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Abstract: This study investigates an application of stabilizing extremum seeking (STAB-ESC) to model-
free bioprocess productivity optimization. To this end, microbial growth in a chemostat is considered as
a typical example. In contrast with the classical ESC formulation, STAB-ESC confines the measurable
cost function in the argument of a periodic and bounded control function, which confers very interesting
features to the control scheme in terms of sparse parameter tuning, fast convergence and robustness to
measurement noise. These points are highlighted in the present study through an analysis of the Lie-
bracket average dynamics and a performance comparison with a Newton-based recursive ES.
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1. INTRODUCTION

Extremum seeking control (ESC) is a direct output feedback
adaptation scheme that allows finding the optimum of a steady-
state cost function. The seminal ESC version of Ariyur and
Krstic (2003), inspired by the work of Leblanc (1922), is
model-free and only requires a measurable cost function whose
gradient estimate will be forced towards zero, as shown in
Figure 1.

In the past 20 years, ESC has received ever-increasing attention,
and many applications (mostly simulations) have been reported.
Tan et al. (2010) presented a very thorough review of the
literature related to model-free ESC, while more recently, we
(Dewasme and Vande Wouwer, 2020) provided a closer look
at ESC applications to bioprocesses. Indeed, bioprocesses are
characterized by the difficulty of establishing reliable models in
a context where uncertainties are prevalent. ESC can alleviate
this difficulty by a direct optimization of a measurable objective
function, without resorting to a process model.
However, the main drawback of ESC is the time-scale separa-
tion induced by the gradient estimator dynamics which must
be slower than the process. While this issue worsens in the
case of multiple inputs, it is also obviously affected by slow
(bio)process dynamics (Dewasme et al., 2017). Several ways
for accelerating the gradient estimation have been proposed in
recent years, for instance using a Wiener-Hammerstein repre-
sentation (Moase and Manzie, 2012), or using recursive esti-
mators (Guay, 2015). Both solutions have been combined by
Feudjio Letchindjio et al. (2019) to optimize the productivity
of microalgae cultures, validated by a successful experimental
implementation (Feudjio Letchindjio et al., 2021). Guay and
Dochain (2017) also proposed to add a proportional action
to the classical integrator, leading to a so-called proportional-
integral extremum seeking control (PIESC) to accelerate the
response transient. Newton-based methods have also been in-
vestigated to take advantage of the Hessian estimate in the op-
timization (Moase et al., 2010; Ghaffari et al., 2012; Dewasme
and Vande Wouwer, 2022).
Other recent studies focus on fixed-time convergence (Poveda

and Krstic, 2021; Guay, 2020, 2021), and the possibility of
connecting extremum seeking control with Lyapunov functions
(Sontag, 1989), using averaging to develop a new framework of
model-free stabilizing ESC denoted STAB-ESC (Scheinker and
Krstić, 2017; Labar et al., 2019, 2022). STAB-ESC operates as
a high-gain controller in contrast to the classical ESC of Figure
1 and offers interesting guaranteed bounds on the input update
rate by confining the measured cost function in the argument of
a sin/cos dither signal. In addition to remarkable robust proper-
ties, STAB-ESC has a natural noise-rejecting convergence.
The main motivation of this work is to investigate the use of
STAB-ESC in the context of bioprocess applications, and its
robustness to measurement noise.
This paper is organized as follows: section 2 briefly presents a
generic bioprocess model. Section 3 reviews the STAB-ESC
main properties and design guidelines while section 4 illus-
trate the behavior of the method as compared to the recur-
sive Newton-based method presented in (Dewasme and Vande
Wouwer, 2022). Conclusions are drawn in section 5.

Fig. 1. Classical extremum seeking scheme (Ariyur and Krstic,
2003).

2. BIOPROCESS DESCRIPTION

As a worked example, we consider a generic microbial growth
model which describes the typical dynamic behavior of a con-
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tinuous cell culture, growing on a specific substrate with acti-
vation/saturation kinetics represented by a Monod law.

2.1 Microbial growth model

The reaction scheme reads:
ksS → X (1)

where X and S are respectively standing for the biomass and
substrate, while ks is the substrate yield coefficient. A contin-
uous operation of the culture is considered, maintaining the
bioreactor volume V constant by equal inlet and outlet feed
rates F . The corresponding dilution rate is assumed to be the
sole manipulated input u = F

V . Applying mass balance to (1)
yields the following ordinary differential equation system rep-
resenting the species concentration dynamics:

ẋ = µx−ux (2a)
ṡ =−ksµx−u(s− sin) (2b)

where x and s are, respectively, the concentrations of biomass
and substrate, and sin is the inlet substrate concentration. The
specific reaction rate is modeled by the following Monod law:

µ =
µmaxs
Ks + s

(3)

where µmax is the maximum rate parameter, Ks is the half-
saturation constant, and the corresponding reaction rate is ϕ =
µX .

The productivity J = u x is the performance index, where x is
assumed to be measurable and, in turn, also J. This measurable
index is the output of the system, also written:

y = ux (4)
A bifurcation analysis, developed in Wang et al. (1999), shows
that the non-wash-out steady-state is defined and remains stable
as long as the steady-state input uss <

sin µmax
sin−Ks

.

3. BOUNDED EXTREMUM SEEKING FOR UNKNOWN
MAP

3.1 Modified extremum seeking

Fig. 2. Bounded stabilizing extremum seeking.

We consider a generic form of (2), which is an input-affine
nonlinear system expressed as follows:

ẋ = f (x)+g(x)u (5)
where x ∈ R+,n is the state vector, f ,g : R+,n → Rn are general
nonlinear functions and u ∈ R+ is the single input. We restrict

this study to a single-input-single-output (SISO) case where the
output (4) is also expressed in a generic form, i.e. y ∈ R+, with

y = h(x,u) (6)
where h : R+,n+1 → R+, is the nonlinear output function.

Stabilizing extremum seeking of unknown map considers the
inclusion of a cost function J, assumed to be a cost Lyapunov
function (CLF), in the argument of a bounded periodic dither
input signal of the form:

u̇ =
√

α ω cos(ω t − k J) (7)
where ω is the pulsation of the periodic signal (7), α and k
are parameters which, a priori, are respectively used to tune the
magnitude and the argument of (7). In the following, the CLF
J is assumed to be the measurable output y of the system, i.e.
J = h(x,u), and there exists an optimal input value u∗ such that:

∇J(π(u∗),u∗) = 0 and ∇J ̸= 0 ∀u ̸= u∗ (8)
where π(u) : R+ → R+,n is the equilibrium map of the state
variables. The resulting closed-loop system is shown in Figure
2.

It should be noticed that the form of (7) allows bounding the
input variations depending only on the argument of the cos
function.

3.2 Weak limit for averaging

To study the dynamics of the stabilizing ESC, the average
closed-loop trajectory is commonly computed to approximate
the solution of the actual periodically disturbed system (Khalil,
2002). This approximation is represented by the average of (7)
when considering a small parameter ε. This equation can be
rewritten after rescaling time in τ = ωt and setting ε = 1

ω
as in

(Dürr et al., 2013):
du
dτ

=

√
αω

ω
cos(τ−kJ) = ε(

√
α√
ε

cos(τ−kJ)) = ε f (τ,u,ε) (9)

Applying averaging to system (9) is therefore impossible due
to the presence of the factor 1√

ε
in f (averaging requires that

f (τ,u,0) exists).

Therefore, a Lie bracket averaging analysis is used instead,
based on the definition of a weak limit. For the sake of clarity,
we review the main results of Scheinker and Krstić (2017) and,
more particularly, theorem 2.3 applied to (7), which we first
expand as follows, renaming each factor as h1, b1, h2 and b2:

u̇ =
√

α ω cos(ω t)︸ ︷︷ ︸
h1

cos(k J)︸ ︷︷ ︸
b1

+
√

α ω sin(ω t)︸ ︷︷ ︸
h2

sin(k J)︸ ︷︷ ︸
b2

(10)

The averaging step consists of finding a way to compute (10)
when ω tends to infinity, using the concept of weak limits.
Studying the weak limit of h1 and h2 requires the use of the
Riemann-Lebesgue Lemma which states that, for a function
f (x) defined on a compact set C of the Lebesgue-integrable
space (i.e., L1(C)),

lim
ω→∞

∫
C

f (x)e−iωxdx = 0 (11)

and a sequence of functions fk ⊂ L2[0,1] is said to weakly
converge to f , denoted fk ⇀ f , if

lim
k→∞

∫ 1

0
fk(τ)g(τ)dτ =

∫ 1

0
f (τ)g(τ)dτ,∀g ∈ L2[0,1] (12)

It is easily proven that h1 and h2 have uniform and weak limits,
respectively written:
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lim
ω→∞

∫ t

t0
hi dτ = 0 ∀i (13a)

hi

∫ t

t0
h j dτ ⇀ λi, j (13b)

where ⇀ means ”weak limit” (Scheinker and Krstić, 2017), and√
(αω)cos(ωt)

∫ t

t0

√
(αω)cos(ωτ) dτ ⇀ λ1,1 = 0 (14a)√

(αω)cos(ωt)
∫ t

t0

√
(αω)sin(ωτ) dτ ⇀ λ1,2 =−α

2
(14b)√

(αω)sin(ωt)
∫ t

t0

√
(αω)cos(ωτ) dτ ⇀ λ2,1 =

α

2
(14c)√

(αω)sin(ωt)
∫ t

t0

√
(αω)sin(ωτ) dτ ⇀ λ2,2 = 0 (14d)

We now consider the integral by parts of the products bi by hi
and obtain:

lim
ω→∞

∫ t

t0
bi(u,τ)hi(τ)dτ

= lim
ω→∞

[
bi(u,τ)|tt0

∫ t

t0
hi(τ)dτ−

∫ t

t0

dbi(u,τ)
dτ

∫ t

t0
hi(r)dr dτ

]
(15)

The first term vanishes following (13a) and the second term
can be expanded as:

lim
ω→∞

∫ t

t0

∂bi(u,τ)
∂τ

∫ t

t0
hi(r)dr dτ

+ lim
ω→∞

2

∑
j=1

∫ t

t0

∂bi(u,τ)
∂u

b j(u,τ)h j(τ)
∫ t

t0
hi(r)dr dτ

(16a)

=∑
i̸= j

∫ t

t0

∂bi(u,τ)
∂u

b j(u,τ)λi, j(t)dτ (16b)

The first term in (16a) vanishes due to (13a) and the second
term yields (16b) in view of (14). Considering the dynamics
of expression (16b), i.e., without the integral from t0 to t, the
average system or Lie-bracket system of (10) can be written:

˙̄u =
∂b1

∂u
b2λ1,2 +

∂b2

∂u
b1λ2,1 (17)

where ū stands for the average input trajectory. Combining (14)
and (17) leads to:

˙̄u =
k α

2
∇J (18)

The proposed extremum seeking loop (10) uniformly converges
to the trajectory (18) such that the optimum u∗ is 1

ω
-SPUAS

(semiglobally practically uniformly asymptotically stable; see
(Moreau and Aeyels, 2000; Scheinker and Krstić, 2017) for
further details). This uniform asymptotic stability is valid for a
sufficiently large value of ω, i.e. there exists a lower bound ωL
such that the results hold for any ω > ωL. It also appears that α

and k can be used to tune the convergence rate. k can therefore
be considered as a gain while α allows tuning both the periodic
signal magnitude and the convergence rate. ω, k and α should
be taken sufficiently large, resulting in a high-gain extremum
seeking loop, conversely to the classical ESC.

4. NUMERICAL RESULTS

The simulation study first compares the performances of STAB-
ESC and the Newton-based block-oriented model strategy de-
scribed in (Dewasme and Vande Wouwer, 2022), which is
briefly sketched in Figure 3.

Fig. 3. Newton-based block-oriented model extremum seeking
scheme. The process (dotted box) is assumed to be repre-
sented by a Hammerstein model.

The Newton-based extremum seeking (NS) strategy assumes
that the process can be described by a Hammerstein model, i.e.,
a static nonlinear relation between the state x(t) and the input
u(t), followed by a first-order linear dynamic relation between
x(t) and the output y(t). A recursive least square algorithm
estimates the parameters of both the static and dynamic blocks,
i.e., M1, M2, M3 and τ1, and delivers an estimate of the gradient

Ĝ= ∂̂y
∂u multiplied by the estimate of the inverse Hessian Γ. This

is achieved under the assumption of a persistent excitation from
the dither signal S(t) of the form:

S(t) = A1sin(ω1t)+A2sin(ω2t) (19)
where A1,2 and ω1,2 are respectively the magnitudes and pulsa-
tions of the dither signal. The presence of two sinusoidal terms
ensures the identifiability of the 4 unknown parameters. The
closed-loop dynamic equations derived from Figure 3 read:

˙̂u =−KΓĜ (20a)
u = û+S(t) (20b)
˙̃
θ =−R−1

ϕϕ
T

θ̃ (20c)

Ṙ = ϕϕ
T −λR (20d)

where R is the information matrix (the inverse covariance
matrix), ϕ is the regressor, λ is the forgetting factor, θ stands for
the unknown parameter vector and θ̃ = θ̂− θ is the parameter
estimation error (θ̂ being the parameter estimate). More details
on this strategy can be found in (Dewasme and Vande Wouwer,
2022).

4.1 Nominal performance analysis

In the following, we consider the parameter values of model
(2) given in Table 1 and the parameters of the ESC schemes in
Table 2.
The selection of the NS parameter values aims at providing a
fair performance comparison and, therefore, the fastest achiev-
able convergence for the chosen initial conditions x(0) = 1 g/L,
s(0) = 9 g/L and u(0) = 0.2 h−1. While the NS strategy fol-
lows classical extremum seeking tuning rules such as a small
integrator gain and slow dither frequencies (scaled lower than
the process dynamics), the STAB-ESC is tuned as a high-gain
controller, i.e. with high gain k and dither frequency ω.
A parameter design sequence is required to tune the STAB-
ESC convergence rate and, in turn, the closed-loop dynamics.
The pulsation ω is first chosen with a few limitations in mind.
Indeed, an ordinary differential equation (ODE) solver is used
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to numerically solve the dynamic model equations (2) and
the control law (7). Depending on the choice of the solver, a
variable or fixed integration step could be defined. Considering
Ts as the maximum time step (which can be set by the user,
imposing successive solver calls over a Ts time span), ω should
therefore be chosen sufficiently high with respect to an a priori
unknown lower bound ωL, but also so as to satisfy the Shannon
theorem related to Ts, i.e., ω < 1

2 ωs where ωs =
2 π

Ts
≈ 60 h−1).

A reasonable choice is therefore made with ω = 24 h−1. It
should be noticed that during practical studies on a true plant,
Ts can also be considered as the sampling time.
The gain k and magnitude α are then designed in the wake
of ω, such that their respective orders of magnitude are not
chosen too big with respect to ω. This rule results from dynamic
changes induced by k and α when the ODE solver presents
varying time steps to compute the solutions of (2) and (7),
which become less accurate as k and α increase. k is therefore
set to 10 and α = 0.01

ω
to provide small oscillation magnitude in

(7), i.e.
√

α ω =
√

0.01. It should be noticed that α also influ-
ences the convergence rate and a trade-off with the oscillation
magnitude must therefore be achieved. Regarding the NS ESC,
the two components of the dither signal are designed at low
frequencies with small magnitudes, while the forgetting factor
is set to 0.8 to significantly take into account past errors. This
design is chosen in accordance with classical ESC guidelines
(Dewasme et al. (2011); Dewasme and Vande Wouwer (2022)).
The gain K is however fairly set by trial and error, to obtain the
best results.
A first practical advantage of STAB-ESC is the smaller number
of parameters to tune (NS ESC has twice more parameters, i.e.,
6 versus 3 for STAB-ESC), see Table 2).
The simulation results shown in Figures 4 and 5 highlight the
good performance of STAB-ESC to control the bioprocess un-
der consideration but also the faster convergence than NS ESC
(note also the higher-frequency oscillations).

Table 1. Parameter values of model (2).

Parameter Value Unit
ks 0.5 gs/gx

µmax 1.4 h−1

Ks 12 g/L
sin 50 g/L

Table 2. Tuning of the ESC strategies.

NS STAB-ESC
Parameter Value Unit Parameter Value Unit

K 0.007 - k 10 L h g−1

λ 0.8 - - - -
ω1

2 π

50 h−1 ω 24 [h−1]

ω2
2 π

25 h−1 - - -
A1 0.02 h−1 α

0.01
ω

h−3

A2 0.01 h−1 - - -

4.2 Robustness with respect to noise

An important feature of process control is the capability of han-
dling disturbances. Measurement noise may be a limitation for
most of the adaptive control techniques, including extremum
seeking. Practically, measurement noise can be attenuated by
low-pass filters which however also tend to slow down the
closed-loop dynamics.
Interestingly, STAB-ESC shows an immune-to-noise conver-
gence property. Indeed, considering the functions b1 and b2
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Fig. 4. Comparison of the performance of STAB-ESC (contin-
uous black line) with the NS ESC (dashed black line):
states, input u and output y evolutions. The blue dashed
line shows the steady-state map optimum.

in (10) where J is now assumed to be corrupted by noise, i.e.
J = y+ ε where ε is a white noise, b1 can be expressed as:

b1 = cos(k J) cos(ε)− sin(k J) sin(ε) (21)
The Lie derivative in (17) can therefore be developed as:

∂b1

∂u
b2 =−∂J

∂u
sin2(kJ+ ε) (22)

The same reasoning holds for b2:
∂b2

∂u
b1 =−∂J

∂u
cos2(kJ+ ε) (23)

such that (18) remains unchanged.

Despite the invariance in the average convergence behavior,
STAB-ESC remains sensitive during the update stage when
solving equation (7) and, to avoid entering a region too close
to the wash-out equilibrium (x = 0 and s = sin), a reduction of
the parameter values should be considered. In the following, ω

is reduced to 5, k to 4 and α to 0.0005
ω

. For the same reasons, the
NS ESC parameters are also revised to K = 0.001, and λ = 0.2
while the same dither signal is used.

A Monte Carlo study is achieved, considering 50 runs for each
ESC scheme with the same initial conditions as in section

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

718



0 0.2 0.4 0.6 0.8 1 1.2

u [h
-1

]

0

10

20

30

40

50

60

y
 [

g
L

-1
h

-1
]

NS

STAB-ESC

(u)

Fig. 5. Comparison of the performance of STAB-ESC (contin-
uous black line) with NS ESC (dashed black line): conver-
gence diagram. π(u) represents the equilibrium map of the
cost function y in dashed blue.

4.1 and white noise with zero mean and a relative standard
deviation of 1 % corrupting the measurement of the cost func-
tion. Based on the current biomass probe technology level, this
choice seems reasonable. However, the ESC parameters should
be decreased as the noise level increases.

In Figures 6 and 7, STAB ESC displays a smooth and thin
corridor of trajectories, testifying of the robust behavior with
respect to measurement noise, even if the convergence is slowed
down (the time axis of Figure 6 has been scaled). NS ESC
still works but shows uneven performance with a larger average
corridor of trajectories with some failures to converge to the
correct optimum. This behavior may be linked to the violation
of the general least square assumption that only the measure-
ments are affected by noise but not the regressor. However, in
the present formulation, the regressor uses the previous mea-
surements as explanatory variables; see (Dewasme and Vande
Wouwer, 2022). Figure 8 confirms the robust behavior of the
STAB-ESC when the noise standard deviation is increased to
5 %. In this case, the parameterization is revised as ω = 3,
k = 0.75 and α = 1.5 10−4

ω
.

5. CONCLUSION

This paper reports on the potential application of stabilizing
extremum seeking to model-free bioprocess control. To this
end, the productivity optimization of a generic continuous
culture is considered, first in a noise-free ideal scenario, then in
the more realistic situation where the measurable cost function
is corrupted by noise. STAB-ESC provides fast convergence
with great robustness to measurement noise, superseding other
classical ESC schemes, as illustrated by a comparison with
Newton seeking ESC.

Fig. 6. Comparison of the performance of STAB-ESC (con-
tinuous black line) with NS ESC (dashed black line) in
the presence of 1% measurement noise: states, input u
and output y evolutions. The blue dashed line shows the
steady-state map optimum.

STAB-ESC therefore appears as a solid strategy in practical
cases, with an easier and more intuitive design combined with
good robustness with respect to measurement noise as long as
the parameterization is revised accordingly. Future perspectives
concern its extension to fed-batch cases where the process
does not reach a steady-state and where a specific exponential
trajectory must be tracked (Dewasme et al. (2011)). Another
important perspective is the experimental application of STAB-
ESC to the microalgae plant described in Feudjio Letchindjio
et al. (2021).
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Vande Wouwer, A. (2019). An extremum seeking strategy
based on block-oriented models: Application to biomass
productivity maximization in microalgae cultures. Industrial
and Engineering Chemistry Research, 58(30), 13481–13494.
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