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Abstract: Multivariate specifications for the properties of incoming raw materials are used to determine if 
a lot could allow reaching the desired final product quality prior to its purchase. Previous works have shown 
that introducing optimization of process variables in the decision framework leads to accepting a wider 
range of materials. However, this requires to run the optimization problem each time a new lot is not deemed 
acceptable if the process is operated at nominal conditions. The objective of this paper is to simplify the 
current method by defining a more general specification region for raw materials considering three regions: 
accept, accept with process optimization, and reject. The concept is demonstrated using a grinding-flotation 
simulator where the objective is to assess a minimal profit when processing a lot of ore. For the case study, 
the results obtained from a test dataset show that the accuracy of the proposed method is 92%. It gives 
similar results compared to the decision framework considering the optimization problem.   
Keywords: Multivariate specification, Process optimization, SMB-PLS, Quality control, raw material 
variability 

1. INTRODUCTION 

The use of decision-support tools to determine the 
acceptability of lots of raw materials prior to their purchase is 
an interesting solution to reduce the impact of raw material 
variability on the final products. Since raw material properties 
are often correlated [1, 2], defining multivariate specification 
regions are recommended. In its simplest version, it consists of 
defining a limit in the score space of a projection to latent 
structure (PLS) model by mapping final product quality in the 
latent variable space of the model, where the suitability of each 
lot of raw materials is assessed [1, 2]. This region can also be 
obtained using model inversion of each point of the final 
product quality limit [3, 4]. To increase the range of 
acceptability, previous works have shown that including 
adjustments of operating conditions is a natural solution [5, 6].  

Paris et al. [5] have proposed a decision framework, called 
multivariate specifications with optimization (MSVO), to 
widen the specification regions. This tool first consists of 
determining if a given lot of raw materials can be transformed 
at nominal process operating conditions using multivariate 
specifications defined in the latent space of a Sequential-
Multiblock PLS model. If the lot is not likely to yield the 
desired final product properties based on the specification 
region, an optimization problem is solved to determine if 
adjusting operating conditions could lead to the desired 
product quality while considering the cost of these changes.  

The objective of this paper is to simplify the MSVO approach 
by defining a more general multivariate specification for 
incoming raw materials. In other words, instead of solving the 
optimization problem each time the second step of the 
approach is initiated (i.e., when a lot of raw materials falls 
outside the specification region), new limits in the latent space 
of the SMB-PLS model are defined to generate three zones as 
shown in Figure 1. Depending on where the new lot projects 
in the super score space, it could either be rejected, accepted 
for processing at nominal process operation conditions (POC) 
or accepted upon adjusting POC. The proposed concept is 
defined as the three-zone raw material multivariate 
specifications (TZ-MVS). The approach is demonstrated using 
a dynamic grinding-flotation simulator [7] calibrated on 
industrial data, which provides ground truth for quantifying its 
performance.  

The paper is organized as follows. Section 2 gives an overview 
of the methodology required to generate the TZ-MVS, which 

Figure 1. Conceptualization of the proposed specifications  
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includes the development of an SMB-PLS model, the 
definition of the optimization problem as well as the 
classification procedure. Section 3 presents the case study, 
while section 4 focuses on the results and the discussion. The 
main conclusions are drawn in section 5.  

2. METHODOLOGY 

The new TZ-MVS method is divided in six steps as shown in 
Figure 2. The first four correspond to the MVSO approach 
described in detail in Paris et al. [5]. In brief, it consists of 
developing two SMB-PLS models relating final product 
quality attributes Y to raw material properties 𝐙, process 
manipulated variables  𝐗୑୚, and some process measurements 
𝐗୫. One model is used for developing the multivariate 
specification region, and another for solving the optimization 
problem. Secondly, the multivariate specification regions are 
defined in the latent space of the first model, which includes 
only the latent variables associated with the raw material (RM) 
properties. After propagating the quality index of the final 
product (i.e. good/bad) in the super-score space of the model, 
a boundary is adjusted to discriminate both classes. This 
boundary, combined with limits on Square Prediction Errors 
(SPE) and Hotelling’s T² (HT2), form the multivariate 
specifications region. Adding SPE and HT2 limits allows to 
accept slight deviation in the correlation structure while 
ensuring a correct use of the model. If one of the three limits 
is violated, the optimization problem is solved. The existence 
of a solution indicates that it is possible to accept the new lot 
upon adjusting process conditions, otherwise the lot is 
rejected. Thus, in the MVSO framework, the output of the 
optimization step is a binary variable that indicates the 
decision to purchase or not a new RM lot that could not be 
processed at nominal conditions.  

The novelty of the TZ-MVS (i.e. steps 5 and 6 in Figure 2) 
consists of projecting the calibration class labels obtained from 
the optimization step in the latent space of the first model to 
define a third region. For this new classification problem, only 
the lots considered in the optimization problem (second step of 
MSVO) are used. This results in establishing a limit based on 
a binary classification. The combination of both classification 
problem results in a three-zone decision tool. 

The next sections give an overview of the SMB-PLS model 
development and the formulation of the optimization problem. 

Brief details are provided to generate the classification 
procedure.  

2.1 SMB-PLS modeling 

To set up the TZ-MVS solution, two models are required as 
mentioned previously. Opting for SMB-PLS models is 
motivated by its sequential multi-block structure including 
block orthogonalization. It explains the variation in the final 
quality attributes 𝐘  using B predictor blocks 𝐗௕  which are 
ordered to follow a sequential pathway. The raw material 
properties 𝐙 = 𝐗ଵ are considered before the manipulated 
variables 𝐗୑୚ = 𝐗ଶ, and the process measured variables 
𝐗୫ = 𝐗ଷ when making the prediction of Y. The 
orthogonalization performed by the algorithm extracts the 
correlated variations between blocks 𝐗෡௕

ୡ୭୰୰ and the orthogonal 
information in subsequent blocks 𝐗௕

୭୰୲୦. This isolate variations 
generated by control actions (i.e. feedback/feedfoward). The 
SMB-PLS regression is defined mathematically by the 
following equations:  

𝐗௕ = 𝐓୘𝐏௕
ᇱ + 𝐄௕ (1) 

 
𝐘 = 𝐓୘𝐂ᇱ + 𝐅 (2) 

 
where 𝐏௕ and 𝐂 are the loading matrices associated 
respectively with 𝐗௕  and Y, while 𝐄௕ and F are the residual 
matrices. For each new observation, the super-scores 𝐓୘ need 
to be calculated to make predictions: 
 

𝐓𝐓൫: , ∝ୡ,௕൯ = ൫𝐗௕ − 𝐗෡௕
ୡ୭୰୰൯𝐑ୠ = 𝐗௕

୭୰୲୦𝐑௕ (3) 
 
using the weighted matrix 𝐑௕  defined in Paris et al. [5]. The 
∝ୡ,௕ parameter provides the range of rows to consider each 
time equation 3 is applied, since it needs to be repeated b times 
to consider the deflation of the predicted correlation 
information:  

𝐗෡௕
ୡ୭୰୰ =  𝐗ୠ − ෍ 𝐓୘൫: , ∝ୡ,௝൯𝐏௕

ᇱ

௕ିଵ

௝ୀଵ

൫: , ∝ୡ,௝൯ (4) 

 
Compared to PLS, SMB-PLS allows choosing a different 
number of components A (i.e. latent variables) for each of the 
b blocks. The number of components is determined either by a 
cross-validation or using an external dataset, and depends on 
how the model is used. For classification (i.e. steps 2 and 6 of 
TZ-MSV), the number of components is determined based on 
classification metrics, such as accuracy. If the model is used 
for making predictions, like in step 4, the number of 
components is chosen based on its predictive ability quantified 
by the Q² statistic or the root mean squared errors of prediction 
RMSEP.  
 
The TZ-MVS approach requires the use of limits on two 
statistical metrics associated with the SMB-PLS model. The 
squared prediction error for block b defined as: 
 

SPE୶ౘ,௜ = 𝐞୶ౘ,௜𝐞୶ౘ,௜
ᇱ = ൫𝐱ୠ − 𝐱ොୠ,௜൯൫𝐱ୠ − 𝐱ොୠ,௜൯

ᇱ
(5) 

 
allows to assess the consistency of the correlation structure. An 
upper control limit can be set using a 𝜒ଶ distribution as defined 

Figure 2. TZ-MVS methodology flowsheet  
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by Nomikos and MacGregor [8]. An upper control limit on the 
Hotelling T² (HT2) as proposed by Wierda [9]  is used for 
detecting extrapolation and outliers. The HT2 value for an 
observation i is calculated as follows: 

HT2௜ = ෍ ቆ
𝐓୘(𝑖, 𝑎)

𝑠௔

ቇ

ଶ஺

௔ୀଵ

(6) 

 
where 𝑠௔ is the standard deviation of the super-score obtained 
in the model calibration phase.  

2.2 Optimization in the SMB-PLS latent space  

To set the second limit in the super-score space (i.e. step 5 of 
TZ-MVS approach), new class labels are required. They are 
obtained by determining if a solution to an optimization 
problem exist for each lot rejected by the multivariate 
specification region, considering the process operates at 
nominal conditions (step 3 of TZ-MSV).  

The objective function of the optimization problem is defined 
based on plant objective such as maximizing profit under 
constraints. The cost of modifying the operating conditions 
should be considered. The optimization problem used to 
determine the operating conditions 𝐱୑୚

୬ୣ୵ for a new lot of RM 
are subject to constraints divided in five parts: 
 

max
𝐱౉౒

౤౛౭
𝑓( 𝒚ෝ୬ୣ୵, 𝐳୬ୣ୵, 𝐱୑୚

୬ୣ୵,  𝐱ෝ ୫
୬ୣ୵ ) 

 subject to                                                                              

I.

⎩
⎪
⎨

⎪
⎧ 𝐭୲

୬ୣ୵ = eq. 3 = 𝑓(𝐳୬
୬ୣ୵, 𝐱୑୚,୬

୬ୣ୵ , 𝐱୫,୬
୬ୣ୵) ∀ 𝑏 = 1,2,3

𝒚ෝ୬
୬ୣ୵ = 𝐭୲

୬ୣ୵𝐂ᇱ                                                                             
    

𝐱ො୑୚,୬
୬ୣ୵ = 𝐭୲

୬ୣ୵𝐏୑୚
ᇱ                                                            

𝐱ො୫,୬
୬ୣ୵  = 𝐭୲

୬ୣ୵𝐏୫
ᇱ                                                              

   

II. ൞

𝐱୑୚,୬
୬ୣ୵ = (𝐱୑୚

୬ୣ୵ − 𝐱୑୚,୫ୣୟ୬)/𝐱୑୚,ୱ୲ୢ/ඥ𝐽

 𝐱ෝ ୫
୬ୣ୵ =  𝐱ො୫,୬

୬ୣ୵ × 𝐱୫,ୱ୲ୢ × √𝑁 + 𝐱୫,୫ୣୟ୬

                   

 𝒚ෝ୬ୣ୵ =  𝐲ො୬
୬ୣ୵ × 𝐲ୱ୲ୢ + 𝐲୫ୣୟ୬                                       

                               

  

 

III.

⎩
⎨

⎧
SPE୶౉౒

= (𝐱ො୑୚
୬ୣ୵ − 𝐱୑୚

୬ୣ୵)ଶ ≤ SPE୙େ୐

HT2 = ෍ ቆ
𝐭୲

୬ୣ୵(𝑎)

𝑠௔

  ቇ

ଶ

≤  HT2୙େ୐

஺ౣ౗౮ 

௔ୀଵ 

IV. ൜
 𝛒୫୧୬  ≤  𝒚ෝ୬ୣ୵ ≤ 𝛒୫ୟ୶ 

  𝑓(𝒚ෝ୬ୣ୵, 𝐱୑୚
୬ୣ୵ , 𝐱ො୫

୬ୣ୵, 𝐳୬ୣ୵) ≤ ℵ
            

     

                          

                      

 V. { Փ୫୧୬ ≤  𝐱୑୚
୬ୣ୵ ≤ Փ୫ୟ୶                                                        

(7) 

 
The equality constraints (I, II) define the model, and includes 
the normalization and block scaling. The inequality constraints 
(III) ensure the solution is consistent with the model structure. 
Part IV defines the zone of acceptability of the final product. 
It could either be limits on final properties or a function that 
take into account the economics. The last part (V) is required 
to set the bounds on the optimized manipulated variables. 
More details on the optimization problem are available in [5].  

2.3 Classification procedure  

Steps 2 and 6 of the TZ-MVS approach require to establish 
limits to discriminate between observations that meet the final 
quality criteria and those that do not, based on predetermined 

class label. These limits are defined in the super-score space of 
an SMB-PLS model, which only retains the components 
associated with the Z block. The choice of the optimal limit is 
made in two steps: first, the shape of limit is determined 
followed by the selection of the optimal number of 
components.  
 
To achieve this, as many models as the number of Z-variables 
are calibrated. For each of them, a supervised learning 
approach is used to solve the binary classification problem. To 
facilitate the use of the resulting limit (i.e. a direct inequality), 
discriminant analysis is considered. Applying this technique 
requires to determine the best shape of discriminant between 
linear, quadratic and their alternatives (i.e. pseudo or 
diagonal). Using a grid search approach and a 10-fold cross-
validation, the best discriminant is determined for each model. 
If the classes are unbalanced, a misclassification cost should 
be considered to determine the most appropriate discriminant.  
 
For each discriminant retained, the classification performance 
is calculated using the validation dataset to determine the ideal 
number of components. The choice is based on the plant's 
specific objectives, e.g. maximizing accuracy or minimizing 
the number of false positives. For the multivariate 
specification region considering nominal process conditions 
(step 2), the performance should be calculated using the whole 
model structure, including the discriminant as well as the 
limits on SPEz and HT2. For step 6, only the discriminant is 
considered since the class labels were determined using these 
limits.     

3. CASE STUDY  

The TZ-MVS concept is demonstrated using a grinding-
flotation plant simulator calibrated on industrial data [7]. The 
process shown in Figure 3 consists first of reducing the particle 
size of crushed galena using two grinding stages: a high-
pressure grind rolls (HPGR) and a ball mill (BM), respectively, 
in closed loop with a wet screen, and an hydrocyclone cluster. 
The grinding product coming from the cyclone overflow feeds 
the flotation circuit, which separates and concentrates the lead 
(i.e. the valuable mineral).  The process is well instrumented 
and proportional-integral-derivative (PID) control loops are 
implemented to maintain the process around the nominal 
operation point.  
 
The aim is to define a TZ-MVS that allows to determine 
whether or not an ore deposit with specific properties should 
be mined, given a minimum profit of $5175/h after processing. 
Since a RM specification region needs to be defined, variations 
between ore lots are simulated by modifying three ore 
properties. A total of 300 lots are processed at nominal 
conditions (i.e. the setpoints in gray in Figure 3). The lots are 
split in three groups of 100 observations to form a calibration, 
a validation and a test dataset. Each of them maintains the 
same class ratio of 2:1. The grade of the ore (𝑧ଵ) varies 
between 12.5% and 13.5% while the average grain size (𝑧ଶ) 
ranges between 40 and 50 µm. A positive correlation between 
these two variables is set at 90%. The third property defined 
the ease with which rock breaks. It is the hardness factor (𝑧ଷ), 
which varies between 0.85 and 1.15, and is negatively 

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

810



correlated at 80% with ore grade. These three properties form 
the Z-matrix.  
Two manipulated variables are considered: the feed flow rate 
𝑤௙ as well as the force applied to the grinding rolls of the 
HPGR, since they influence the profit of the plant, and the final 
production. At nominal conditions, they are fixed at 117t/h and 
3.5N/mm². Modifying the force over 3.5N/mm² should be 
performed only if required because mechanical drawbacks, 
such as increased stress and wear might occur [10]. Since 
excitation of these variables is required to build the predictive 
model, a 3² factorial design (i.e. [98, 117, 136] t/h and [2.6 3.8 
5] N/mm²) is performed to supplement the calibration dataset. 
To model non-linear relations existing between RM properties 
and manipulated variables, the DOE is repeated with three 
groups of ore lots having different properties. For each lot 
processed, the specific force and the flow rate are stored in the 
𝐗୑୚-matrix. It also includes the interaction 𝑧ଷ𝑤௙ and the 
quadratic term 𝑤௙

ଶ. 
 
The block 𝐗୫ contains the measurements of the power drawn 
by each mill (𝑞ு௉ீோ , 𝑞஻ெ) while block Y contains the two final 
properties: the concentrate grade 𝑔ୡ and the concentrate 
flowrate 𝑤ୡ. Both are required to calculate the economic 
criterion J used in the objective function, and to define the 
class labels. It consists of the net value of flotation (i.e. the net 
smelter return where the operational costs are removed) with a 
penalty for ore losses in tailings. For the process illustrated in 
Figure 3, the economic criterion is: 
 

𝒥 = 4533𝑔௖𝑤௖ − 150.05𝑤௖ − 46.65𝑤௙ − 2165𝑤௙𝑧ଵ

−0.5946𝑞୆୑ − 0.3𝑞ୌ୔ୋୖ − 4533 (8)
 

where the numerical values of the coefficients were obtained 
from the economic parameters available in Thivierge et al. [7].  
 

4. RESULTS AND DISCUSSION  

This section focuses on presenting the result by illustrating 
each step of the TZ-MVS approach defined in Figure 2. Prior 
to defining the multivariate specification regions at nominal 
process conditions, the calibration dataset containing 100 
observations is combined with the DOE data to generate the 
different models. A total of three SMB-PLS models are 
calibrated (A = 1,2,3), since the maximal number of 
components that can be retained is equal to the number of raw 

material properties considered in this case study. As the TZ-
MVS is defined to ensure a minimal profit of $5175/h, class 
labels are generated using this threshold. As mentioned in 
section 2.3, the optimal shape of discriminant for each model 
needs to be determined. A misclassification cost is considered 
to counterbalance the 2:1 class ratio. For the three models, the 
diagonal quadratic discriminant gives the best cross-validation 
performance. This type of discriminant considers a diagonal 
covariance matrix that may vary among classes. For each 
model, the resulting discriminant is coupled with the 95% 
limits on the SPEz and HT2 to generate the specification 
region. Table 1 provides the performance calculated with the 
validation dataset to determine the optimal number of 
components. The discriminant alone leads to similar 
performance, i.e. 12 false negatives. Adding the limits on SPEz 
and HT2 explains the performance difference. Even if a 
decrease in performance occurs, the limits on SPEz and HT2 
are required to ensure a correct use of the model. It should be 
noted that when using the specification, if it suggests rejecting 
a lot solely on the basis of not meeting the limit on SPEz or 
HT2, a case-by-case decision could be taken. If a certain level 
of risk can be accepted, processing this lot can be used to 
enhance the model and the specification regions (i.e., a 
designed experiment). For the case study a conservative (i.e. 
no risk) approach is considered. Opting for one component 
leads to maximizing the accuracy with no false positive (i.e. 
predict an unprofitable lot as profitable). Thus, the nominal 
POC specification region relies on a diagonal quadratic 
discriminant developed in the latent space of a one-component 
SMB-PLS model.  

Table 1. Classification performance assessed on a validation 
dataset – Specification at nominal conditions [Specification 
region/Discriminant alone] 

 

After establishing the specifications at nominal conditions, the 
optimization problem needs to be set up to generate the new 
class labels (i.e. TZ-MSV step 5). Using the same calibration 

Comp. 
Metrics 

1 2 3 

Accuracy [%] 86 82 83 
# FP [obs.] 0/0 0/0 0/0 
# FN [obs.] 14/12 18/12 17/12 

Figure 3. Grinding-flotation plant simulator 
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dataset that includes the DOE, a second model is calibrated, 
where components associated with block XMV and Xm are 
considered. Cross-validation results show that the highest Q²Y 
value is obtained using 𝐴୸ = 3 and 𝐴ଡ଼౉౒

= 4. Adding 
components associated with Xm do not improve the predictive 
ability of the model (i.e., 𝐴ଡ଼ౣ

= 0). The 99% limits on SPExm 
and HT2 from the resulting SMB-PLS model are calculated to 
set the bounds in the third section in equation 7. Since the goal 
is to achieve at least $5175/h, the fourth section includes an 
inequality based on the economic criterion (equation 8). The 
same equation is used as the objective function.  

The new-class labels are obtained by solving the optimization 
problem for the 39 observations in the calibration dataset that 
were rejected based on the multivariate specifications at 
nominal conditions. The ones that did not respect the limits on 
SPE and/or HT2 are not considered since they are inconsistent 
with the model structure. The optimization problem suggests 
that 18 lots should lead to a profit of at least $5175/h while 21 
should be rejected. The same approach is used for the 
validation dataset. From the 45 observations that fail to meet 
the threshold based on the multivariate specifications at 
nominal conditions, a total of 22 lots could be accepted if POC 
are adjusted.  

Using the 39 observations from the calibration dataset, and 
their new class labels, a discriminant is calibrated in the super-
score space of each SMB-PLS model built with only Az 
components, as developed previously (i.e. during the 
multivariate specification at nominal condition step). Cross-
validation results reveal that the optimal shape of discriminant 
depends on the model. Quadratic discriminant performs better 
with the model with one or two components, while linear 
discriminant gives better results with three components. The 
classification performance of these three discriminants is 
compared to determine the optimal one using the validation 
dataset and the new class labels. Table 2 shows that two 
discriminants give the same accuracy, but that their 
misclassification errors are different. The quadratic 
discriminant defined in the subspace of the one-component 
SMB-PLS model allows reducing the number of false 
positives compared with the linear discriminant. However, this 
is at the expense of adding a false negative. In this case, the 
decision should be based on plant objectives: accepting the risk 
of processing a lot that won’t reach the threshold (i.e. 
accepting FP) or opting for a more conservative decision, and 
reject a lot that can potentially yield the desired profit (i.e. 
accepting more FN). For the case study, conservative decisions 
were considered. Thus, the quadratic discriminant defined in 
the latent space of the one-component SMB-PLS model is used 
to define the second limit.  

 

The resulting TZ-MVS for this case study is defined as:  

⎩
⎪
⎪
⎨

⎪⎪
⎧ ൬

𝑡்

1.721
൰

ଶ

≤ 3.9472                                                      

෍൫𝑧௜ − 𝑡୘𝑝௭,௜൯
ଶ

ଷ

௜ୀଵ

≤ 0.2308                                       

And/or ൤
𝑡୘ ≤ 0.41                                                           
𝑡୘ ≤ 0.96 → requires adjusting POC        

(9) 

where 𝑝௜  represents the ith element of the loading vector of 
block Z (𝐩୸ = [0.46 −0.48 −0.47]). If the first three 
inequalities are respected, the lot is accepted directly. In case 
the third limit is violated, but the fourth is respected, the lot is 
accepted under the condition that POC are adjusted. 

A test dataset is used to establish the final classification 
performance of the TZ-MVS represented by equation 9. This 
ensures that the defined limits work well with new data never 
seen in calibration or decision-making. Table 3 presents the 
performance of each step while Figure 4 shows the final TZ-
MVS for the test dataset. The three background colors in 
Figure 4 correspond to the different decisions: i.e., accept 
(green), reject (red) or accept with POC modification (blue). 
The green squares and the red triangles represent the true class 
labels associated respectively with accept (class 0) and reject 
(class 1). For each lot that is rejected based on the specification 
limits based on nominal process conditions, a grid search 
approach is performed to identify all the lots that meet the 
threshold to generate the true label for class 2 “accepted with 
POC modifications”. They are represented by the blue dots. 
The five black stars indicate the lots that were rejected due to 
violation of the SPE and/or HT2 limits. Of these, four are 
among the 12 false negatives specified in the Table 3. The 
eight others are represented by the gray asterisks. The red 
triangles in the upper part of the blue zone show the four false 
positives. The global accuracy for the proposed method is 
92%. 

For the case study, the TZ-MVS performs well introducing the 
third zone instead of running the optimization for all lots 
rejected by the specification limits leads to a small decrease in 
the performance (i.e. 4%) compared to the MVSO as shown in 
Table 3. This is caused by the four false positives. All in all, 
from the 39 lots that were rejected on the basis of the 

                 Type: 
                 Comp. 
Metrics 

Quadratic 
1 

 

Quadratic 
2 

 

Linear 
3 
 

Accuracy [%] 93.3 91.1 93.3 
# FP [obs.] 2 2 3 
# FN [obs.] 1 2 0 

Figure 4. Representation of the TZ-MSV for the test 
dataset 

Table 2. Validation classification performance – 
Specification at modified POC 
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multivariate specification at nominal process conditions, a 
total of 14 are accepted upon adjusting operating conditions. 
This represents an increase of 18% compared with operating 
at fixed nominal conditions. The use of limits instead of 
solving each time the optimization problem facilitates the use 
of the decision tool when a new lot of RM is available from 
the suppliers. It should be noted that the size of the region 
associated with accept – modification of POC (i.e. blue area in 
Figure 4) depends on the flexibility of the process to 
accommodate a wide range of RM properties, and the impact 
of these modifications on the economic criterion. If the range 
of variations in operating conditions is very small or if the 
effect on the economic criterion is insignificant, this may result 
in a null blue zone may result.   

Table 3. Classification performance for the test dataset 

Step 
Metrics 

Spec Opt TZ-MVS MSVO 

# Observations 100 39 100 100 
Accuracy [%] 88 89.7 92 96 

# FP [obs.] 0 4 4 0 
# FN [obs.] 12 0 4 4 

 

5. CONCLUSIONS 

The objective of this paper was to demonstrate that the 
utilization of the decision scheme proposed by Paris et al. [5] 
which considers multivariate specification regions for 
incoming raw materials for a process operating at nominal, and 
solving an optimization problem to adjust process operation 
when needed can be simplified. The proposed solution consists 
of using a second limit in the super score space of an SMB-
PLS model instead of solving an optimization problem to 
assess if the lot of RM can be accepted upon using modified 
process operating conditions. A grinding-flotation plant 
simulator is used to illustrate the development of this tool, 
which determines if processing a lot of ore is economically 
viable. The resulting three-zone multivariate specification 
region is defined using a one-component SMB-PLS model that 
relates the three ore properties, the two manipulated variables 
(i.e. force applied on the grinding rolls and the feed flowrate) 
and the energy consumption of both mills to the final quality 
attributes known as the concentrate grade and flowrate. The 
region consists of a diagonal quadratic discriminant adjusted 
in the latent space of the model, combined with 95% limits on 
SPEz and HT2, to determine the acceptability of a lot using 
nominal process conditions. In addition, a quadratic 
discriminant is defined in the same subspace to generate the 
zone where a lot can be accepted upon adjusting process 
operating conditions. For the proposed case study, the 
accuracy calculated on a test dataset is 92%. Compared with 
the original method, the number of false positives increase 
slightly, but the performance remains similar.  

Future works will focus on testing the proposed approach 
using an industrial case study. Before developing this decision 
tool in a new context, it would be necessary to ensure that the 
level of excitation in the raw material properties and 
manipulated variables is sufficient to define specifications and 

allows optimization of operating conditions. The uncertainty 
propagation will also be investigated to see if the performance 
can be improved.  
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