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Abstract: One challenge when using linear model predictive control (MPC) is that model mismatch and ill-

conditioned gain matrices can lead to undesirable aggressive controller behavior. To address this issue, we 

propose improvements to an existing offline method for gain-matrix conditioning. The proposed algorithm 

identifies problematic manipulated variables (MVs) with correlated effects on controlled variables (CVs) and 

solves a constrained linear least-squares optimization problem to adjust the problematic gains. Additionally, the 

proposed algorithm prevents the optimizer from switching the signs of some gains and allows control 

practitioners to specify trusted key gains that should be held constant. We also extend the method to condition 

gain submatrices in scenarios where some of the CVs may temporarily be eliminated from the control problem. 

To illustrate the effectiveness of the proposed algorithm, we present a case study involving industrial fluidized 

catalytic cracking. 
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1. INTRODUCTION 

Linear model predictive control (MPC) is widely used in 

multivariable advanced process control applications (Darby & 

Nikolaou, 2012; Qin & Badgwell, 2003). MPC uses gain 

matrices to describe steady-state influences of manipulated 

variables (MVs) on controlled variables (CVs). These gain 

matrices may be ill-conditioned if some MVs have highly 

correlated effects on the CVs. When there are some nearly, but 

not perfectly, collinear columns in the gain matrix, the MPC 

may act as if there are more degrees of freedom available than 

there really are. The MPC may attempt to exploit these 

apparent degrees of freedom, resulting in undesirable control 

performance if the actual plant behavior does not perfectly 

match the model (Marlin, 2015; Seborg et al., 2016).  

 

Several methods are available to prevent issues due to ill-

conditioned gain matrices, such as Input Move Suppression 

(IMS), Singular Value Thresholding (SVT) methods and 

Relative Gain Array (RGA) methods (Hall et al., 2010; Zheng 

et al., 2007; Zheng et al., 2017). Recently, Sanborn et al. 

(2023) proposed an orthogonalization-based method to 

identify and adjust nearly collinear columns in gain matrices, 

thereby avoiding aggressive MPC behaviour when there is a 

plant-model mismatch. Their approach detects problematic 

MVs with little independent influence on the CVs and adjusts 

the gains of the problematic MVs (Sanborn et al., 2023).  

 

We propose improvements to Sanborn’s algorithm and 

develop an approach for scenarios where the MPC considers 

only a subset of CVs of the original gain matrix. Section 2 

provides background on Sanborn’s algorithm. Section 3 

presents the proposed improvements and an approach for 

conditioning subsets of the full gain matrix. In Section 4, an 

industrial fluidized catalytic cracking case study is used to test 

the proposed algorithms. Finally, conclusions are provided in 

Section 5. 

2. BACKGROUND 

In Sanborn’s algorithm, the MVs are ranked from most 

influential to least influential based on their steady-state 

effects on the CVs. During the ranking process, the algorithm 

identifies problematic MVs that have highly correlated 

influences with higher-ranked MVs. A MV is considered 

problematic if less than 5% of its overall influence is 

independent of the influence of higher-ranked MVs on the 

importance list (Sanborn et al., 2023).  

 

Control practitioners have the flexibility to adjust this 5% cut-

off value based on their confidence in the accuracy of the 

identified gains. For example, a smaller cut-off value of 3% 

could be used if they highly trust the gains identified from 

plant experiments. The ranking algorithm uses a scaled version 

𝑲𝑠 of the steady-state gain matrix, in which columns 

correspond to MVs and rows correspond to CVs. The 

𝑖, 𝑗𝑡ℎ  element of 𝑲𝑠 is:  

 

                                  𝐾𝑠 𝑖𝑗 =
𝛥𝐶𝑉𝑖

𝛥𝑀𝑉𝑗
 
𝑠𝑗

𝑢

𝑠
𝑖
𝑦                              (1) 

 

where scaling factor 𝑠𝑗
𝑢 is the typical size of an important 

change in the 𝑗𝑡ℎ  MV and scaling factor 𝑠𝑖
𝑦

 is the typical size 

of an important change in the 𝑖𝑡ℎ CV. These scaling factors are 

selected by control practitioners based on their process 

experience. This scaling leads to gains that are dimensionless 

and easily comparable (Sanborn et al., 2023). Sanborn’s 

algorithm for ranking and identifying problematic MVs is the 

same as the proposed algorithm in Table 1, except for step 8. 

We modify step 8 by introducing a lower cut-off value of 

0.0001%. This cut-off helps to identify MV columns that are 

perfect linear combinations of other higher-ranked MVs. The 

benefits of using this lower cut-off are described in detail later 

in the Proposed Methodologies and the Case Study.  
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After ranking the MVs and determining which ones are 

problematic, Sanborn’s gain-conditioning algorithm fits each 

problematic column as a linear combination of the higher-

ranked non-problematic columns. A constrained linear least-

squares optimization problem is solved to ensure that zero-

valued gains in the problematic column remain at zero after 

conditioning. In Sanborn’s algorithm, conditioned gains are 

not allowed to decrease in magnitude from their original values 

to ensure the robustness of the MPC. 

 

3.  PROPOSED METHODOLOGIES 

The proposed improvements to Sanborn’s algorithm are 

outlined in Tables 1, 2 and 3. Table 1 summarizes the updated 

algorithm proposed for ranking MVs and for identifying 

problematic gains in 𝑲𝑠. Table 2 provides an updated 

algorithm for adjusting the problematic gains. Table 3 provides 

a new algorithm where submatrices of 𝑲𝑠 are considered to 

prevent conditioning problems when the MPC disregards 

some of the CVs (e.g., due to sensor failure).  

 
Table 1. Updated orthogonalization-based deflation algorithm for 

ranking MVs (Sanborn et al., 2023). 

Steps 1 to 7 in Table 1 are identical to Sanborn’s algorithm. In 

step 8, a proposed lower cut-off value of 0.0001% is 

introduced to prevent previously conditioned columns from 

being re-identified as problematic when submatrices are 

considered for conditioning using the algorithm in Table 3.  

In Table 2, we propose three improvements to Sanborn’s gain 

conditioning algorithm: i) a new constraint in the linear least-

squares optimization problem to prevent gains from switching 

signs during conditioning; ii) a new constraint that can be used 

to hold key gains constant during conditioning; and iii) an 

updated constraint to permit conditioned gains to be smaller 

than their original values by a practitioner-specified factor. 

These three improvements are implemented in step 1 of the 

proposed gain conditioning algorithm shown in Table 2. 

 
Table 2. Proposed algorithm for conditioning gains corresponding to 

the problematic 𝑗𝑡ℎ  MV. 

1. Calculate the magnitude (Euclidean norm) of each 

column of the scaled gain matrix, 𝑲𝑠. 

2. Select the column with the largest magnitude. This 

column corresponds to the most influential MV.   

3. Put the selected column into matrix 𝑿𝑘. When one MV 

has been selected, k=1, and the matrix will contain only 

one column. When subsequent MVs are selected, 

𝑿𝑘  will contain additional columns. 

 

4. Calculate 𝑲̂𝑠𝑘 , the least-squares prediction of the scaled 

gain matrix, using the information in 𝑿𝑘: 

                        𝑲̂𝑠𝑘 =  𝑿𝑘(𝑿𝑘
𝑻𝑿𝑘)

−𝟏
𝑿𝑘

𝑻𝑲𝑠              (1.1)                 

5. Calculate residual matrix 𝑹𝑘: 

                           𝑹𝑘 = 𝑲𝑠  −  𝑲̂𝑠𝑘                           (1.2) 

 

6. Calculate the magnitudes of each column of 𝑹𝑘. The 

column with the largest magnitude corresponds to the 

next-most-influential MV. Check if the column in 𝑹𝑘 

corresponding to this MV has a magnitude that is at 

least 5% of the corresponding column magnitude in 𝑲𝑠. 

 

7. If the residual column magnitude from step 6 (or step 

8) meets the 5% criterion, augment matrix 𝑿𝑘 by 

including the new column. This augmented matrix is 

𝑿𝑘+1.   

 

8. If the residual magnitude considered in step 7 is 

between 0.0001% and 5% of the corresponding column 

magnitude in 𝑲𝑠, put the corresponding MV on the list 

of problematic MVs requiring conditioning. If 

unranked MVs remain, then select the MV 

corresponding to the next-largest column in 𝑹𝑘 as the 

next-most-influential MV and go to step 7. 

 

9. Advance iteration counter k by 1 and repeat steps 4-8 

until all the MVs are ranked, or singularity problems 

are encountered when inverting 𝑿𝑘
𝑻𝑿𝑘. 

1. Solve the following optimization problem where 𝑲𝑠𝑗  is 

the problematic jth column in the scaled gain matrix 𝑲𝑠: 

                          min
𝛽𝑗

‖𝑿𝑘  𝜷𝑗 − 𝑲𝑠𝑗‖
2
                      (2.1)                      

  subject to: 

 

                   𝑿𝑘𝑖  𝜷𝑗 = 0   for all i where 𝐾𝑠 𝑖,𝑗 = 0        (2.2)         

                     𝐾𝑠 𝑖,𝑗  𝐾𝑠 𝑖,𝑗  ≥ 0   for all i                   (2.3)      

                      𝑿𝑘𝑖  𝜷𝑗 = 𝐾𝑠 𝑖,𝑗
∗    for all i                   (2.4)                    

                          |𝐾𝑠 𝑖,𝑗| ≥ 0.95 |𝐾𝑠 𝑖,𝑗|   for all i            (2.5)                

 

In Equation (2.1), 𝑿𝑘 is the matrix obtained from the 

algorithm in Table 1 after the first 𝑘 MVs have been 

ranked. 𝑿𝑘 contains the 𝑘 columns from 𝑲𝑠 

corresponding to the non-problematic MVs that are 

higher ranked than the MV in the 𝑗𝑡ℎ  column.  

 

In Equations (2.2) and (2.4),  𝑿𝑘𝑖  is a row vector 

corresponding to the 𝑖𝑡ℎ row in 𝑿𝑘. In Equations (2.2) 

to (2.5), 𝐾𝑠 𝑖,𝑗 is the 𝑖𝑡ℎ gain of the 𝑗𝑡ℎ  problematic MV 

and 𝐾𝑠 𝑖,𝑗 is the 𝑖𝑡ℎ gain in the conditioned column 𝑲̂𝑠𝑗. 

 

2. If the optimization problem in step 1 is feasible, use the 

least-squares parameter estimates 𝜷̂𝑗 from step 1 to 

obtain a conditioned column 𝑲̂𝑠𝑗: 

                                 𝑲̂𝑠𝑗 = 𝑿𝑘𝜷̂𝑗                          (2.6)                  

and calculate the percent change of the conditioned 

gain 𝐾𝑠 𝑖,𝑗 from the corresponding original gain 𝐾𝑠 𝑖,𝑗 

for each element in the 𝑗𝑡ℎ  column. 

                      % 𝑐ℎ𝑎𝑛𝑔𝑒 = 100 
𝐾̂𝑠 𝑖,𝑗−𝐾𝑠 𝑖,𝑗

𝐾𝑠 𝑖,𝑗
             (2.7)         

Flag the conditioned gain if % 𝑐ℎ𝑎𝑛𝑔𝑒 > 20% and ask 

the control engineer to decide whether to accept the 

conditioning or keep the original column of scaled 

gains. 
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Equations (2.1) and (2.2) remain the same as the corresponding 

equations in Sanborn’s algorithm. Equation (2.3) is the new 

constraint used to preserve the signs of the gains after 

conditioning. The product on the left-hand side of Equation 

(2.3) is always positive when 𝐾𝑠 𝑖,𝑗 and the corresponding 

conditioned gain 𝐾𝑠 𝑖,𝑗  have the same sign. Although there may 

be considerable uncertainty about the value of a small steady-

state gain, we believe that control practitioners are certain 

about the signs of the gains used in their MPC applications. 

Otherwise, they would opt to set a small uncertain gain to zero. 

Sometimes, control practitioners may want to select important 

gains, which they believe to be accurate, and specify that they 

should remain fixed during conditioning. The new constraint 

in Equation (2.4) ensures that a well-known gain 𝐾𝑠 𝑖,𝑗
∗  

(corresponding to the 𝑖𝑡ℎ CV and 𝑗𝑡ℎ MV) will be held constant 

when other gains are adjusted.  

The new constraint in Equation (2.5) is proposed so that small 

reductions in magnitude between conditioned gains 𝐾𝑠 𝑖,𝑗 and 

the original gains 𝐾𝑠 𝑖,𝑗 are permitted. As recommended by our 

industrial sponsor, we set the minimum ratio at 0.95 in 

Equation (2.5) to ensure that the optimizer does not decrease 

the magnitude of any conditioned gain by more than 5% of its 

original value. This minimum ratio of 0.95 leads, on average, 

to smaller adjustments than the ratio of 1.0 used in Sanborn’s 

gain conditioning algorithm.  

 

In step 2 of the algorithm in Table 2, updated values are 

computed for gains in the 𝑗𝑡ℎ column of 𝑲𝑠. If the magnitude 

of the change in any calculated gain is more than 20% of the 

original gain, this gain is flagged so the control engineer can 

decide whether to keep the original gain or accept the 

conditioned value. The 20% threshold was suggested by our 

industrial sponsor and could be modified to suit the desires of 

other practitioners.   

 

The new algorithm in Table 3 is proposed to ensure proper 

conditioning of gain submatrices when some of the variables 

are removed from the MPC optimization problem. Sometimes, 

MVs are removed when they are set manually by the operator 

or when valves or heaters are out of service. Also, CVs may be 

removed from the MPC problem by higher-level real-time 

optimization (RTO) or linear program (LP) applications 

(Elnawawi et al., 2022). CVs may also be removed when 

certain sensors are not available. 

 

When MVs are temporarily eliminated from the control 

problem, the corresponding columns are eliminated from the 

gain matrix. Similarly, when CVs are eliminated, the 

corresponding rows are eliminated. Removing columns will 

not cause a well-conditioned gain matrix to become ill-

conditioned (Sanborn et al., 2023). However, removing rows 

causes ill-conditioning when previously independent columns 

become (nearly) perfect linear combinations of other columns. 

The Case Study in this article provides several examples where 

removing CVs causes MVs to become problematic. 

In the first step in the algorithm in Table 3, the gain matrix 𝑲𝑠, 

which is often non-square (Elnawawi et al., 2022), is 

conditioned prior to removing any CVs. Also, the practitioner 

specifies 𝑟𝑚𝑎𝑥, which is the number of CVs that could 

reasonably be removed from the control problem before the 

plant operators would decide to shut off the MPC. In steps 2 to 

4, CVs are removed from the gain matrix, starting with one CV 

at a time, then progressing to two, and so on, up to 𝑟𝑚𝑎𝑥. 

Submatrices with problematic MVs are identified in step 2. 

Problematic gains in 𝑲𝑠 are replaced by conditioned gains in 

step 3. As the algorithm in Table 3 proceeds, it may encounter 

some columns that were previously conditioned and are now 

perfect linear combinations of other columns. The lower cut-

off value of 0.0001%, which appears in step 8 in Table 1, 

prevents updated columns that are now perfect linear 

combinations of other columns from showing up repeatedly as 

problematic. Examples of this situation are highlighted in the 

Case Study.  

Table 3. Proposed algorithm for selecting and conditioning subsets 

of the full gain matrix. 

 

4.  CASE STUDY 

4.1 Process description 

The proposed algorithms are applied to the gain matrix for the 

industrial fluid catalytic cracking (FCC) process shown in 

Figure 1. FCC converts heavy hydrocarbons to higher-value, 

lighter hydrocarbons like gasoline and light olefins (Bai et al., 

1. Condition the full gain matrix 𝑲𝑠 with 𝑛𝑦 rows and 𝑛𝑢 

columns using the updated MV ranking algorithm in 

Table 1 and the proposed gain conditioning algorithm 

in Table 2. Set the counter for the number of rows that 

will be removed at 𝑟 = 1 and the counter for the 

corresponding submatrices for consideration to s = 1. 

Specify 𝑟𝑚𝑎𝑥 as the maximum number of CVs that 

could be removed from the gain matrix.  

2. Select the 𝑠𝑡ℎ submatrix from 𝑲𝑠  by removing 𝑟 rows. 

Use the ranking algorithm in Table 1, where 𝑲𝑠 is 

replaced with the submatrix of interest, to determine if 

any MVs have become problematic due to removal of 

rows. If a problematic MV is detected, condition the 

gains in the corresponding submatrix using the 

algorithm in Table 2, where 𝑲𝑠 is replaced with the 

submatrix of interest.  

3. Replace each conditioned gain from the submatrix in 

step 2 in the full matrix 𝑲𝑠. If 𝑠 = (
𝑛𝑦

𝑟
), continue to 

step 4; otherwise, increase s by 1 and return to step 2 to 

consider the next possible submatrix with 𝑟 rows 

removed.  

4. If 𝑟 < 𝑟𝑚𝑎𝑥, increase 𝑟 by 1.  Set 𝑠 = 1 and return to 

step 2. 

 

5. Repeat the algorithm in steps 1 to 4, once more, with 

𝑲𝑠 replaced by the conditioned gain matrix 𝑲̂𝑠 as a 

final check to confirm that no further conditioning is 

required. Then, stop and report the final conditioned 

gain matrix. 

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

753



2019). In this case study, the FCC unit consists of a preheater, 

a reactor, a regenerator and a fractionator. The feed is heated 

in a gas-fired preheater before it enters the reactor, where it is 

mixed with a hot catalyst. Heavy hydrocarbons are vaporized 

and cracked into lighter hydrocarbon molecules in the reactor. 

The resulting vapour is separated from the spent catalyst at the 

top of the reactor. This light hydrocarbon stream flows to the 

fractionator, while the catalyst moves downward the reactor 

and enters the regenerator. Air is fed to the regenerator to burn 

off the coke layer that forms on the catalyst in the reactor. The 

catalyst is then fed back to the reactor to repeat the cycle. The 

fractionator separates the vapour into light-end products, 

naphtha, light-cycle gas oil and heavy-cycle gas oil. The MPC 

in this case study uses 8 MVs (highlighted in orange) to 

influence 13 CVs (highlighted in blue) as shown in Figure 1. 

The corresponding scaled gain matrix 𝑲𝑠 is provided in Table 

4. Details about the MVs, CVs, scaling factors and process 

dynamics are provided by Sanborn et al., 2023. 

 
 

Figure 1. FCC process considered in the case study. MVs are 

highlighted in orange, and CVs are highlighted in blue. Adapted 

from Sanborn et al., 2023. 

 

4.2 Implementation of proposed algorithms for gain 

conditioning 

First, the full 13×8 scaled gain matrix 𝑲𝑠 is analyzed to 

determine if it requires conditioning as specified in step 1 in 

Table 3. The full gain matrix is well-conditioned and does not 

contain problematic columns when all 13 CVs are considered 

by the MPC (Sanborn et al., 2023). Setting 𝑟𝑚𝑎𝑥 = 6 in this 

case study indicates that the MPC would be shut off if more 

than six CVs are excluded from the control problem. In step 2 

in Table 3, setting 𝑟 = 1 produces 13 gain submatrices for 

consideration where one of the CVs is removed from 𝑲𝑠. 

Using step 2 in Table 3, 4 of these 13 submatrices are identified 

as having problematic MVs (i.e., the submatrices with rows for 

LC95, CN95, FGP and RgP removed). Removing the row for 

LC95 from the gain matrix makes LCGO a problematic MV 

because the influence of LCGO becomes nearly collinear with 

the influence of HCGO. As shown in Figure 1 and Table 4, 

both LCGO and HCGO have influences on BLV, ResTime, 

TrayW and HC95, but LCGO has a special influence on LC95, 

whereas HCGO does not. When LC95 is removed, LCGO 

loses its special influence in the control problem. Notice that 

the column for LCGO with the gain for LC95 removed is 

nearly a perfect multiple (by a factor of 1.2) of the column for 

HCGO. The resulting conditioned gains for LCGO (obtained 

in step 2 in Table 3 using the algorithm in Table 2) are 

highlighted in green and yellow in Table 4 and are shown 

below the corresponding unconditioned gains. Notice that the 

three conditioned gains with green highlighting are close in 

value to the original scaled gains identified from plant 

experiments, but the gain highlighted in yellow (between 

LCGO and HC95) changes by 22.4%. As a result, this 

conditioned gain is flagged as prescribed in step 2 in Table 2, 

so the control engineer can decide whether this column should 

be conditioned or left in its original state. We assume that the 

control engineer decides to accept the proposed column of 

conditioned gains. The engineer may make this decision after 

judging that the relatively small gain between LCGO and 

HC95 could be quite inaccurate based on the limited step tests 

that were performed. As a result, the corresponding column is 

updated in 𝑲𝑠. 

 

It also makes sense that FrOvT is identified as problematic 

when CN95 is removed. Removing CN95 makes the influence 

of FrOvT nearly collinear with that of LCGO. When the row 

for CN95 is removed in Table 4, FrOvT loses its independent 

influence as the gain between FrOvT and CN95 is removed. 

The resulting conditioned gains for the FrOvT column are 

highlighted in green in Table 4 and are all close to their 

unconditioned values. As a result, the gain matrix 𝑲𝑠 is 

updated without requiring any input from the control 

practitioner. 

The third problematic MV identified is HtrOT, which becomes 

problematic when FGP is removed. HtrOT loses its special 

influence in the control problem when the gain between FGP 

and HtrOT is removed, making the columns for HtrOT and 

AirRegen nearly colinear. As shown in Table 4, the changes 

required to condition the gains for HtrOT are small.  

When RgP is removed from the control problem, RgRxDp 

becomes problematic because its influence is nearly colinear 

with that of RegenSV. If we had used Sanborn’s algorithm to 

condition the RgRxDp column in this situation, the optimizer 

would have switched the sign of the third gain (from 0.50637 

to −0.10315). However, the proposed algorithm determines   

that the optimization problem is infeasible because of the 

constraint in Equation (2.3), so gains of RgRxDp are not 

adjusted using step 2 in Table 2.  

 

Next, using step 4 in Table 3, we set 𝑟 = 2, which results in 

(
13
2

) = 78 gain submatrices for consideration. HCGO is 

identified as a problematic MV when ResTime and HC95 are 

both removed from the control problem. The corresponding 

optimization problem in step 1 in Table 2 is infeasible due to 

the constraint in Equation (2.5), so the column of gains is not 

updated. Using Sanborn’s algorithm, which does not include 

this constraint, would result in an undesirable outcome where 

a column of zeros replaces the gains for HCGO. 
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Table 4. Overall scaled 13×8 gain matrix. Conditioned gains are highlighted in green and yellow below the corresponding original identified 

gains. The magnitude of gains highlighted in yellow changed by more than 20% from their original identified values. 

 

 

 

MV 

 
CV 

UFeed HtrOT RegenSV AirRegen RgRxDp HCGO LCGO FrOvT 

T
ra

te
 

0.60787 
       

R
x

T
 

-18.47826 

10.50146 
 

14.62094 
    

10.75785 

S
V

D
P

 

  
-0.12096 

 
0.50637 

   

R
g

P
 

    
1.19021 

   

B
L

V
 

31.43840 

-8.84327 
 

-11.41790 
 

-12.08133 

-10.20630 -7.82886 

-8.40111 -10.4768 -8.27101 

R
es

T
im

e
 

-6.48934 

3.42219 
 

4.90284 
 

1.69378 

1.54614 1.2050 

3.607434 1.468831 1.159582 

T
ra

y
W

 

9.85357 

-1.66070 

 -2.18735  -5.11803 

-4.47517 -3.68675 

-1.60942 -4.43831 -3.50386 

F
G

P
 0.25669 

6.30792       

0.243857 

C
N

9
5

 

       0.49316 

L
C

9
5

 

      1.55958 

1.25899 

1.231233 

H
C

9
5
 

     1.07989 

0.76505 0.68038 

0.936467 0.739302 

R
b

T
 -26.37746 16.09846 

-26.93788 23.13695 

-23.48435 

   

-25.8819 17.0238 -22.9712 

R
g

C
O

 

13.09083 -8.16632 

14.54263 -11.21861 

11.45062 

   

14.00874 -8.25447 12.40118 
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Next, AirRegen is identified as problematic when both BLV 

and TrayW are removed. The conditioning algorithm 

determines that the optimization problem in Table 2 is 

infeasible due to the constraint in Equation (2.5), so the 

corresponding column remains unchanged. RgRxDp is also 

identified as problematic due to the removal of both SVDP 

and RgP. This result makes physical sense because RgRxDp 

loses its independent influence on RgP. As a result, the 

remaining influence of RgRxDp becomes nearly colinear 

with that of RegenSV. The corresponding optimization 

problem is feasible, so the column for RgRxDp is updated 

as shown by the green entries in Table 4. Recall that when 

only one CV was removed (i.e., RgP), gains for RgRxDp 

were not updated due to the infeasibility of the optimization 

problem. Now, when two CVs (i.e., SVDP and RgP) are 

removed, the corresponding optimization problem becomes 

feasible, permitting changes in the gains between RxRgDp 

and two of the CVs (i.e., RbT and RgCO). Subsequently, 

RgRxDp is identified as problematic again when several 

other pairs of CVs are removed (e.g., RgCO and RgP), but 

further updating of RgRxDp does not occur due to infeasible 

optimization problems.  

 

Setting 𝑟 = 3 yields (
13
3

) = 286 gain submatrices for 

consideration. FrOvT is identified as problematic when 

BLV, CN95 and ResTime are removed simultaneously, so 

the corresponding column of 𝑲𝑠 is updated. FrOvT is then 

re-identified as problematic three more times when other 

triples of CVs are removed. Only minor changes of < 0.05% 

are made to gains when this re-identification occurs.  

 

When 𝑟 = 4, a total of 715 gain submatrices are obtained 

for consideration. No changes are made to the gains in any 

of these submatrices because any potentially problematic 

MVs that are identified lead to infeasible optimization 

problems. Similarly, when 𝑟 = 5, no further conditioning 

occurs.  

 

Finally, setting 𝑟 = 6 results in conditioning of the gains for 

Ufeed when the following 6 CVs are removed together: 

Trate, RxT, SVDP, CN95, BLV and TrayW. When all these 

CVs are removed, the influence of Ufeed becomes nearly 

colinear with the influence of HtrOT. The updated gains are 

shown in green in Table 4. The final verification (i.e., step 

5 in Table 3) is then performed to test whether any of the 

conditioning that was applied resulted in additional 

problematic MVs. No additional problematic columns were 

identified.  

 

In total, the proposed algorithm made small adjustments to 

20 out of the 43 non-zero gains, as summarized in Table 4. 

The largest percentage change is 22.4% for the gain 

between LCGO and HC95. The average absolute value for 

the percentage change in adjusted gains is 5.16%.  

 

5. CONCLUSIONS 

A recently developed gain-conditioning algorithm was 

improved so that it is now more reliable for use in industry. 

The proposed updated algorithm ensures that the signs of all 

gains are preserved during conditioning. It also allows the 

magnitudes of conditioned gains to be slightly smaller than 

the corresponding original gains. Using the proposed 

algorithm, control engineers can now opt to hold some key 

gains constant during conditioning. Most importantly, the 

revised algorithm is able to condition subsets of the full gain 

matrix, anticipating situations where CVs may be removed 

from the MPC problem. The FCC case study demonstrates 

that the proposed algorithm can readily be applied in 

practical MPC problems with non-square gain matrices. 

Future research involving the FCC case study will include 

dynamic MPC simulations to verify the effectiveness of the 

proposed algorithms.   
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