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Abstract: Fluidized bed spray agglomeration (FBSA) is an efficient particle formation process
for the production of granules extensively used in the food, agricultural and pharmaceutical
industry. Specifications on agglomerate properties such as the agglomerate size determine the
quality of the product and can be controlled by varying different process conditions. In this
contribution data-driven model predictive control (MPC) of the average agglomerate size is
presented. Dynamic mode decomposition (DMD) is used to identify a linear model of the
process dynamics from snapshot measurements of the particle size distribution. Using DMD
as system identification technique eliminates the complex process of identifying a mechanistic
process model and at the same time includes advantageous model order reduction for the MPC
application. The DMD model is obtained from simulated data and validated against a second,
independent, data set. Subsequently, the model is deployed in an MPC controller, which is tested
in a simulation study, showing promising performance in set point tracking and disturbance
rejection scenarios.

Keywords: Control of particulate processes, Data-driven control, Model-predictive control,
Linear system identification, Model order reduction

1. INTRODUCTION

Solid raw materials for industrial and other applications
often come in granular form. Since certain granule prop-
erties such as volume, shape and porosity determine the
economic value of the product, particle formation pro-
cesses that produce granules with predefined properties
are required. In fluidized bed spray agglomeration (FBSA),
agglomerates are formed from primary particles with the
help of a liquid binding agent containing a solid ma-
terial either solved or dispersed. To this end, a parti-
cle bed is fluidized and the binding agent is sprayed
on the particle surface. Initially, after collision, liquid
bridges connect the primary particles. Evaporation of

Fig. 1. Agglomeration process with surface wetting due
to binder addition, collision of wet particles and
formation of a new agglomerate due to binder drying.

the liquid to the fluidization air results in the forma-
tion of solid bridges and the final agglomerate (Fig. 1).

ṅfeed

ṅout

Fig. 2. Process scheme with
particle feed, agglomera-
tion in the process cham-
ber and particle with-
drawal.

In the continuous process
configuration, as presented
in Fig. 2, primary and
product particles are con-
tinuously fed and with-
drawn, respectively, re-
sulting in higher produc-
tion rates compared to
the batch process.

Agglomerate properties
depend on various pa-
rameters and conditions
of the formation process.
Specifically for continu-
ous FBSA, experimen-
tal investigations high-
lighted the influence of
process conditions such
as fluidization gas tem-
perature, binder spray
rate and binder solids
concentration on the par-
ticle size distribution and
other properties (Strenzke et al., 2020).
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In combination with model-based process control strate-
gies, these dependencies can be leveraged for the pro-
duction of high-value, tailor-made agglomerates. Since
the particle size, represented by agglomerate volume, is
the most important product property, this contribution
will focus on it. Control of particle size during the size-
enlargement process has been investigated for agglomera-
tion in pans or drums (Pottmann et al., 2000; Glaser et al.,
2009; Vesjolaja et al., 2020) and fluidized beds (Cotabarren
et al., 2015; Bück et al., 2016; Otto et al., 2022). Several of
these contributions apply linear model predictive control
(MPC) which is an established, optimization-based control
technique and has many advantages over classical control
strategies such as PID-control. This includes the possibil-
ity of controlling complex, multi-variable systems, explic-
itly considering constraints on inputs and states and incor-
porating economic considerations. However, compared to
PID control it requires a process model with predictive ac-
curacy at least over a certain time horizon. Due to the com-
putational complexity of underlying optimization in MPC
application, low-dimensional models are crucial. For FBSA
processes, however, the distributed and therefore infinite-
dimensional nature of the particle property distributions
generally results in high-dimensional model approxima-
tions. Furthermore, precise control-oriented models are
difficult to obtain from mechanistic modeling due to the
complexity of the involved subprocesses. Therefore, data
driven methods for process modeling represent a promising
alternative over first-principle modeling (Pitchaiah and
Armaou, 2010; Arbabi et al., 2018; Son et al., 2022).

Dynamic mode decomposition (DMD) (Tu et al., 2014)
is a technique that combines data driven modeling with
dimensionality reduction, yielding a linear time-invariant
(LTI) process model from data snapshots. In addition
to the dimensionality reduction, DMD has two main
advantages for the application in linear MPC. The overall
effort of obtaining a model that is readily applicable in an
MPC controller is small compared to modeling strategies
requiring mechanistic considerations. Furthermore, the
connection of the DMD algorithm to Koopman operator
theory offers a simple way to extend the method presented
here, and find improved process models by means of
nonlinear measurements (Williams et al., 2015).

In this work, a DMD model for a continuous FBSA process
is computed and validated, based on data from dynamic
simulations with measurement noise. Using the DMD
model, an MPC controller is designed for the process. The
MPC controller is validated in dynamic simulation with
respect to its set point tracking and disturbance rejection
performance.

2. PROCESS MODEL

In this contribution, agglomerates are characterized by
their volume v. This allows convenient modeling of the
process via population balance modeling, resulting in a
population balance equation (PBE) with v as internal
coordinate. In the following the equations are described
briefly. The model is an adapted version of the ones
presented in Otto et al. (2021, 2022). For more details
the reader is referred to these publications.

The dynamics of the number density distribution (NDD)
n(t, v) of agglomerates in the agglomeration chamber

∂n(t, v)

∂t
= ṅf(t, v) + ṅa(t, v)− ṅo(t, v) (1)

are obtained by balancing the the particle feed ṅf(t, v),
binary aggregation ṅa(t, v) and the particle withdrawal
ṅo(t, v). The agglomeration term

ṅagg(t, v) =
1

2

∫ v

0

β(t, u, v − u)n(t, u)n(t, v − u) du (2)

−
∫ ∞

0

β(t, v, u)n(t, v)n(t, u) du ,

describes the size-enlargement due to ’birth’ and ’death’ of
agglomerates after aggregation. The kinetics of these pro-
cesses are described by the agglomeration kernel β(t, u, v),
generally depending on various process conditions and ma-
terial parameters. In Otto et al. (2021) the three empirical
parameters a, b and β0 of the so-called Kapur kernel

β(t, u, v) = β0
(uv)a

(u+ v)b
. (3)

have been correlated with different process parameters
based on continuous FBSA experiments (Strenzke et al.,
2020). Selecting the gas inlet temperature Tg as manipu-
lated variable, agglomeration kinetics can be parametrized
as follows:

β0 = 10k1Tg+k2 (4)

a = 0 (5)

b = k3Tg + k4. (6)

The primary particle feed distribution ṅf(v) is assumed to
be normally distributed around an average particle volume
vfeed with constant particle flow rate

ṅf(v) = Nf exp

(
(v − vfeed)

2

σ2
feed

)
. (7)

In the Strenzke et al. (2020) experiments, the particle
outlet

ṅo(t, v) = KT (v)n(t, v) (8)

is realized by a countercurrent air flow, resulting in internal
classification with separation function T (v) and outlet rate
K which is assumed to be constant. Both, T (v) and K
have been determined empirically in Otto et al. (2021)
from particle size measurements of the particle outlet.

Since the NDD is generally not completely controllable,
it is reasonable to control an average value. Therefore, we
choose the so called Sauter mean diameter d32 as measured
output variable to control. It is an industrially relevant
particle size measure, which is proportional to the ratio of
total particle volume to surface, i.e.

d32 = 6
Vtot

Atot
. (9)

Under the assumption of spherical particles, d32 is com-
puted directly from the NDD n(v).

For the dynamic simulation and subsequent system iden-
tification and control, Eq. (1) is discretized at N = 300
points using a finite volume scheme (Singh et al., 2016),
resulting in a system of ODEs solved in MATLAB.
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3. METHODS

3.1 Dynamic mode decomposition

Dynamic mode decomposition (DMD) is a data-driven
system identification and model order reduction method
aiming at finding a linear model from snapshot data
(Tu et al., 2014). Originally developed for autonomous
systems, its extension, dynamic mode decomposition with
control (DMDc) can also be applied to systems with
input signals (Proctor et al., 2016). DMDc aims at finding
reduced order approximations of the matrices A and B
that fit the linear model

xk+1 = Axk +Buk (10)

to a sequence of state and input snapshots

X = [x1 x2 . . . xNt ] ∈ RNx×Nt (11)

X′ = [x2 x3 . . . xNt+1] ∈ RNx×Nt (12)

Υ = [u1 u2 . . . uNt ] ∈ RNu×Nt , (13)

which can be reformulated as

X′ = AX+BΥ. (14)

The DMDc algorithm is build upon the truncated singular
value decompositions of the augmented data matrix Ω and
of the data matrix of the output space X′, given by

Ω :=

[
X
Υ

]
≈ ŨΣ̃Ṽ∗ (15)

X′ ≈ ÛΣ̂V̂∗. (16)

The right-hand-sides of (15) and (16) are the optimal
rank p, respectively rank r, approximations of Ω and X′.
Choosing p and r is crucial, in order to capture all the
actual system dynamics without the effect of noise. Using
Eqs. (15) and (16), the least-square optimal matrices A
and B are approximated by the low-dimensional matrices

A ≈ Ã = Û∗X′V̂Σ̃−1Ũ∗
1Û ∈ Rr×r

B ≈ B̃ = Û∗X′V̂Σ̃−1Ũ∗
2 ∈ Rr×l.

resulting in the low-dimensional dynamical system

x̃k+1 = Ãx̃k + B̃uk. (17)

The transformation matrix from low to high-dimensional
state space is given by Û, i.e.

xk = Ûx̃k. (18)

In order to identify the linear dynamics, it can be beneficial
to enrich the measured data using delay coordinates (Tu
et al., 2014), i.e. stacking Nd time-delayed versions of X
in the augmented data matrix

Xaug =

 x1 x2 . . . xNt−Nd

x2 x3 . . . xNt−Nd+1

. . . . . . . . . . . .
xNd+1 xNd+2 . . . xNt

 ∈ RNdNx×Nt .

(19)
Repeating this procedure for the input matrix, the DMD
algorithm is then performed on Xaug, X

′
aug and Υaug.

Originally, DMD has been used as a computationally effi-
cient method to analyze flow patterns in fluid dynamics,
where the eigenvalues λ and eigenvectors φ of the system
matrix A are of interest. The eigenvectors are termed
dynamic modes and can be obtained with little compu-
tational effort from the singular values and vectors given

above. In the present contribution, we are only interested
in the matrix Ã, therefore the computation of the dynamic
modes is omitted.

Besides the general advantages of using data driven pro-
cess models, the advantages of using a DMDc model for
MPC in the agglomeration context are twofold. On the
one hand, the linearity of the process model simplifies
the application since it is advantageous for the solution of
the underlying optimization problem. On the other hand,
the low dimension of the reduced model enables real time
computation of the control action.

In order to improve the quality of the DMDmodel and pre-
pare it for application in the linear control context, some
data preprocessing is required. Dynamic mode decompo-
sition is known to provide biased results in the presence
of sensor noise, in fact, the eigenvalues of the identified
system matrix are shifted to be more stable (Dawson et al.,
2016). Although different extensions of DMD are available
to compensate for the effect of noise, none of these are
readily applicable to the dynamic mode decomposition
with control algorithm. Thus, in this contribution the
data snapshots with added white Gaussian noise will be
filtered before a DMD model is computed. Furthermore,
the state and input snapshots are shifted around steady
state values resembling the desired operating point. Fi-
nally, since control inputs and states differ in some order
of magnitudes both values are scaled appropriately for
improved numerical stability.

3.2 Linear model predictive control

Linear model predictive control aims at finding a sequence
of controller outputs {uk} minimizing a cost function J ,
that depends on system state predictions over certain
number of future time instants Np (Kouvaritakis and
Cannon, 2016). For set point tracking and disturbance
rejection, deviations of the system output from the desired
operating point yd are minimized. The predictions of
the states {xk} are computed using a linear process
model. Finally, the minimization problem is subject to
inequality constraints, i.e. the admissible interval of input
values [umin, umax], resulting in the following summarized
formulation:

min
{uk}

J =

Np∑
k=0

e⊺kQek + u⊺
kRuk

s. t. xk+1 = Ãxk + B̃uk,

yk = C̃xk,

ek = yk − yd,k,

umin < uk < umax.

(20)

Here Q and R are positive semi-definite weighting ma-
trices, used to weight the control error and energy respec-
tively. The time step is indexed by k and Np is the number
of prediction time steps computed. The optimization prob-
lem above is solved iteratively at every time instant and
only the first value of the optimal input sequence {uk} is
actually implemented at the plant. One of the advantages
of MPC is the flexibility of formulating the cost function
and therefore the possibility to incorporate various con-
trol goals. Additionally, constraints on states and inputs
can easily be incorporated. Closed-loop stability of finite-
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Fig. 3. Comparison between data (blue) and model predictions (red). Left: Training data and model predictions. Right:
Validation data and model predictions. From top to bottom: Sauter mean diameter d32 and total bed mass m,
Gas inlet temperature Tg.

horizon MPC without specific terminal cost, is generally
not given, however by a sufficiently large choice of the
prediction horizonNp, stability can usually be met (Mayne
et al., 2000).

4. RESULTS

4.1 Agglomeration modeling using DMD

In order to obtain a data set for the training of the DMD
model, the population balance equation presented above
is simulated over a time horizon of T = 6 h. For the se-
quence of inputs a piece wise constant signal is generated.
The amplitudes are chosen randomly within the plant-
specific restrictions. The time intervals between changes
of amplitude are also chosen randomly. The choice of a
suitable sampling interval ts depends on various factors. It
is limited by the specific particle size measurement device
but has be small enough to capture the relevant dynamics
of the process. Additionally, in an MPC application it is
crucial for the real-time capability since it is the maximum
time to solve the underlying optimization problem. With
respect to these restrictions, a sampling time of ts = 60s
has been chosen. In order to simulate a more realistic
scenario, white Gaussian noise is added to the input and
state variables. It should be noted that it is generally also
possible to generate the required data from experiments.

After applying the DMD algorithm to the data with
Nd = 4 time delays, i.e. to a 1200-dimensional state,
a 235-dimensional reduced order state transition matrix
Ã is obtained. The value of Nd has been determined

iteratively and provides the best compromise between
model accuracy and dimension. In order to validate the
DMD model, a second validation data set is generated.
Both data sets are compared with the respective model
predictions in Fig. 3. As comparison variables, the Sauter
mean diameter, i.e. the control variable and the total mass
of agglomerates in the bed m are chosen. With respect to
prediction accuracy over the course of 6 hours, the model
performs qualitatively well both on the training as well as
on the validation set, indicating general validity for input
sequences of this specific type. This is true for the Sauter
mean diameter as well as the total bed mass. The 4 hour
horizon over which the DMD model achieves low-error
predictions suggest that the model is suitable for a MPC
application. It should be noted, however, that the input
sequences generated by the model predictive controller will
generally differ from the type used here. Thus, it is crucial
to do closed-loop validation of the model as aprt of the
overall control system. The DMD model parameters are
summarized in Tab. A.2 in the appendix.

4.2 Particle size control with linear MPC

The DMD model defined by the state transition matrix Ã
and the input matrix B̃ is utilized to control the Sauter
mean diameter d32 by means of MPC. To this end, the
model has to be augmented by an output matrix C̃ which
is obtained by linearizing the output equation (Eq. (9)).
The MPC algorithm is implemented in MATLAB using
its native model predictive control toolbox, where the
constrained quadratic programming problem is solved by
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an active set algorithm. The current state is measured,
transformed to the low dimensional state x̃ by Eq. (18)
and used as initial value for the prediction. Alternatively,
if no measurement is available, it can be observed, e.g by
the built-in Kalman filter. The admissible interval of the
manipulated variable Tg ∈ [353 K, 373 K] is determined by
practical considerations regarding the safe and stable op-
eration of the agglomeration plant (Strenzke et al., 2020).
With a prediction horizon of Np = 30 time steps, i.e. 30
min, a good dynamic response to reference and disturbance
steps is obtained, also stability of the control system is
promoted. On a AMD Ryzen 9 7950X 16 core processor,
we observe a MPC step computation time less than 10
% of the sample time, hence the computational feasibility
is ensured. The controller parameters are summarized in
Tab. A.3 in the appendix.

The MPC controller is validated in dynamic simulations.
Fig. 4 displays the closed-loop response to several reference
steps. The controlled process follows an increase of the
desired Sauter mean diameter from 0.6 mm to 0.65 mm.
The rate of convergence is, however, limited by the fact
that Tg is in saturation during the larger part of the time
interval. A subsequent decrease of d32 to 0.55 mm, on the
other hand, is achieved quickly. A possible approach to
deal with the temperature restriction to improve closed-
loop performance is to augment the system by additional
manipulated variables such as the primary particle feed
rate or the binder spray rate. This would also allow
for a cost function formulation that incorporates energy
efficiency considerations.

In order to investigate the closed-loop disturbance re-
sponse, it is assumed that the average diameter of the
primary particles dfeed is varied. In Fig. 5 variations from
0.2 mm to 0.3 mm and 0.15 mm are presented. The
controller is able to suppress the disturbances quickly with
moderate control action.
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Fig. 4. Set point tracking of the MPC controller. Top:
Controlled Sauter mean diameter (blue) with desired
set point (black). Bottom: Manipulated variable Tg
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Fig. 5. Disturbance rejection of the MPC controller. Top:
Disturbed variable. Middle: Controlled Sauter mean
diameter (blue) with desired set point (red).Bottom:
Manipulated variable Tg (blue) with upper and lower
bounds (red).

5. CONCLUSION AND OUTLOOK

In this contribution model predictive control for the aver-
age agglomerate size in a fluidized bed spray agglomeration
process has been presented. The underlying process model
has been identified from data snapshots using dynamic
mode decomposition. The linear DMD model achieves
a good prediction of the average agglomerate size while
having a low dimension and is therefore suitable for MPC.
Tested by means of dynamic simulations, the DMD based
controller achieves good results in reference tracking and
disturbance rejection scenarios.

Future research directions are manifold. It will be advan-
tageous to pursue additional control goals such as keeping
the bed mass within certain boundaries for stable plant
operation, controlling the width of the particle size distri-
bution for improved product quality as well as optimizing
the process from an economic perspective. To this end,
additional input variables such as the primary particle
feed and the binder spray rate have to be considered,
i.e. the DMD model has to be adapted and reevaluated.
Additional practically relevant extensions of the process
model are the incorporation of the porosity as internal ag-
glomerate property and augmenting the plant by a particle
recycle for improved efficiency. Finally, in order to improve
the model prediction quality, the DMD algorithm can
be extended methodologically to approximate Koopman
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eigenfunctions (Williams et al., 2015) and thereby achieve
a better linear approximation of the highly nonlinear dy-
namics. Finally, experimental validation of the proposed
control scheme is planned.
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Appendix A. PARAMETERS

Table A.1. PBE parameters.

Parameter Symbol Value

Prim. part. volume vfeed 0.0042 mm3

Withdrawal rate K 0.0008 s−1

Kernel parameter k [-72.27, 0.157, 3.24, -0.00827]

Table A.2. DMD model parameters.

Parameter Symbol Value

Sample time ts 60 s
Number of discretized states Nx 300

Number of snapshots Nt 360
Number of time delays Nd 4

Number of inputs Nu 1
DMD truncation value p 236
DMD truncation value r 235

Table A.3. MPC parameters.

Parameter Symbol Value

Sample time ts 60 s
Manipulated variable minimum umin 353 K
Manipulated variable maximum umin 373 K

Prediction horizon Np 30
Control horizon Nc 15

Control variable weight Q 1
Manipulated variable weight R 0.1
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