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Abstract: Iterative learning control (ILC) has been considered a powerful strategy for repetitive
process control. However, a fundamental assumption of conventional ILC is that each cycle must
start from a predetermined fixed initial state. This assumption can be strict and challenging to
achieve in real-world industrial applications. To address the issues arising from varying initial
states, we propose an ILC framework that learns from a virtual cycle generated using historical
data. We establish three conditions for generating the virtual cycle, and theoretical results
demonstrate guaranteed convergence. To ensure the practicality of our framework, we relax one
of the conditions, enabling the virtual cycle to be generated by solving a convex optimization
problem. The effectiveness of our framework in improving control performance is verified through
an injection molding example.
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1. INTRODUCTION

Repetitive processes play a significant role in industrial
manufacturing across various sectors, including specialty
chemicals, pharmaceuticals, and polymers (Gao et al.
(2021, 2024); Lu et al. (2019)). The use of Iterative Learn-
ing Control (ILC) has gained traction as an effective con-
trol strategy for repetitive processes due to its ability to
leverage repeatability and address uncertainties according
to Bristow et al. (2006) and Ahn et al. (2007). Conse-
quently, since its initial development by Arimoto et al.
(1984), ILC has garnered considerable attention and has
been extensively studied in both theoretical and practical
contexts (Bu et al. (2017); Son et al. (2013); Amann et al.
(1996)).

In conventional ILC scheme, it is typically assumed that
the repetitive task begins from a predetermined fixed ini-
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tial state (Moore et al. (1992); Xu (2011)). However, in
practical engineering applications, achieving this condition
can often be challenging (Wei et al. (2023); Wei and Li
(2017)). For instance, in the case of a robot manipulator,
the precision of the actuator may prevent it from perfectly
resetting to the desired initial state, leading to random
variations in the initial state from one cycle to another
(Tao et al. (2020)). Similarly, in chemical production pro-
cesses, the initial temperature of a reactor can be influ-
enced by external environmental factors. These practical
requirements necessitate the development of ILC designs
that can effectively handle systems with randomly varying
initial states.

The utilization of average operator-based ILC has emerged
as an effective approach for mitigating the challenges posed
by randomly varying initial states (Li et al. (2013); Wei
and Li (2017)). Pioneered by Park (2005), the average
operator-based ILC was initially proposed as a means to
address the issue of varying initial states. Subsequently, Li
et al. (2013) conducted rigorous analyses, demonstrating
the assured convergence of tracking error in terms of
mathematical expectation. Furthermore, Li et al. (2015)
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further enhanced this method by incorporating only a
limited number of recent cycles, successfully applying it to
nonlinear systems. Wei and Li (2017), on the other hand,
introduced a weighted sum approach instead of the average
operator, thereby the control law is extended to a more
general high-order ILC form. These existing approaches
effectively alleviate the adverse effects of initial state
variations. However, they lack an adjustment mechanism
based on forthcoming cycle information. Consequently, by
harnessing the upcoming cycle information, there exists an
opportunity to further enhance controller performance.

In this paper, we propose a virtual cycle-based ILC frame-
work for systems with randomly varying initial states.
Motivated by the work of Wei and Li (2017), we introduce
the concept of generating a virtual cycle using a linear
combination of historical data. Notably, the manner in
which the virtual cycle is formed is adjusted based on the
upcoming cycle’s initial state information. The contribu-
tion of this paper can be summarized as follows.

• We propose a novel ILC framework that learns from
a generated virtual cycle. The virtual cycle is formed
by a linear combination of historical data and the
upcoming cycle’s initial state information. This ap-
proach effectively addresses the issue of initial state
variation, enhancing the effectiveness of iterative
learning.
• We have refined three conditions necessary to create
an ideal virtual cycle. Building upon these conditions,
we provide a rigorous theoretical analysis that demon-
strates the convergence of our framework.
• We provide a feasible algorithm for implementing the
virtual cycle-based ILC framework. The effectiveness
of the algorithm is verified through a numerical ex-
ample.

The remainder of this paper is organized as follows: Section
2 formulates the problem and provides the necessary
preliminaries. Section 3 presents the design of the ILC
framework, along with theoretical analysis and a feasible
algorithm for implementing our framework. The results of
the numerical example are presented in Section 4, followed
by the conclusion in Section 5.

2. PROBLEM FORMULATION AND
PRELIMINARIES

2.1 Problem Formulation

Consider the following unknown linear system
xk(t + 1) = Axk(t) + Buk(t),

yk(t + 1) = Cxk(t + 1), (1)
where x ∈ Rnx , u ∈ Rnu , y ∈ Rny are the system states,
inputs, and outputs respectively. k ∈ [1,+∞) is cycle
index, t ∈ [0, tN − 1] is the time index. A, B, and C are
the system matrices with appropriate dimension, yet their
precise values are not available.

In this paper, we consider a tracking task starting from a
randomly varying initial state. Compared to the conven-
tional ILC tracking task, the inital state xk(0) of our task
would vary randomly from cycle to cycle. Without loss of
generality, we have following assumptions on initial state.

Assumption 1. For ∀k ∈ [1,+∞), the randomly varying
initial state xk(0) is bounded by a convex hull Ω.
Assumption 2. The randomly varying initial state xk(0)
can’t be manipulated, but can be measured.

The control objective is to steer the system output to a
given reference yd(t) ∈ Rny , for t ∈ [1, tN ]. We assume
that the reference is carefully designed so that it is always
realizable. That is, for any initial state x(0) satisfying
Assumption 1-2, there exists an input sequence ud|x(0)(t),
such that

xd(t + 1) = Axd(t) + Bud|x(0)(t),

yd(t + 1) = Cxd(t + 1), (2)
holds for any t ∈ [0, tN − 1], where

xd(0) = x(0).

To quantify the control performance, we define the whole
cycle control error

ek = [e>k (1), e>k (2), . . . , e>k (tN )]> ∈ RnytN , (3)
where

ek(t) = yd(t)− yk(t). (4)
And our main task in this paper is to design an model-
free ILC controller so that ‖ek‖2 can always converge with
existence of the randomly varying initial state from cycle
to cycle.

Before facilitating the ILC design, we make the following
preparations. Define

uk = [u>k (0), u>k (1), . . . , u>k (tN − 1)]> ∈ RnutN ,

yk = [y>k (1), y>k (2), . . . , y>k (tN )]> ∈ RnytN ,

then (1) can be reorganized into lifted form
yk = Guk + Hxk(0), (5)

where

G :=


CB 0 . . . 0
CAB CB . . . 0

...
...

. . .
...

CAtN−1B CAtN−2B . . . CB

 ∈ RnytN×nutN

H :=


CA
CA2

...
CAtN

 ∈ RnytN×nx .

Similarly, define
yd = [y>d (1), y>d (2), . . . , y>d (tN )]> ∈ RnytN ,

and (4) can also be reorganized into lifted form
ek = yd − (Guk + Hxk(0)). (6)

In the following part, the design and analysis would based
on the lifted form representation given by (5)-(6).

2.2 Preliminaries on ILC

The conventional ILC laws typically involve direct learning
from the previous cycle, as described by Lee et al. (2000);
Bristow et al. (2006). A common form of these laws can
be expressed as follows:

uk = uk−1 + Lek−1. (7)
To ensure the effectiveness of the learning process, we make
the following assumption regarding the learning gain L:
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Assumption 3. A suitable learning gain L is available to
us, such that the condition

‖(I −GL)‖2 < 1

is satisfied, where I denotes the unit matrix of the corre-
sponding dimension.

However, the effectiveness of the learning mechanism de-
scribed in (7) diminishes when the system exhibits initial
state variations, leading to the introduction of additional
error.This occurs due to the relationship described by (6),
which can be extended to:
ek − ek−1 = −(G(uk − uk−1) + H(xk(0)− xk−1(0))).

(8)
By substituting (7) into (8), we obtain:

ek − ek−1 =−GLek−1 −H(xk(0)− xk−1(0)). (9)
After simple arrangement of (9), we have

ek = (I −GL)ek−1 −H(xk(0)− xk−1(0)), (10)
where the second term on the right-hand side represents
the additional error caused by the variation in the initial
state. The existence of this term implies that the control
performance may deteriorate further after the iterative
learning, thus indicating the ineffectiveness of the learning
mechanism.

The objective of this paper is to put forward an innovative
ILC framework, grounded in (7), with the purpose of
accommodating the challenge posed by randomly varying
initial states.

3. VIRTUAL-CYCLE LEARNING ILC FRAMEWORK

3.1 ILC design

From (10), it is clear that the initial state variation would
weaken the effectiveness of ILC. Assuming the system is
going to implement cycle k with an observed initial state
xk(0), the key issue is how to establish the ILC control
law in order to effectively mitigate the negative impact of
initial state variation on control performance. Therefore,
in this paper, we propose a novel ILC framework that
incorporates a novel concept of learning from a virtual
cycle. This virtual cycle is generated using historical input-
output data, with the aim of addressing the challenge
of randomly varying initial states. The virtual cycle is
desgned to share the same initial state as the upcoming
cycle k, allowing learning from such a virtual cycle to
intrinsically avoid the issue of initial state variation. As
a result, the virtual cycle shall satisfy the following condi-
tion:

x?
k(0) =

m∑
i=1

wixk−i(0) = xk(0). (11)

Here, the superscript ? indicates the generated virtual
cycle. The window size m determines the number of
historical cycles used to generate the virtual cycle. To
achieve the desired virtual cycle, we introduce weights wi

that facilitate a linear combination of the historical data.
These weights are designed to satisfy:

m∑
i=1

wi = 1. (12)

By leveraging the virtual cycle created from (11), (12), our
proposed ILC control law is in the form of

uk = u?
k + Le?k, (13)

where

u?
k =

m∑
i=1

wiuk−i, (14)

e?k =

m∑
i=1

wiek−i. (15)

To provide a comprehensive understanding of the control
law presented in (13), we leverage Lemma 1 to demonstrate
how (13) inherently learns from a virtual cycle.
Lemma 1. (Virtual cycle) For a virtual cycle, with the
initial state x?

k(0) satisfying (11) and (12), if we utilize
u?
k from (14) as the control input for this virtual cycle,

then the control error of this virtual cycle is e?k as given in
(15).

Proof. To complete the proof, we only need to prove
e?k = yd − (Gu?

k + Hx?
k(0)).

Through the lifted form system description in (6), it hold
that

ek−i = yd − (Guk−i + Hxk−i(0)). (16)
for any i ∈ [1,m]. By applying the multiplication of wi on
both sides to each equation corresponding to k − i, and
subsequently aggregating them through a weighted sum,
we can obtain
m∑
i=1

wiek−i =

m∑
i=1

wiyd − (

m∑
i=1

wiGuk−i +

m∑
i=1

wiHxk−i(0)).

(17)
With (12), we can obtain

∑m
i=1 wiyd = yd, and (17) is

intrisically
e?k = yd − (Gu?

k + Hx?
k(0)), (18)

which completes the proof.

Based on Lemma 1, it can be inferred that a virtual
cycle can be conceptualized as a previously implemented
cycle, commencing from the present initial state xk(0). By
employing iterative learning based on this virtual cycle,
the issue brought by fluctuating initial states can be
circumvented, effectively transforming the problem into a
conventional ILC tracking problem.

Simultaneously, the fundamental concept of ILC revolves
around learning from the best-performing data in histori-
cal data. However, even when subjected to the constraints
(11) and (12), there exist numerous possible combinations
for generating virtual cycles. Some of these virtual cycles
may exhibit exceedingly large control error norms ‖e?k‖2.
Learning from such cycles not only contradicts the under-
lying principle of ILC but also fails to guarantee stability.
Hence, an additional condition is introduced to refine the
generating manner of virtual cycles, as expressed by:

‖e?k‖2 ≤ ‖emmax

k ‖2, (19)
where ‖emmax

k ‖2 corresponds to the maximum norm of
control error observed within the past m cycles.

3.2 Theoretical analysis

In this part, we make theoretical analysis to the proposed
virtual-cycle learning ILC framework.
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Theorem 2. (Learning Improvement) Consider the system
given in (1), with Assumption 1-3 holding. For a chosen m,
if there exists a group of weights satisfying (11), (12), and
(19), then by implementing the virtual cycle ILC control
law as given in (13) for cycle k, it is guaranteed that

‖ek‖2 < ‖e?k‖2.

Proof. By substituting (13) into (6), we have
ek = yd − (G(u?

k + Le?k) + Hxk(0)). (20)
By Substracting (20) from (18), we can obtain

e?k − ek = G(u?
k + Le?k)−Gu?

k = GLe?k.

Through arrangement, we have
‖ek‖2 = ‖I −GL‖2‖e?k‖2.

From Assumption 3 we know ‖I − GL‖2 < 1, hence
‖ek‖2 < ‖e?k‖2, which completes the proof.
Theorem 3. (Convergence) Consider the system given in
(1), with Assumptions 1-3 holding. For a chosenm, if there
exists a group of weights satisfying (11), (12), and (19),
then by implementing the virtual cycle ILC control law as
given in (13) for cycle k, it is guaranteed that

lim
k→∞

‖ek‖2 = 0.

Proof. By combining the result of Theorem 2 and equa-
tion (19), we can establish the following inequalities:

‖ek‖2 ≤ ‖I −GL‖2‖emmax

k ‖2. (21)
With (21), we can infer that ‖ek‖2 is smaller than the
maximum value among sequence {‖ek−m‖2, ..., ‖ek−1‖2},
and further obtain that for any k

‖emmax

k+1 ‖2 ≤ ‖emmax

k ‖2. (22)
Then we observe the sequence {‖ek‖2, ..., ‖ek+m−1‖2},
assume the maximum value is ‖ek+j‖2, then it has to be
satisfied that
‖ek+j‖2 ≤ ‖I −GL‖2‖emmax

k+j ‖2 ≤ ‖I −GL‖2‖emmax

k ‖2.
Since ‖emmax

k+m ‖2 = ‖ek+j‖2, we can obtain

‖emmax

k+m ‖2 ≤ ‖I −GL‖2‖emmax

k ‖2. (23)
By the same logic of (23), for any positive integer n, we
have

‖emmax

k+nm‖2 ≤ (‖I −GL‖2)n‖emmax

k ‖2. (24)
According to (24), for any k, we have

lim
n→∞

‖emmax

k+nm‖2 = 0.

Hence, we have
lim
k→∞

‖emmax

k ‖2 = 0. (25)

Finally, combine (21) and (25), we have limk→∞ ‖ek‖2 = 0,
which completes the proof.

3.3 Derivation of the weight wi

In this part, we would discuss how to solve the weights wi.
It is important to note that we cannot always guarantee
the existence of a sequence of weights wi that satisfies
equations (11), (12), and (19). In certain cases, such as
when the initial state of the upcoming cycle lies within
the convex hull formed by the initial states of the past m
cycles, any sequence satisfying equations (11) and (12) will
automatically satisfy equation (19). However, the existence

of such a sequence depends on the past initial states and
error data.

To ensure the implementation of our proposed virtual-
cycle learning ILC framework and find a suitable sequence
of weights wi, we relax the condition that needs to be
satisfied. We establish equations (12) and (19) as hard
constraints and aim to minimize the difference between
the true upcoming initial state xk(0) and the virtual cycle
weighted initial state x?

k(0). This allows us to find the
optimal sequence of weights for our ILC implementation.
This relaxation of conditions can be interpreted as we can’t
generate a cycle with identical initial states, and we strive
to generate a cycle with the most similar initial state for
learning purposes.

Based on this concept, we can formulate a convex opti-
mization problem as follows:

min
w1,...,wm

‖xk(0)− x?
k(0)‖2

s.t. x?
k(0) =

m∑
i=1

wixk−i(0),

(12), (15), (19). (26)
The implementation of the ILC framework can be summa-
rized as Alg. 1.

Algorithm 1 Virtual cycle learning ILC framework
1: Initialization: Initialize the ILC input u1, the win-

dow size m.
2: In the first cycle, implement the initial ILC input u1,

record the input u1 and error e1.
3: for k = 2 :∞ do
4: Measure the current cycle initial state xk(0).
5: Obtain the virtual cycle combination weights wi by

solving (26).
6: Generate the uk via (13).
7: Online inplement uk and record uk, ek for the

preparation of next iteration.
8: end for

4. NUMERICAL EXAMPLE

In this section, we employ a linearized injection molding
process as a case study to demonstrate the efficacy of our
proposed ILC framework. By showcasing this example,
we aim to highlight the effectiveness of our approach
in addressing the challenges posed by randomly varying
initial states and enhancing overall system performance.

The injection molding process, considered as one of the
typical repetitive processes, can be effectively divided into
three distinct phases: filling, packing, and cooling. During
the packing phase, the desired trajectory of the nozzle
pressure is achieved by the manipulation of the hydraulic
control valve opening. As stated by Zhou et al. (2022),
through employing the least squares regression technique
on historical data, it is possible to describe the nozzle
pressure control process using the following state-space
model.

xk(t + 1) =

[
2.607 1
−0.6086 0

]
xk(t) +

[
1.2390
−0.9282

]
uk(t),

yk(t + 1) = [1 0]xk(t + 1), t ∈ [0, 60]. (27)
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The desired trajectory of nozzle pressure is set as

yd(t) =


0, 1 ≤ t ≤ 10,

10(t− 10), 11 ≤ t ≤ 40,

300, 41 ≤ t ≤ 60,

(28)

and the length of a cycle tN = 60. The ideal initial state
of the system is x(0) = [0, 0]>. However, due to the
uncertainty in the filling phase, the true initial state of
packing phase would be randomly varying and satisfies
xi,k ∈ [0, 0.5]>, i ∈ [1, 2].

In order to implement our proposed Algorithm 1, we set
the window size as m = 50. The initial values for the ILC
inputs are initialized as u1 = 0, where 0 represents a zero
vector of the appropriate dimension. To assess the control
performance, we define two performance indexes. For the
tracking performance at a specific time t, the performance
measure is defined as

Jk(t) := ‖ek(t)‖2. (29)
For the tracking performance of a whole cycle, the perfor-
mance measure is defined as

Jk := ‖ek‖2. (30)

To make a comparison, we compared the results of our
proposed framework with the method given by Li et al.
(2013). The results are shown in Fig. 1 and Fig. 2. Based
on the observations from these figures, it can be concluded
that our framework effectively addresses the challenges
posed by randomly varying initial states, enabling iterative
learning to enhance control performance as the cycle num-
ber increases. Ultimately, our framework demonstrates
convergence and outperforms the method proposed by Li
et al. (2013). The reason for this superior performance is
that their method merely takes an average of the historical
error. Although randomness can be mitigated, the impact
of randomly varying initial states still affects the control
performance. In contrast, our proposed method can create
a virtual cycle that shares the most similar initial state
as the upcoming cycle by utilizing historical data. This
mechanism maximally avoids the issue of randomly vary-
ing initial states and ensures that the iterative learning
mechanism remains effective, as it is cast into a fixed initial
state system.

Proposed method

Conventional method

0 50 100

0

5

10

15

20

J
k

Cycle Number

Fig. 1. Cycle-wise performance comparison between our
proposed framework and the conventional method
developed by Li et al. (2013).
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Time Index

J
K
(t
)

J
K
(t
)

J
K
(t
)

Proposed method

Conventional method

Fig. 2. Time-wise performance comparison between our
proposed framework and the conventional method
developed by Li et al. (2013).

It is noteworthy to mention that our proposed framework
does not guarantee a monotonic decrease in ‖ek‖2 as the
cycle number increases. Consequently, when plotting the
control error of our method on a logarithmic scale, notice-
able fluctuations can be observed. However, in accordance
with Theorem 3, the upper bound of, which is ‖emmax

k ‖2
exhibits a monotonic decrease, which is confirmed by the
results depicted in Fig. 3.

‖ek‖2
‖emmax

k ‖2

Cycle Number

E
rr
o
r

0 50 100

10-6

10-4

10-2

100

102

Fig. 3. Illustration of the fluctuation in ‖ek‖2 and the
monotonic convergence of ‖emmax

k ‖2.

5. CONCLUSION

We propose a virtual cycle-based ILC framework for sys-
tems with randomly varying initial states. To avoid the
negative impact brought by initial state variation, we
create a linear combination of historical data and generate
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a virtual cycle with a similar initial state to the upcoming
cycle. In terms of the linear combination manner, we estab-
lish three conditions that the weights shall satisfy in order
to generate an ideal virtual cycle. Based on these three
conditions, we provide a rigorous theoretical analysis to
demonstrate convergence. However, since the ideal virtual
cycle may not always exist, we relax one of the conditions
into a soft constraint, allowing the weights to be solved
through a convex optimization problem. The effectiveness
and properties of our proposed framework are verified
through an injection molding example.

Although the proposed framework is model-free, the design
and analysis are based on the assumption of a linear sys-
tem. In future research, we are considering the possibility
of extending our framework to nonlinear systems.
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