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Abstract: Galerkin-projection and non-intrusive neural network reduced order models (ROMs)
for a two-dimensional centrifugal pump model are presented and compared with respect to
their suitability for control purposes. Singular value decomposition (SVD) is applied to reduce
the dimensionality of the model and to extract a set of reduced basis functions. In Galerkin-
projection, the temporal evolution of the reduced coefficients is expressed in terms of a small
set of ordinary differential equations (in the order of ten). To improve the performance of this
method, we fit the operators obtained by the projection step to the original data. On the
other hand, the regression step of the coefficients is performed using a deep recurrent neural
network (RNN) in the non-intrusive method. We compare the two methods with respect to
the computational time required to build and evaluate each model, relative prediction error,
long-term stability and sensitivity to initial conditions. Our results show that the projection-
based ROM is slightly more accurate than the non-intrusive ROM, but it requires more time to
be built. However, the non-intrusive ROM is more stable and less sensitive to initial condition
variation.

Keywords: Reduced order model, neural networks, singular value decomposition, Galerkin
projection, long short-term memory, incompressible Navier-Stokes equation.

1. INTRODUCTION

Computational fluid dynamics (CFD) simulations are
practical tools for describing and analyzing fluid flow
problems. It is, however, often not feasible to use CFD
models in control application due to their high expenses in
terms of both CPU memory and time. Therefore, building
accurate but fast reduced order models (ROMs) is an im-
portant step toward controlling complex systems because
it enables a broader choice of control strategies.

The main idea of reduced order modeling is to find a low-
rank approximation of high-fidelity data obtained experi-
mentally or numerically. This can be achieved by deter-
mining the reduced space, spanned by a small number
(order of ten) of basis functions, in which the ROM is
defined. Proper orthogonal decomposition (POD) (Lum-
ley, 1967) is a common approach to finding the reduced
space. POD extracts the reduced basis by singular value
decomposition (SVD) of the high-fidelity data. The ROM
then results from a linear combination of the most essen-
tial basis functions. The coefficients associated with this
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linear combination are, in general, referred to as reduced
coefficients.

Reduced order modeling techniques can be divided into
two categories: intrusive and non-intrusive methods. In
intrusive methods, the reduced coefficients are determined
by solving ordinary differential equations obtained after
projecting the full order model (FOM) onto the reduced
space (see, e.g., Benner et al. (2015); see e.g. Berner et al.
(2020) for a recent application to an energy engineering
example). In contrast, non-intrusive methods approximate
the reduced coefficients using a regression model without
the need to access the governing equations of the FOM.
Artificial neural networks are very good regression models.

In the intrusive context, Galerkin-projection ROMs have
been developed for unsteady flows (see, e.g., Deane et al.
(1991); John et al. (2010)). Some of these studies devel-
oped parameter-dependent ROMs (Amsallem and Farhat,
2008). However, these ROMs are sometimes unstable and
require post-processing fitting to the original data. On
that account, other projection-based techniques, such as
Petrov-Galerkin, can be used to build more accurate and
long-term stable ROMs (see, e.g., Reineking et al. (2022)).
On the other hand, and with the significant develop-
ment in machine learning techniques, neural networks have
emerged as a tool to predict the temporal evolution of
reduced coefficients (see, e.g., Pawar et al. (2019)). Some
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authors used a long short-term memory (LSTM) neural
network in the non-intrusive framework (Maulik et al.,
2021).

The present paper aims to compare the Galerkin-projection
method with the non-intrusive neural network method
to develop ROMs for a 2D pump model. Section 2 de-
scribes the dimensionality reduction of a dynamic sys-
tem using singular value decomposition. The main ideas
of projection-based and neural network-based ROMs are
presented in section 3. The application example and the
corresponding ROMs are presented in section 4, and a
comparison is presented in section 5. A brief conclusion
is stated in section 6.

2. LOW RANK APPROXIMATION OF DYNAMIC
SYSTEMS

A large class of dynamical systems can be expressed in the
form

dq

dt
= F(q(t)), (1)

where F is a nonlinear operator, t represents the time and
q ∈ RN is the state vector. The set of N ordinary differ-
ential equations (ODEs) presented in (1) are obtained, in
general, from the spatial discretization of a partial differ-
ential equation with time dependence. Most discretization
methods (e.g., finite element, finite difference and finite
volume) result in a very high-dimensional spatial grid, i.e.,
N ≫ 1, which makes the analysis and control of these
systems a very challenging tasks. Therefore, we need to
reduce the dimensionality of (1).
We start by solving the high dimensional model pre-
sented in (1) and we obtain at each time instant tm, for
m = 1, · · · ,M , the solution q(tm) ∈ RN in the numerical
domain. The snapshot matrix S ∈ RN×M is obtained by
concatenating all solutions at different time instants

S = [q(t1) q(t2) · · · q(tM )] . (2)

The singular value decomposition (SVD) of the snapshot
matrix S yields

S = ΦΣVT , (3)

where Φ ∈ RN×N , V ∈ RM×M are orthonormal matrices
and Σ ∈ RN×M is a rectangular diagonal matrix with
singular values σ1 ≥ σ2 ≥ · · · ≥ σr. Here, r = rank(S)
is the number of non-zero singular values. According to
Eckart-Young theorem (Eckart and Young, 1936), the

optimal low-rank approximation S̃ of the snapshot matrix
S, in a least-squares sense, is given by

argmin
S̃, s.t.rank(S̃)=d

∥S− S̃∥F = Φ̃Σ̃ṼT , (4)

where Φ̃ ∈ RN×d and Ṽ ∈ RM×d are the leading d

columns of Φ and V, and Σ̃ ∈ Rd×d is the leading d × d
matrix of Σ. ∥ · ∥F is the Frobenius norm. The columns

of Φ̃, denoted by ϕk = [ϕk(q1) . . .ϕk(qN )]T , k = 1, . . . , d,
are known as spatial, or POD modes, and they form an
optimal basis for the reduced space V where the ROM
lives, i.e., V = span{ϕ1, · · · ,ϕd} ⊂ RN . Therefore, the
low-rank approximation of the solution vector q̃(tm) can
be written as a linear combination of the basis of V

q̃(tm) =

d∑
k=1

ϕkak(tm), (5)

where ak(tm) is the reduced coefficient associated to every
spatial mode ϕk. The dimension d of the reduced space V,
i.e., the number of spatial modes, is determined such that

ϵ = 1−
∑d

i=1 σ
2
i∑r

i=1 σ
2
i

, (6)

is sufficiently small.

3. REDUCED ORDER MODELS

We divide the reduced order modeling techniques into two
main categories, intrusive and non-intrusive ROMs.

3.1 Intrusive ROM using the Galerkin-projection

This method consists of two main steps. First, we insert
(5) in the governing equation of the model presented in (1)

d∑
k=1

ϕk

dak
dt

= F(

d∑
k=1

ϕkak(t)). (7)

Second, we project the resulting approximation onto the
spatial modes ϕk, k = 1, . . . , d. We take advantage of the
orthonormality of the POD modes, i.e.,

⟨ϕk,ϕl⟩ = δkl =

{
0, if k ̸= l

1, if k = l
. (8)

Here, ⟨·, ·⟩ denote the inner products in RN and δkl is the
Kronecker delta. This yields a set of d ODEs

dak
dt

= ⟨ϕk,F(

d∑
k=1

ϕkak(t))⟩ k = 1, · · · , d. (9)

Equation (9) shows that solving the system of ODEs
still requires evaluation of the nonlinear operator F and
inner products in the original dimension since ϕk ∈
RN . However, it is possible in many cases, e.g., Navier-
Stokes equation, to compute them once in an offline step.
Despite the linear structure of V, the Galerkin-projection
method is capable of generating reliable reduced models
to characterize the nonlinear dynamics within V because
it effectively captures dominant patterns of behavior by
projecting onto an optimal subspace that best represents
the dynamics.

3.2 Non-intrusive ROM using neural networks

The main idea of this method is to build a neural net-
work to predict the temporal evolution of the reduced
coefficients ak(t). The neural network serves as a non-
linear regression model that replaces the set of ordinary
differential equations presented in (9). It is sometimes
necessary to bypass the projection step, especially when
the governing equations are unknown and we try to build
ROM based on measurement data only.

The best reduced coefficient values associated to the re-
duced basis at time instant tm will be denoted as aref(tm) ∈
Rd, and can be obtained by projecting the high fidelity
solution x(tm) onto V, i.e.,

aref(tm) = ⟨q(tm), Φ̃⟩. (10)

Therefore, using aref(tm), for m = 1, · · · ,M , as training
data, we fit a neural network to predict the temporal
evolution of the reduced coefficients. More specifically, we
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Fig. 1. 3D Model of the pump.

predict the reduced coefficients at time step tm+1 based
on the previous h time steps,

a(tm+1) = f̃(a(tm), · · · ,a(tm−h)), (11)

where f̃ is a non-linear function and h is a hyperparameter.
In this context, a long short-term memory (LSTM) neural
network is a very good candidate because of its ability to
learn sequence data using a gating mechanism. The reader
is referred to Hochreiter and Schmidhuber (1997) for more
details about LSTM layers.

4. APPLICATION TO A PUMP MODEL

We apply the two aforementioned methods to build ROMs
for a hydraulic system. We consider a 3D radial pump
characterized by a low specific speed (ns = 12 1/min, see
Fig. 1 for a sketch). It consists of an impeller, a spiral
volute, side chambers, and suction and pressure pipes.
The system dynamics are modeled with the incompressible
Navier-Stokes equation

∂u

∂t
=− (u · ∇)u+ ν∆u−∇p, (12a)

∇ · u = 0, (12b)
where u, ν, and p denote the velocity vector, viscosity,
and pressure, respectively. Equations (12a) and (12b) are
solved using a finite volume method by discretizing the
numerical domain into 1.8 million cells. This model will be
denoted as the full-order model (FOM). A Dirichlet inlet
boundary condition is set for velocity (∥u∥ = 2.12m/s)
together with a zero-gradient condition for static pressure.
At the outlet, zero-gradient boundary conditions are set
for velocity components and Dirichlet condition for static
pressure. The angular velocity of the impeller is ω =
151.84 s−1 (See Sommer et al. (2023) and references therein
for more details on the application).
Open source software OpenFOAM (Weller et al., 1998)
is used to obtain the 3D high-fidelity solution. We aim
to build a ROM for a 2D axial section of the flow field
solution at the mid-span of the impeller. For this purpose,
we interpolate the 3D time-variant solution onto a fixed,
uniform cartesian grid, and we treat the moving impeller
solid domain as a fluid by interpolating values from the
surrounding blade-wall adjacent flow fields (see Fig. 4 (a)).

4.1 Intrusive ROM of the fluid flow

We denote by u(xn, tm) = [ux(xn, tm) uy(xn, tm)]
T ∈ R2

as the vector of velocities at every discrete time step tm,

m = 1, · · · ,M , and cell with spatial coordinates xn, n =
1, · · · , Ngrid. First, we decompose u(xn, tm) into temporal
mean u(xn) and fluctuation u′(xn, tm) components

u(xn, tm) = u(xn) + u′(xn, tm)

=
1

M

M∑
m=1

u(xn, tm) + u′(xn, tm).
(13)

At each time instant tm, we obtain the fluctuation com-
ponent of the velocity vector u′(xn, tm) in the numerical
domain, and collect it to obtain a 2Ngrid×1 column vector
of the snapshot matrix as shown in (2). For consistency
with the procedure presented in section 2, we will denote
2Ngrid by N . In this work, we assume that the flow is
periodic, and we collect M = 52 equidistant snapshots.
The temporal discretization involves establishing an inter-
face between stator and rotor domains, ensuring each time
step equates to a 1◦ rotation of impeller blades, resulting
in one blade passage every 52◦. Following the procedure
explained in sections 2 and 3 we obtain the reference modal
coefficients

arefk (tm) =

Ngrid∑
n=1

ũ′(xn, tm) · ϕk(xn), (14)

and the projection-based ROM in terms of d ordinary
differential equations for the reduced coefficients aGP

k (t),
k = 1, . . . , d,

daGP
k (t)

dt
=

d∑
i=1

d∑
l=1

ai(t)al(t)qkil +

d∑
i=1

ai(t)lki + ck,

(15a)
where the coefficients result from the projection of (12)
onto the modes ϕk

qkil =−
Ngrid∑
n=1

ϕk(xn) ·
(
ϕi(xn) · ∇

)
ϕl(xn),

lki =

Ngrid∑
n=1

(
νϕk(xn) ·∆ϕi(xn)

− ϕk(xn) ·
(
ū(xn) · ∇

)
ϕi(xn)

− ϕk(xn) ·
(
ϕi(xn) · ∇

)
ū(xn)

)
,

ck =

Ngrid∑
n=1

(
− ϕk(xn) ·

(
ū(xn) · ∇

)
ū(xn)

+ νϕk(xn) ·∆ū(xn)
)
,

(15b)

with i, l = 1, . . . , d. The reader is referred to John et al.
(2010) for more details about the derivation of (15). To
ensure that the reduced coefficients aGP

k (tm) fit the original
data as good as possible, we perform an optimization of
the ROM coefficients qkil, lki and ck from (15b) (see, e.g.,
Sommer et al. (2023); Couplet et al. (2005)). For this
purpose, we solve

min
qkil,lki,ck

d∑
k=1

M∑
m=1

(aGP
k (tm)− arefk (tm))2, (16)

for k = 1, . . . , d and m = 1, . . . ,M . We use the resulting
coefficients and denote the solution of (15a) with these

coefficients by aGP,fit
k .

The approximated velocity vector with this solution at
some time instant tm and spatial point xn is

uGP,fit(xn, tm) = u(xn) +

d∑
k=1

ϕk(xn)a
GP,fit
k (tm). (17)
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ain(tm) = Φ̃
T
ũ′(tm)

for m = 1, · · · , h:

for m = h, · · · ,M :

u′NN(tm) = Φ̃aNN(tm)

aref(tm) = Φ̃
T
ũ′(tm)

for m = 1, · · · ,M :

S̃ = Φ̃Σ̃ṼT

{aref(tm),aref(tm−1), · · · }

{ain(tm),ain(tm−1), · · · }

aref(tm+1)

aNN(tm+1)

u′(x1, t1) u′(x1, tM )

u′(xNgrid
, t1) u′(xNgrid

, tM )

ϕ2 ϕ8 ϕ12

Fig. 2. Data-driven ROM framework.

Table 1. Hyperparameters of the neural network

Hyperparameter

number of previous steps h 3
number of layers 4
number of hidden states per layer 89
learning rate 0.001
batch size 8
epochs 500
loss function Mean squared error
optimizer Adam

4.2 Non-intrusive ROM of the fluid flow

The steps to build the non-intrusive ROM are summarized
in Fig. 2. The first two steps in the offline stage, namely
building the snapshot matrix and finding the reduced
basis, are common with the Galerkin-projection method
explained above. In the third step, we build and train a
deep recurrent neural network with LSTM layers to pre-
dict the reduced coefficients. The hyperparameters of the
neural network are presented in Tab. 1. It should be noted
that in this work, we tuned the hyperparameters manually
to get the best prediction performance. However, other
methods such as Bayesian optimization (Brochu et al.,
2010) and random search (Bergstra and Bengio, 2012) can
be used to find the optimal set of hyperparameters.
In order to accelerate training, we normalize the reduced
coefficients between 0 and 1. We retain 20% of the training
samples for validation purposes. We use the open-source

library TensorFlow to build and train the neural network
(Abadi, 2016). Once the model is trained, it can be used to
predict the reduced coefficients at any time instant tm. An
input window with h initial conditions must be generated
for the first prediction, as shown in the online stage in
Fig. 2. We generate the input window based on the CFD
results at the first h time steps. We denote by aNN(tm+1)
as the vector of reduced coefficients associated with all
spatial modes at time instant tm+1 predicted by the neu-
ral network. The prediction of the reduced coefficients in
this method is performed in a recursive manner, i.e., the
outputs of the neural network are used as inputs in the
next prediction.
The final step in the online stage consists of reconstructing
the velocity vector in a similar way to (17), but using
the neural network predictions aNN

k (tm) of the reduced
coefficients, i.e.,

uNN(xn, tm) = u(xn) +

d∑
k=1

ϕk(xn)a
NN
k (tm). (18)

5. RESULTS

A comparison between Galerkin-projection ROM, referred
to as ROM-GP, and the non-intrusive neural network
ROM, referred to as ROM-NN, is presented in this section.
The comparison is performed with respect to the following
four aspects.
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Table 2. Comparison of the computational time

ROM-GP ROM-NN FOM

Offline-time (s) 4145.6631 53.2651 -
Online-time (s) 0.0151 1.1021 30612

1 Intel(R) Core(TM) i5-3570 CPU @ 3.40GHz
2 Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

time in s
1 2 3 4 5

(×10−3)
0

a
2
(t
)

a
8
(t
)

a
1
2
(t
)

Fig. 3. Coefficients arefk from (14) (blue, solid line), aGP,fit
k

from (15a) (red, dashed line) and aNN
k from (11)

(green crossed) for a single period (corresponding to
M = 52), with k = 2, 8, 12.

5.1 Computational time

To begin, we compare the computational offline-time re-
quired to build each ROM. Both ROMs were built and
evaluated on the same hardware. The results are presented
in Tab. 2. It can be seen that the offline-time of ROM-GP
is two orders of magnitude greater than the offline-time of
ROM-NN. The main reason for this is that most of the
offline-time of ROM-GP is consumed by the optimization
step presented in (16) which fits the reduced coefficients
aGP(t) to the reference values aref(t). The offline time
for creating the ROM-NN is consumed mainly by the
training step. We stress that, while training of NN is indeed
time-consuming, it requires less computation time than
generating the ROM-GP.
Once the ROM is optimized respectively trained, it can
be used for an online evaluation of the flow field solution
at instant tm. Table 2 shows that the online evaluation
is much faster for both ROMs than for the FOM, even if
the FOM is evaluated on a much more computationally
powerful hardware.

5.2 Relative error

We compare the predicted reduced coefficients aGP,fit(t)
and aNN(t) with the reference aref(t). The results are
plotted in Fig. 3 for the reduced coefficients corresponding
to modes 2,8 and 12. It can be seen that both aGP,fit(t) and
aNN(t) are in very good agreement with aref(t). We further
evaluate the resulting velocity ROMs by reconstructing the
flow field solution at some instant tm using (17) and (18)
for ROM-GP and ROM-NN, respectively. We report the
normalized and averaged velocity error as

ε =
1

2NgridM

Ngrid∑
n=1

M∑
m=1

∥u(xn, tm)− uROM(xn, tm)∥
uref

,

(19)
where uROM is the reconstructed solution and uref =
16.7m/s is the rotational velocity at the outer radius of
the impeller. Results show that ROM-GP, with εROM-GP =
0.14% is slightly better than ROM-NN, with εROM-NN =

(c)

1

2

3

4
5

(a)

1

10

15

(b)

1

2

3

4
5

Fig. 4. (a) Instantaneous velocity field magnitude (in m/s)
obtained from the interpolated CFD simulation (b)
relative error (in %) between CFD and ROM-GP (c)
relative error (in %) between CFD and ROM-NN.

0.18%, over the first period. A detailed description for
the relative error at each xn, evaluated at t = 10−3 s
is presented in Fig. 4. Both ROM-GP and ROM-NN are
in very good agreement with the CFD solution, where the
maximum local error, which occurs at the tip of the blades
in all cases, never exceeds 5% for either ROM.

5.3 Long-term stability

We check the stability of both methods by predicting the
reduced coefficients aGP,fit(t) and aNN(t) for many periods
T . We emphasize that both ROM-GP and ROM-NN are
built from flow field data corresponding only to 1 period.
Figure 5 shows that ROM-GP is not stable and fails to
predict the reduced coefficients outside the optimization
period. On the other hand, ROM-NN converges to a limit
cycle that is close to the one formed by the reference
aref(t). Our numerical experiments showed that, even for
200 Periods, ROM-NN remains stable.

5.4 Sensitivity to initial condition

Finally, we examine the sensitivity to initial condition for
each ROM by predicting the reduced coefficients aGP,fit(t)
and aNN(t) based on noisy measurements as initial condi-
tions, i.e.,

ank (t) = arefk (t) +N(0, 1)Σ̃kk, for k = 1, · · · , d, (20)

where ank (t) is the noisy reference signal for the reduced
coefficients corresponding to each spatial mode, N(0, 1)
represents a normal distribution with 0 mean and 1 vari-

ance, and Σ̃kk is the singular value of mode k. It should
be noted that the initial set corresponding to ROM-GP
consists only of the reduced coefficient values at t = 0.
However, we need h initial conditions, corresponding to
t = 0, · · · , h, for ROM-NN. The results are plotted in
Fig. 6. It is evident that ROM-GP does not tolerate
perturbation in the initial condition, especially for the
reduced coefficients corresponding to higher spatial modes.
In contrast, ROM-NN is more robust despite requiring
more initial conditions in the input window.

The results indicate that ROM-NN outperforms ROM-GP
slightly. This is because the dynamical model of ROM-
GP presented in (15) is built using only dominant modes,
neglecting less dominant ones. The improvement of ROM-
GP requires inclusion of closure terms to compensate for
this loss of information (see, e.g., Ahmed et al. (2021)). In
contrast, ROM-NN has no restrictions on the dynamical
model, allowing it to find the best-fitting function for the
reduced coefficients in the reduced space.
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Fig. 5. Orbits of reduced coefficients: arefk marked with blue solid line, aGP,fit
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and aNN
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time in s
1 2 3 4 5

(×10−3)
0

a
2
(t
)

a
8
(t
)

a
1
2
(t
)

Fig. 6. Noisy ank signal used to find the initial condition

set (blue, solid line), aGP,fit
k from (15a) (red, dashed

line) and aNN
k from (11) (green, dash-dotted line) for

a single period (corresponding to M = 52), with
k = 2, 8, 12.

6. CONCLUSION

Real-time control of high-dimensional dynamic models
is still impractical with the available computational re-
sources. Therefore, building ROMs is a necessary step. In
this work, we compared standard Galerkin-projection with
a non-intrusive neural network method to build reduced-
order models for a 2D centrifugal pump model. While the
developed ROMs correspond to the pump model with a
fixed impeller angular velocity, enabling control of the
considered pump model involves controlling the rotation
speed of the impeller to achieve the desired velocity or
pressure fields. In the future, we aim to address this aspect
by extending our ROMs to account for variations in input
parameters.
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