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Abstract: Health-aware control (HAC) consists of computing the control action considering the
degradation state of the plant components. The equipment degradation typically happens on a
slower time scale, while the control and optimization of the economic performance on a much
faster time scale. As such, HAC leads to a hierarchical control structure based on time-scale
separation. We explore the different layers of this problem using a gas-lift network with choke
valve degradation as an example. The main contributions of this work are to propose a new HAC
system hierarchy and to show how regulatory layers can also reduce equipment degradation.
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1. INTRODUCTION

Health-aware control (HAC) takes into account traditional
control objectives as well as the current and future (prog-
nostic) condition of the equipment in the plant to compute
the next control action (Escobet et al., 2012). The idea
is to find the best trade-off between economic perfor-
mance and extending the equipment’s remaining useful life
(RUL). HAC is essential in situations where the mainte-
nance is complex and costly (e.g., subsea operation (Ver-
heyleweghen et al., 2018; Verheyleweghen and Jäschke,
2018; Matias et al., 2020)), the process safety depends on
the condition of the equipment (e.g., pasteurization plant
(Pour et al., 2018)) or in cases where the RUL can be
significantly extended (e.g., batteries (Lucia et al., 2017)).

Control systems are usually decomposed in time-scales
layers (Seborg et al., 2010). The slower upper layers
control inputs that are important on a long time scale
and then send a setpoint to the faster lower layers that
also take care of fast disturbances. In the HAC, equipment
degradation is usually slow and can happen over a scale of
years. Also, degradation measurements are not frequently
available (DNV, 2015). On the other hand, economic
optimization can be performed on a scale of hours/minutes
while the disturbance rejection can be on a scale of
days/minutes/seconds (Seborg et al., 2010). Therefore, the
HAC strategy needs to optimize the process on a short
time scale and guarantee the process’s safety in the long
run.

In literature, several control structure (strategy) designs
have been proposed for HAC. Verheyleweghen and Jäschke
(2018) proposed a single-layer Health-aware Real-Time
Optimization (HRTO) in a shrinking horizon. A steady-
state process model was combined with a dynamic degra-
dation model, and a maximum degradation constraint was
used to enforce equipment safety. Matias et al. (2020) sim-
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ilarly formulated the problem using a single-layer Health-
aware Economic Model Predictive Control (HEMPC) with
a receding horizon. Bernardino et al. (2020) also applied
a single-layer scheme for a setpoint tracking MPC with
an RUL term in the objective function. Verheyleweghen
et al. (2018) proposed a three-layer structure with an
HRTO in the upper level and a self-optimizing control
below. Pour et al. (2018) compared a single-layer HMPC
with a two-layer HMPC/MPC strategy. The upper HMPC
layer sends a setpoint for a regulatory MPC layer on
the two-layer scheme. The authors concluded that the
multi-layer allowed a better economic performance for the
same degradation level reduction. Finally, Verheyleweghen
(2020) developed a two-layer strategy where an HRTO
sends a setpoint for the degradation rate to a HEMPC.
Combining maintenance and production scheduling has
also been suggested (Verheyleweghen, 2020).

All the single-layer HAC presented the same drawbacks
because they need to solve the optimization related to the
long-run RUL problem often, and computing the optimal
control problem solution is often impossible in practice
because of the long horizon required for the degradation
prognostic. Furthermore, the degradation models increase
the dimension of the problem to be solved, and the trade-
off between health and economics can be challenging to
formulate in a single optimization problem.

The multi-layer scheme is a more natural choice for a
control structure that takes both degradation and control
into account. In this work, we investigate the connection
of the control layers in a HAC. We propose a dedicated
control structure for the HAC, consisting of an HRTO
in the upper layer and an EMPC with a Proportional-
Integral controller model (PI EMPC) at the lower layer.
This strategy has the advantage that no trade-off between
production and extending the RUL of the equipment is
considered in the lower layers. The goal of the HRTO
is to ensure that the different equipment components
degrade coordinated and in such a way that it contributes
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to the overall economic performance of the process. For
example, this could mean ensuring that all the equipment
will be as equally degraded as much as possible safely for
the subsequent maintenance intervention. The PI EMPC
layer below only focuses on rejecting disturbance and
optimizing the economic performance of the process on a
fast timescale. This feature distinguishes our methodology
from the one proposed by Verheyleweghen (2020), where
the prognostic model is used in both layers, making
the problem harder to solve and imposing the profit
health trade-off on the fast time scale. Furthermore, in
our approach, the PI controller model was included in
the controller. As pointed out recently (Kumar et al.,
2023) the PI EMPC has better constraint-handling skills
and economic performance in the face of unmeasured
disturbances.

1.1 Paper structure and main contributions

The main contributions of this work are to propose a
new HAC system hierarchy and to show how regulatory
layers can also reduce equipment degradation. We demon-
strate and evaluate the control structure on a gas-lift
well network with choke valve erosion caused by sand
particles. The simulation results provide valuable insights
into the importance of the multi-layer HAC strategy in
preventing equipment breakdown. The remainder of the
paper is structured as follows: Section 2 briefly presents
our hierarchical HAC strategy; Section 3 presents the gas-
lift oil well network case study; Section 4 the simulation
setup; Section 5 present the simulated results; Section 6
the discussion and section 7 the work conclusions.

2. MULTI-LAYER CONTROL STRUCTURE FOR
HEALTH-AWARE OPERATION

Figure 1 illustrates the proposed multi-layer hierarchical
control structure. On the top is the HRTO layer feed with
the degradation level estimation from the plant and the
information about the next planned maintenance. The
HRTO problem is solved in a shrinking horizon. The
problem determines the constraints that the operation
must obey during the functioning, such that the next
planned maintenance can be reached safely, without too
much production loss due to conservative operations. The
health constraint is sent to the lower layer, this constraint
can change from case to case but typically is an upper
bound on a manipulated variable related to the equipment
degradation. PI EMPC obtained the states estimated from
the plant and the health constraint from the HRTO layer
and solved the problem in a receding horizon manner. The
PI EMPC layer has no degradation model; its only goal is
maximizing profit subjected to the health constraint. The
manipulated variables of the PI EMPC may differ from the
ones in the HRTO layer, however, in the case study used in
this work, they are the same. In the following subsections,
the mathematical formulation of each layer is presented.

2.1 Health-aware Real-time Optimization (HRTO)

The HRTO layer optimizes the process on a long timescale
while ensuring the equipment will not break down until
the next planned maintenance stop. Since the equipment

Fig. 1. Proposed control system hierarchy.

degradation is typically much slower than the process
dynamics, a steady-state model (f(·)) is used for the
process, and a dynamic model for the degradation process
d = g(·). The discrete version of the HRTO can be
formulated as follows:

max
x,u

nph−1∑
k=0

Pk

s.t. 0 = f(xk, uk)

dk+1 = g(dk, xk, uk)

dk ≤ dmax

(1)

in which k represents the kth sampling time and nph the
HRTO prediction horizon (i.e., the next planned main-
tenance intervention). The manipulated input sequence
u = [u0, ..., unch

], where unch
is the HRTO control horizon.

xk are the states of the systems at the sampling time k.
The objective function is the summation of the operational
profit (Pk) of the system in each sample time. The variable
dk refers to the degradation states of the equipment at
sample time k, and dmax is the maximum acceptable
equipment degradation before the next planned mainte-
nance intervention, usually set to a value near the ex-
perimentally determined equipment breakdown limit. The
optimization problem (1) is solved in a shrinking horizon
at a much slower frequency than the plant measurement
frequency, usually days. After the optimization problem
has been solved, only the first control action (u0) is sent
to the PI EMPC layer below which will be used as a health
constraint to the equipment.

2.2 PI Economic Model Predictive Control (PI EMPC)

The goal of this layer is to maximize the system’s profit
and reject fast disturbances while keeping all the inputs
within the health bounds set by the upper layer.
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max
x,u

npe−1∑
k=0

α · Pk − β · sk − 1/2∆uT
kQu∆uk

s.t. xk+1 = f(xk, uk)

uk ≤ uHRTO
max + sk

utotal
k ≤ utotal

max

∆uk ≤ ∆umax

hPI(xk, uk, ik, y
pi
k , upi

k ) = 0

(2)

in which npe the PI MPC prediction horizon. u is the
manipulated input sequence u = [u0, ..., unce ], where unce

is the PI EMPC control horizon, ∆uk = uk+1 − uk and
utotal
k =

∑
uk. The weighting factor at the objective

function for the process profit, slack variables and input
penalization are α, β and Qu, respectively. The variable
uHRTO
max is the optimal solution from the HRTO layer that

is sent as a health constraint on the manipulated variable
of the PI MPC optimization problem. To avoid control
problem infeasibility, slack variables are introduced on
the health constraints. Finally, hPI(·) is the Proportional-
Integral (PI) controller model that will be described below
(Equations 3, 4 and 5). This optimization problem is solved
with a fixed receding horizon at a faster frequency than the
HRTO problem, usually in minutes. Only the first control
action is sent as a setpoint for the PI controller.

PI controller model: PI/PID is usually kept aside from
the health-aware control studies. Despite that, the lower
layers can significantly impact valve degradation, for ex-
ample, by decreasing input usage using dead zones. How-
ever, here we are not going to discuss the potential con-
tributions of PI controllers, but instead, how the integra-
tion with EMPC can potentially improve the controller
performance. The formulation of the PI EMPC follows
recent results that highlighted the advantages of that for-
mulation (Kumar et al., 2023). There, the authors showed
that including PI controllers inside the MPC controller
can improve the constraint handling, which is a good fit
in our formulation since the systematic violation of the
uHRTO
max constraint can lead to faster degradation of the

equipment. Furthermore, it highlights the potential of PI
EMPC to increase profit in the presence of unmeasured
disturbances compared to the standard EMPC. In that
way, the implementation of the PI EMPC will follow the
formulation presented in Kumar et al. (2023). A discrete-
time first-order model of the PI feedback loop to describe
the effect of a setpoint change (usp) into the measure
variable (y) was considered:

yk+1 = yk(1−
∆t

τcl
) +

Kcl

τcl
∆t usp

k (3)

in which Kcl and τcl are the gain and time constant
parameters and ∆t is the plant measurement sampling
time. The discrete-time linear model of the PI controller
was used in the PI EMPC:

upi
k+1 = upi

k +K(yspk − yk) +
K

τI
ik

ik+1 = ik +∆t(yspk − yk)
(4)

Fig. 2. Illustration of the oil and gas network with artificial
gas-lift.

in which K and τI are the PI tuning parameters and upi
k is

the actuator position computed by the PI controller. The
variable i is the PI controller integral value that is assumed
to be known by the PI EMPC controller (Figure 1), as well
as the PI tuning parameters. Constraints on the actuator
are also imposed as follows:

upi
min ≤ upi

k ≤ upi
max (5)

3. CASE STUDY: GAS-LIFT OIL WELL NETWORK

The HAC strategy presented above is evaluated on a gas-
lift oil well network. The system is illustrated in Figure
2, the main idea is to increase oil production in the top
facility by injecting gas into the wells through the gas lift
valves. Because of the presence of sand particles in the
reservoir, erosion is prone to happen on the production
choke valves in the wells, which aim to control production
and avoid any pressure fluctuation. The erosion of the
choke valves is proportional to the flow rate on the valves
(DNV, 2015), which in turn is controlled by the gas-
lift rate. HAC strategies have been proposed for that
system by splitting the gas-lift rate among the wells
considering the different levels of erosion of each valve
(Verheyleweghen et al., 2018; Matias et al., 2020).

3.1 Gas-lift model

The model to describe the gas-lift well system is based
on the work of Krishnamoorthy et al. (2016). The mass
balances in each well are:

ṁgt = wlg + wrg − wpg

ṁot = wro − wpo
(6)
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wlg is the gas-lift gas mass flow rates, wrg and wro are the
gas and oil mass flow rates from the reservoir, and wpg and
wpo are the gas and oil mass flow rates of the produced gas
and oil. mgt and mot are the gas and oil mass holdup in
the well. The gas-lift rate (wlg) and the total flow at the
top facility (wt) can be adjusted by opening and closing
the valves. The valve equations then describe the flow rate:

wt = ZtCpc

√
ρw(pwh − pout)

wlg = ZlgCiv

√
ρa(pa − pwi)

(7)

in which Zlg and Zt are the opening of the gas lift
injection valves and the production choke valve, and Cpc

and Civ are the valve coefficients. pwh, pout, pa and pwi

are the pressures at the wellhead, well outlet, annulus and
injection point. ρw and ρa are the fluid densities in the well
tubes and the annulus. Applying the ideal gas law, we can
express the pressure in the annulus:

ρa =
Mpa
TaR

(8)

in which M is the gas-lift molar mass, Ta the temperature
at the annulus and R the universal gas constant. The
average density in the well tube is given by:

ρw =
mgt +mot − ρoLrAr

LwAw
(9)

where Lr,Lw and Ar,Aw are the lengths and cross-
sectional area of the tubing above and below the gas
injection point. The gas and oil flow from the reservoir
is given by:

wro = PI · (pr − pbh)
wrg = GOR · wro

(10)

where PI is the productivity index, GOR is the gas-oil-
ratio and pr the reservoir pressure.

3.2 Choke valve erosion model

Erosion in choke valves by sand particles can be described
with a good level of accuracy by Computational Fluid Dy-
namic (CFD) simulations given the valve features (DNV,
2015). However, since the optimal control problem needs to
be solved online in a reasonable amount of time, a simple
model is usually chosen (Seborg et al., 2010). Here, we
used the semi-empirical erosion model developed by DNV
(2015):

ε̇ =
K · F (α) · Un

p

ρt ·At
·G · C1 ·Gf · ṁp · Cunit (11)

in which ε is the erosion rate in mm, K is the material
erosion constant, n is the velocity exponent, ρt is the valve
material density; C1 and GF are geometry factors; Cunit

is a unit conversion factor. Up is the impact velocity and
ṁp is the sand rate that is considered to be known.

4. SIMULATION SETUP

The results are presented in two cases with different time
horizons, this will provide insights into how the different
layers contribute to the HAC strategy. Case 1 shows the
simulations on a long horizon of 100 days, and case 2 the
simulation in a short period of 4 hours. The parameters
for both cases are presented in Table 1. The remaining
parameter values were the same as in Matias et al. (2020).
Simulations were performed in MATLAB, and the HRTO
and PI MPC optimization problems were solved using
CasADi software. Orthogonal collocation was used to
discretize the differential-algebraic system of equations
system, and the IPOPT solver was used to solve the
resulting Nonlinear Programming problems.

A gas-lift oil well network with three wells was simulated,
and the profit component of the objective function used in
the optimal control problems was:

Pk =

np−1∑
k=0

3∑
i=1

wt,i,k (12)

where np can be either nph in the HRTO problem or npe in
the PI EMPC problem. The manipulated variables of the
HRTO and PI EMPC were the gas-lift flow rates in the
three wells, while for the PI controller, it was the opening
of the gas-lift valves. Possible disturbances of the system
are the GOR, PI and pwi. The PI controllers were not very
tightly tuned, and the effect of these tuning parameters is
out of the scope of this work.

Table 1. Simulation Parameters

Parameter Value Parameter Value

GOR [10,12,11] Kcl - 1.0
PI [5,5,5] τcl 70

∆umax 0.4 K -0.1
nph 75 min τ 100
npe 100 days ∆t 15 s
nch 70 days α 1.0
nce 45 min β 1000

utotal
max 4.5 Qu 0.01
pwi [120, 120, 120] bar dmax 1.5 mm

5. RESULTS

5.1 Case 1: Long time-horizon simulation

In the first scenario, a condition where the three choke
valves in the three wells have different degradation condi-
tions is emulated. Furthermore, a high erosion sand rate
with exponential growth was chosen 100 days ahead of
the subsequent planned maintenance intervention. These
conditions make it possible to visualize how the HRTO
could handle the erosion of the choke valves approaching
the maximum erosion constraint (1.5 mm). First, Figure 3
shows the simulation without the HRTO layer. Then, only
the profit (12) of the system is taken into account. As
can be seen, the system operates on the economic optimal
operation point until the end of the horizon, which causes
the choke valve of well 1 to break down. This situation will
not just cause economic losses because the oil production
in well one stops, but it can also be unsafe depending
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Fig. 3. Results of a simulation in a long time horizon of
100 days without the HAC strategy. At the top of the
figure, the gas-lift setpoint set by the PI EMPC is
shown. At the bottom, the erosion level of each choke
valve is presented.

on the condition of the equipment. Therefore, an HAC is
needed to ensure the valve can operate up to the next
scheduled maintenance and then be replaced, avoiding
unexpected maintenance interventions.

Figure 4 shows the HAC operation simulation. At the be-
ginning of the simulation, with a lower level of choke valve
degradation, the HRTO sends a high flow-rate constraint
to solve the PI EMPC optimization problem. These flows
are higher than the maximum physical constraint on the
valves, then, in practice, no constraint is imposed on the
lower layer (dotted line in the top of the figure). The PI
EMPC maximizes the profit by reaching the maximum
total flow constraint and spreading the gas flows among
the wells based on the GOR ratio of each one.

In the final part of the simulation, the erosion level of the
choke valve on well 1 began to approach the maximum
erosion limit of 1.5 mm. Then, the HRTO started to
slowly decrease the maximum gas-lift flow rate on that
well until that constraint reached the current setpoint.
Then, the PI EMPC started to decrease the production
and increases the production on the other two wells to keep
the maximum total rate at the maximum. This change
impacts the total oil production rate because well 1 has the
higher GOR. After some time, the HRTO also decreases
the constraint for well two and eventually also well 3. In
the end, close to the maintenance intervention, production
quickly decreases.

The choke valve of well 1 was very close to the constraint
at the end of the horizon, given that it is plausible to have
some uncertainty in the models and degradation levels
estimation. To avoid that situation, the maximum erosion
can be reduced (back off constraint), or a robust method
can be applied like multi-stage EMPC (Verheyleweghen
and Jäschke, 2018) or worst-case scenario EMPC (Ver-
heyleweghen, 2020). Since these robust techniques are
usually computationally expensive, it is an advantage of
our approach that these optimization problems are only
solved in the upper layer.

Fig. 4. Results of a simulation in a long time horizon of
100 days with the HAC. At the top of the figure,
the gas-lift setpoint set by the PI EMPC is shown,
together with the constraint in each well imposed by
the HRTO. In the middle, the erosion level of each
choke valve is presented. At the bottom of the figure,
the total gas-lift rate is shown.

5.2 Case 2: Short time-horizon simulation

Figure 5 shows the fast time-scale simulation in hours.
The gas lift rate, setpoints, and the opening valve of
one of the three wells (well one) are also presented as
the total gas lift rate. PI EMPC is compared with the
standard EMPC without the PI controller model in order
to illustrate the advantages of these layers’ integration.
The performance of both controllers is similar before
the disturbance starts (1.4h). They increase the gas-
lift setpoint until each reaches the maximum total rate
constraint, corresponding to the maximum possible oil
production rate. The PI EMPC seems less aggressive
in changing the setpoint in this phase, and the EMPC
reached maximum productivity earlier.

A disturbance starts after both systems have stabilized
at the maximum productivity rate. The gas-lift pressure
decreases from 120 bar to 105 bar, then in order to try to
maintain the flow rate setpoint, the PI controller saturates
the valve opening, but this setpoint cannot be reached
anymore. Because the EMPC hasn’t information about the
saturated valve, the controller keeps an infeasible setpoint,
and then the total gas lift is lower than the maximum
possible, leading to sub-optimal economic performance.
On the other hand, the PI MPC has the information about
the saturated valve but can also plan the next control
action to counteract that saturation. Then, the controller
decreases the gas-lift rate on that well, and increases on
the other two, keeping the maximum total rate.

After the disturbance is finished, an increase in the gas-lift
rate occurs. The EMPC violates not only the maximum
total rate constraint but also the maximum individual
flow rate sent by the upper layer (HRTO). Eventually, the
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Fig. 5. PI EMPC and EMPC performance in the presence
of disturbances. At the top, the measured gas-lift
rate and the gas-lift rate setpoints are shown. At the
bottom, the valve opening and the total gas lift rate is
presented. The results correspond to well 1, the other
wells’ variables were omitted. A disturbance in the
gas-lift pressure started at 1.4h and ended after two
hours.

EMPC was able to decrease the setpoint and stabilize the
system. However, the PI EMPC is much quicker to perform
that task.

6. DISCUSSION

The present work had as its main goal to get insights into
the multi-layer strategy for the HAC. One advantage of
this time-scale separation is the possibility of solving the
most challenging problem on the upper layer since the
time to solve the HRTO problem was, on average, ten
times the time to solve the PI EMPC problem, which can
be worse with long horizons and if robust methods are
applied. Adding the PI controller model on the EMPC also
seems promising since violating the flow rate constraint
can increase degradation in the long run.

Full-state information and perfect degradation level in-
formation were assumed in the simulations. In practice
measures for dealing with this uncertainty have to be taken
(Verheyleweghen, 2020). Furthermore, the threshold for
the maximum degradation can have a considerable impact
on the HRTO layer, the proper definition of that variable
is crucial. Note also that the same process model was
considered in both layers. However, it could be the case
that a better steady-state model is available for the HRTO
layer. In that case, using the lower layer as a setpoint
tracking MPC should be considered instead.

7. CONCLUSION

The results suggest that the time decomposition in the
HAC is a suitable approach to deal with the significant

differences in time scales. Future works should focus on
how the maintenance planning layer can be integrated into
that strategy. Also, the horizontal (space) decomposition
for HAC can be investigated.
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