, 

but as functions of state variables, such as substrate and 

biomass concentrations, uptake rates, and concentrations of 

inhibitors such as ammonia. Such functions are defined by an 

Artificial Neural Network (ANN), and it is the combination of 

the ANN with the physical model described in Equations 1-6 

that forms the hybrid macro-scale model. 

The first parameter allowed to vary is the maximum permitted 

glucose flux; 𝑣max𝐺
. This parameter was deemed dynamic due 

to the excessive initial glucose consumption rates alongside 

low cell counts. Physically, it can be inferred that initial uptake 

fluxes may be high due to the initial challenge that the cell 

faces of adapting to the medium, hence not all substrate 

consumption drives cell growth. In addition, the presence of 

less cells means the cell culture can distribute the glucose 

amongst the cells more readily. It should be noted that 

deviations in 𝑣max𝐺
were penalised to avoid overfitting of the 

experimental data.  

The second time varying parameter was the lactate yield 

coefficient; 𝑌𝐿𝑎𝑐𝐺
′ . A similar observation was made with 

extremely high initial lactate production fluxes; often referred 

to as the Warburg effect (O’Brien et al., 2020). The two 

aforementioned parameters, 𝑣max𝐺
and 𝑌𝐿𝑎𝑐𝐺

′ , are the two 

outputs of the ANN, which can then be used to simulate the 
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model. This is shown in ANN representation for the simulation 

of time-varying parameters based on system components and 

dynamics (Fig. 1).  

For the remaining extracellular components, the aim is to shift 

towards the use of another ANN to predict requirements of 

essential amino acids where a basic kinetic model does not 

hold true. Amino acid consumption rates will be the ANN 

outputs, with inputs being factors such as inhibitors, cell count 

and cell growth rate. 

In order to determine an appropriate ANN structure, the 

performance of several ANN structures should be compared. 

This is done by accounting for the simulated error, as well as 

the total number of parameters, 𝑘. An Akaike Information 

Criterion with correction for small sample sizes (𝐴𝐼𝐶𝑐) is 

employed to quantify the performance of each ANN structure, 

as in 

𝐴𝐼𝐶𝑐 = 𝑛 ln 𝑍 + 2 𝑘 +
2 𝑘2 + 2 𝑘

𝑛 − 𝑘 − 1
(9) 

where correction for a small sample size 𝑛 was chosen due to 

the shortage of data, which is likely to be a recurring theme in 

novel bioprocesses – a target of this modelling methodology. 

The network with the lowest AICc score was chosen as the 

best compromise between accuracy and minimal overfitting. 

2.3 ecDMFA 

A metabolic network developed in a recent CHO cell study 

regarding the reduction of a genome-scale model (Jiménez del 

Val et al., 2023) was obtained. Reduced metabolic networks 

have the benefit of greatly reduced computational expense for 

dynamic systems, while still being able to capture key 

intracellular behaviour. The reduced metabolic network was 

employed to develop a constraint seen in traditional Metabolic 

Flux Analysis (MFA). Dynamic Metabolic Flux Analysis 

(DMFA) is effectively a series of consecutive MFA problems 

solved simultaneously with different extracellular inputs and 

outputs. The reduced network contains 144 reactions linked by 

101 metabolites and forms the mass balance defined by a 

stoichiometric matrix (𝐒) and the vector of fluxes (𝐯𝑡), as in 

𝐒 𝐯𝑡 = 𝟎 (10) 

where the time subscript (t) refers to the constraint being valid 

at every time-step the constraint is applied to, despite changes 

in the values of intracellular flux. The biomass specific growth 

rate is utilised within this constraint to account for intracellular 

metabolite dilution, however the product of specific growth 

rate and intracellular metabolite concentrations (rate of 

dilution) is extremely low (in comparison to simulated fluxes), 

making it non-essential to include if no estimation of 

intracellular metabolite concentration can be made. 

The network is further constrained by mass balances in 

accordance with the macro-scale hybrid kinetic model, where 

the vector of measured transport (𝑡𝑟𝑎𝑛𝑠) fluxes (a subset of 

𝐯𝑡) is defined by changes in the vector of measured 

extracellular component concentrations (𝐂), as in 

𝐯𝑡𝑟𝑎𝑛𝑠𝑡
= −

1

𝑋

𝑑𝐂

𝑑𝑡 𝑡

(11) 

where biomass concentration (𝑋) accounts for the change from 

macro-scale to micro-scale dynamics. The biomass specific 

growth rate (𝜇) is effectively a transport flux for the biomass 

component and is accounted for in the stoichiometric matrix in 

Equation 10. 

As aforementioned, flux-based modelling approaches have 

large numbers of degrees of freedom; there can be infinite 

solutions. To help narrow down the solution space to a more 

realistic region, further constraints can be employed. In this 

study, enzyme-constraints are utilised to direct flux through 

biologically favourable pathways. Each reaction 𝑗 has an 

associated flux and enzyme, with a corresponding molar mass 

(𝑀𝑟𝑗
) and turnover rate (𝑘𝑐𝑎𝑡𝑗

). These parameters can be used 

alongside a reaction flux to estimate the mass of each enzyme 

required for the simulate flux and the total enzyme mass is 

constrained to a known maximum (𝑀𝐸), as in 

∑
𝑀𝑟𝑗

𝑣𝑗𝑡

𝑘𝑐𝑎𝑡𝑗𝑗

≤ 𝑀𝐸 (12) 

where parameters for Equation 12 were found from an existing 

enzyme-constrained modelling study on CHO cells (Yeo et al., 

2020). It is paramount to account for the fact that a reduced 

metabolic network is being used so less reactions are 

accounted for. Therefore, ME must be adjusted accordingly. 

The subscript time (t) once again indicates that the constraint 

in Equation 12 is applied to every MFA time-step. Note that 

the total allowed enzymatic mass per cell is time-invariant. For 

this constraint to retain credibility, all fluxes must be non-

negative; reversible reactions 𝑗 (with net flux 𝑣𝑟𝑒𝑣𝑗
) are split 

into separate non-negative forward and backward fluxes (𝑣𝐹𝑗
 

and 𝑣𝑅𝑗
, respectively), as in 

𝑣𝑟𝑒𝑣𝑗
= 𝑣𝐹𝑗

− 𝑣𝑅𝑗
(13) 

𝑣𝐹𝑗
, 𝑣𝑅𝑗

≥ 0 (14) 

Figure 1 - ANN representation for the simulation of time-

varying parameters based on system components and 

dynamics 
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Another way in which to simulate the most realistic flux 

profiles possible is to employ an objective function that 

imitates observable cell phenotypes. One example is efficient 

operation, where a cell aims to minimise the magnitude of all 

reaction rates within it to minimise wasted energy sources, 

such as ATP. Another is the cell stability – drastically 

inconsistent fluxes are unlikely to be correct so substantial 

changes in the same reactions flux should be penalised over 

each iteration time gap ∆𝑡. The flux reducing objective and 

flux inconsistency penalty are therefore combined into one 

quadratic (and therefore convex) objective function, as in 

min ∑ 𝐯𝑡

𝑇

𝑡=𝑡0

+ 𝜆 ∑ (𝐯𝑡 − 𝐯𝑡−Δ𝑡)𝑇(𝐯𝑡 − 𝐯𝑡−Δ𝑡)

𝑇

𝑡=𝑡0+Δ𝑡

(15) 

where 𝜆 is the penalty weight – a tuneable parameter that was 

determined through an iterative approach that ensures minimal 

impact on the main objective term. 

2.3 Methodology summary 

The overall modelling methodology is conducted in order to 

maximise simulation accuracy and plausibility, while 

minimising data requirement and computational expense. The 

overall methodology is broken down as follows in Summary of 

multi-scale hybrid modelling approach (Fig. 2). 

3. RESULTS AND DISCUSSION 

3.1 Macro-scale hybrid modelling 

The purely mechanistic macro-scale kinetic model was first fit 

with Equations 1-6 with no time-varying parameters. Sample 

plots of substrate (glucose) and biomass concentration 

profiles for original Macro-Kinetic Model (MKM) (Fig. 3) 

shows a sample of the simulation with substrate (glucose) and 

biomass concentration profiles. As shown, significant 

improvements can be made to the 26.8% mean error present, 

and so the next step is to allow 𝑣max𝐺
 to behave as a dynamic 

parameter to account for excessive initial glucose uptake rates. 

The introduction of a time-varying parameter, 𝑣max𝐺
, to the 

glucose consumption rate drastically improved the 

experimental data fits of both glucose and biomass without 

overfitting, as seen in Sample plots of substrate (glucose) and 

biomass concentration profiles for original Macro-Kinetic 

Model (MKM) (Fig. 3), and Sample plots of substrate (glucose) 

and biomass concentration profiles for Macro-Kinetic Model 

(MKM) with time varying 𝑣max𝐺
, which has a profile shown 

(bottom left) (Fig. 4). The mean error of the model was reduced 

to 6.9% from 26.8% through the introduction of only two time-

varying parameters (𝑣max𝐺
 and 𝑌𝐿𝑎𝑐𝐺

′ ). 

The parameter shows a decreasing trend that stabilise in the 

latter stages of the batch process. This aligns with the idea of 

the cell culture beginning to stabilise, further supporting the 

theory that glucose is not initially directly driving cell growth 

Figure 2 - Sample plots of substrate (glucose) and biomass 

concentration profiles for original Macro-Kinetic Model (MKM) 

Figure 3 - Sample plots of substrate (glucose) and biomass 

concentration profiles for Macro-Kinetic Model (MKM) with 

time varying 𝑣max𝐺
 , which has a profile shown (bottom left) 

𝑑𝑋

𝑑𝑡
= 𝑋 𝜇max𝐺

 
𝐺

𝐾𝐺 + 𝐺
 

𝑑𝐺

𝑑𝑡
= − 𝑋 𝑣max𝐺

 
𝐺

𝐾𝐺 + 𝐺
 

Figure 4 - Summary of multi-scale hybrid modelling approach 

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

137



like it is in the latter stages of the batch process, meaning it is 

either being wasted or utilised in an alternative manner that the 

intracellular model could uncover. 

Time-varying parameters were not allowed to vary beyond a 

time of 3 days since the culture should be in a more stable 

growth phase. This further supported our preliminary studies 

which showed excellent fits with constant parameter values 

when simulating days 3 to 6. 

Parameter convergence occurred within 500 iterations using a 

stochastic Particle Swarm Optimisation (PSO) algorithm, 

which was chosen for its capability of handling highly non-

convex optimisation programming problems due to having the 

ability to escape local minima, unlike gradient-descent 

approaches. The problem was run 5 times, each with 1000 

particles, to confirm the same optima was being found, 

increasing the confidence in it being a global optimal solution.  

3.2 ecDMFA 

The ecDMFA was successfully applied to the macro-scale 

hybrid model concentration profiles with samples being taken 

4 times per day (𝛥𝑡 = 0.25 d). Such sampling was chosen as a 

trade-off between computational expense (which increases 

with more frequent sampling) and avoiding overly linearised 

flux profiles (which becomes a source of significant error with 

less frequent sampling). 

Enzyme constraints were not violated, helping guide flux 

down plausible reaction pathways. Example fits to Equation 

11, from components described in Equations 1-3 (glucose, 

biomass, and glutamine), are shown below in Transport fluxes 

for glucose consumption, biomass specific growth and 

glutamine consumption as defined by the Macro-Kinetic 

Model (MKM) and applied to the ecDMFA samples (Fig. 5). 

Convergence occurred using an Interior Point Optimisation 

(IPOPT) algorithm. Gradient-based optimisation was chosen 

since Equations 11-15 describe a convex optimisation 

problem, allowing the global optimum to be found upon 

convergence with or without the enzyme-constraints.  

The flux results for the metabolic network can be assessed to 

further validate ecDMFA simulation results throughout the 

experimental timeframe, which in turn helps validate the 

feasibility of the macro-scale simulation while giving insight 

into the dynamic intracellular reaction network. An example 

of a flux distribution sample is given in Sample flux 

distribution through the central carbon metabolism from day 

3 of the simulation, with the shaded region representing the 

mitochondria (Fig. 6). In the stable cell growth phase, the flux 

distribution stemming from glucose uptake is shown to be 

channelled into turning the TCA cycle, with less carbon being 

wasted in the form of lactate production. This observation 

aligns with current cellular understanding that lactate inhibits 

its own production, so central carbon flux will be directed 

away from its production beyond the initial high-production 

phase. 

Individual fluxes can also be analysed and compared to further 

validate the ecDMFA results. An example of this is shown, 

again from the central carbon metabolism, in Flux profiles for 

reactions 1 and 2 - the conversion of glucose into Fructose 6-

Phosphate (F6P) (Fig. 7). 

The enzyme-constraint was met but was not limiting, as shown 

in Simulated cellular enzyme mass requirement, with the "Max 

Quantity" referring to the parameter 𝑀𝐸 (Fig. 8). This is 

intuitive since not all enzymes are activated at once, meaning 

there should be a noticeable buffer for enzyme activation. 

Fluxes, and therefore enzyme requirements, decrease over 

time due to reduced extracellular substrate (glucose and 

glutamine) concentrations in combination with an increased 

cell concentration. This decreases the specific uptake rates per 

cell, leading to lower fluxes throughout the metabolic network. 

Individual enzyme requirements can also be scrutinised, with 

noticeable contributions coming from the central carbon 
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Figure 5 - Sample flux distribution through the central carbon 

metabolism from day 3 of the simulation, with the shaded region 

representing the mitochondria. 

Figure 6 - Transport fluxes for glucose consumption, biomass 

specific growth and glutamine consumption as defined by the 

Macro-Kinetic Model (MKM) and applied to the ecDMFA 

samples 

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

138



metabolism where a large proportion of flux is directed. Not 

all large fluxes require significant quantities of active enzymes 

however, since some enzymes have particularly high turnover 

rates (𝑘𝑐𝑎𝑡𝑗
), such as the conversion from Glucose 6-Phosphate 

(G6P) to Fructose 6-Phosphate (F6P). 

The ecDMFA methodology has proven to be capable of 

capturing a dynamic system, while giving physically plausible 

estimates for unmeasured extracellular metabolite demands 

and production rates. This can potentially be used to indicate 

when essential amino acids have been depleted for longer fed-

batch processes. 

4. CONCLUSIONS 

In this study a multi-scale hybrid model has been successfully 

constructed and scrutinised to gain insight into a complex 

CHO cell batch process for the production of Trastuzumab. 

The novelty of the work lies in the combination of a macro-

scale hybrid kinetic model with a micro-scale ecDMFA 

modelling methodology. The introduction of time-varying 

parameters allowed complex macro-scale dynamics to be 

captured while sticking as closely as possible to the original 

kinetic model structure, thus maximising the capacity for 

extrapolation needed for process optimisation and control. 

Using an ANN has allowed the macro-scale model to remain a 

function of observable components of the extracellular 

medium only, thus removing the need for profiles written as 

functions of time that have been seen in previous work 

(Pennington et al., 2023). Utilizing an underlying macro-

kinetic model also greatly reduces the amount of data required 

to accurately simulate the extracellular experimental data. 

The use of the ecDMFA methodology described encourages 

plausible flux simulations for identifying trends between 

extracellular and intracellular dynamics, while remaining a 

convex programming problem to minimise computational 

cost. A combined model allows the simulation and 

optimisation of batch and fed-batch processes while utilising a 

micro-scale model to uncover cell functionality under feasible 

operation. A key benefit of this work is the ability to bypass a 

trial-and-error approach to several model structures for a 

poorly understood system, while still incorporating some 

fundamental knowledge to improve the ability to extrapolate. 

Future work looks to incorporate more detailed genomic data 

for constraints and validation. 

Therefore, successes of this model paves the way to 

developing an effective digital twin for the modelling and 

prediction of the underlying process, and can help identify an 

optimal control strategy for maximising Trastuzumab 

production for future fed-batch operations. The ability of this 

model to incorporate machine learning with minimal data 

gives it huge potential for control and optimisation 

applications to novel bioprocesses, where both mechanistic 

understanding and experimental data is limited. 
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