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Abstract: Model-based monitoring and control of chemical and biochemical processes rely on estimators 

like Extended Kalman Filters (EKFs) to ensure accurate predictions in real time. The selection of suitable 

model parameters and tuning factors is crucial for precise predictions. An extended Simultaneous Parameter 

Estimation and Tuning (SPET) method is proposed to handle complex systems with nonstationary 

disturbances, time-varying parameters, multi-rate data, and measurement delay. Through a case study on a 

Continuous Stirred Tank Reactor (CSTR), we demonstrate that SPET outperforms traditional approaches, 

achieving improved online predictions and state estimator performance.  

Keywords: State estimator tuning, Extended Kalman filter, Parameter estimation, Stochastic process 
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1. INTRODUCTION 

Model-based control and monitoring applications based on 

fundamental models have gained significant traction due to the 

popular concept of Digital Twins (Botín-Sanabria et. al., 

2022). Accurate parameter estimates are crucial for the success 

of these applications. Relatively simple dynamic models are 

commonly used online for easier implementation and 

maintenance. However, these simplified models may not 

capture all complexities of the process, resulting in mismatch 

between model predictions and actual process behavior. To 

reduce mismatch, state estimators are used to update model 

predictions and time-varying parameters, while accounting for 

model imperfections and measurement noise. The Extended 

Kalman Filter (EKF) is one of the most popular state 

estimators used in Engineering fields such as polymerization 

and biochemical processes. due to its simplicity and robustness 

(Ogunnaike, 1994; Gudi, et al., 1994; Schneider and 

Georgakis, 2013). However, using EKFs and other state 

estimators to achieve accurate updates of model states relies 

on proper tuning. While traditional trial-and-error tuning may 

be adequate for simple models with few states and 

measurements, more systematic approaches are necessary as 

models become more complex (Odelson and Rawlings, 2006; 

Valappil and Georgakis, 2000). Moreover, challenges arise 

when implementing state estimators in complex situations 

involving nonstationary disturbances, multi-rate data, and 

measurement delays (Kozub and MacGregor, 1992; Gudi et. 

al., 1995; Gopalakrishnan et. Al., 2011). Recently, a new 

method has been proposed for estimating fixed model 

parameters and tuning of state estimators in these complex 

situations (Liu, 2023) and is presented here. This article is 

structured as follows. Section 2 provides information about 

EKFs. Section 3 presents the proposed extension of the SPET 

method. In Section 4, a nonlinear CSTR case study is used to 

demonstrate the effectiveness of SPET. Lastly, Section 5 

provides conclusions. 

2. PRELIMINARIES 

The current article uses the standard EKF equations (Brown 

and Hwang, 1997) as presented in Table 1. 

Table 1. Standard EKF equations 

Discretized Nonlinear Model:  

𝒙𝑘 = 𝑭(𝒙𝑘−1, 𝒖𝑘−1, 𝜽) + 𝒘𝑘 (1) 

𝒚𝑘 = 𝒈(𝒙𝑘, 𝜽) + 𝜺𝑘 (2) 

One-Step-Ahead Model Predictions:  

𝒙𝑘+1│𝑘 = 𝑭(𝒙𝑘│𝑘 , 𝒖𝑘, 𝜽) (3) 

𝑷𝑘+1│𝑘 = 𝑨𝑘𝑷𝑘│𝑘𝑨𝑘
𝑇 + 𝑸𝑘 (4) 

State and Covariance Update Equations:  

 𝒙𝑘+1│𝑘+1 = 𝒙𝑘+1│𝑘 + 𝑲𝑘+1(𝒚𝑘+1 − 𝒈(𝒙𝑘+1│𝑘 , 𝜽))  (5) 

 𝑲𝑘+1 = 𝑷𝑘+1│𝑘𝑯𝑘+1
𝑇 (𝑯𝑘+1 𝑷𝑘+1│𝑘𝑯𝑘+1

𝑇 + 𝑹𝑘)
−1

 (6) 

 𝑷𝑘+1│𝑘+1 = 𝑷𝑘+1│𝑘 − 𝑲𝑘+1𝑯𝑘+1𝑷𝑘+1│𝑘 (7) 

where  

𝑨𝑘 =
𝜕𝑭

𝜕𝒙
│�̂�

𝑘│𝑘
 , 𝑯𝑘+1 =

𝜕𝒈

𝜕𝒙
│�̂�

𝑘+1│𝑘
  

In Equation (1), the vector 𝒙𝑘 ∈ 𝑅𝑋  is the state vector at time 

𝑡𝑘 . The function 𝑭 ∈ 𝑅𝑋  contains solutions of differential 

equations representing the current states 𝒙𝑘  in terms of 

previous states values 𝒙𝑘−1 , inputs 𝒖𝑘−1  and model 

parameters 𝜽. The vector 𝒘𝑘 ∈ 𝑅𝑋 denotes discrete stochastic 

model errors, assumed to be normally distributed 

with  𝒘𝑘~𝜨(𝟎,𝑸𝑘) , where 𝑸𝑘  is the discrete-white-noise 

model-error covariance matrix. Equation (2) relates the 

measurement vector 𝒚𝑘 ∈ 𝑅𝑌 to the states 𝒙𝑘 and possibly the 

model parameters 𝜽 through the output functions 𝒈 ∈ 𝑅𝑌. The 

vector 𝜺𝑘 ∈ 𝑅𝑌contains measurement errors, also assumed to 

be normally disturbed with 𝜺𝑘~𝜨(𝟎, 𝑹𝑘) , where 𝑹𝑘 is the 

measurement-error covariance matrix. For the remaining 
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equations, the symbol ^ is used for estimated results and the 

symbol │  indicates “given” information. For example, the 

subscript 𝑘 + 1│𝑘 refers to predictions at the sampling time 

𝑘 + 1 while considering information from measurements at 

time 𝑘. 𝑷 is the state-error covariance matrix; 𝑲 is the Kalman 

gain matrix; 𝑨𝑘 is the linearized state-transition matrix and 𝑯𝑘 

is the linearized measurement-transition matrix. 

3.  PROPOSED METHODOLOGIES 

Using the proposed SPET methodology for EKFs in complex 

situations requires formulating the dynamic model with time-

varying parameters and non-stationary disturbances as 

additional state variables. Multi-rate sampling is handled by 

adjusting 𝑯𝑘 . Further details are provided elsewhere (Liu, 

2023). Observability is a crucial condition for the success of 

state-estimation algorithms as it enables determination of state 

variables based on the available inputs and outputs. The 

proposed methodology requires that sufficient measurements 

are available to ensure observability. Additional insights and 

comments on observability and its evaluation for the CSTR 

case study are provided by Liu (2023). 

The SPET methodology was developed to simultaneously 

estimate fixed model parameters and the tuning parameters for 

state estimators. The first step of the SPET approach involves 

using the Laplace Approximation Maximum Likelihood 

Estimation (LAMLE) method (Karimi and McAuley, 2014; 

Liu et al., 2022) to estimate the model parameters 𝜽, as well as 

the elements of the continuous process-error covariance matrix 

𝑸𝒄 and the measurement-error covariance matrix 𝑹. LAMLE 

is used to estimate 𝜻 = [𝜽𝑇 , 𝑩𝑇 , 𝑹𝒅𝒊𝒂𝒈
𝑇 , 𝑸𝒄 𝒅𝒊𝒂𝒈

𝑇  ]𝑇, where 𝑩 is 

a vector of B-spline coefficients for the estimated state 

trajectories and the subscript “𝒅𝒊𝒂𝒈” refers to the diagonal 

elements of the covariance matrices. The decision variables in 

𝜻 are obtained by minimizing the objective function: 

𝐽𝐿𝐴𝑀𝐿𝐸  

=
1

2
(∑𝑁𝑟𝑙𝑛(𝑅𝑦𝑟

)

𝑌

𝑟=1

) +
𝑞

2
(∑ 𝑙𝑛(𝑄𝑥𝑠

)

𝑋

𝑠=1

)

+
[𝒀𝒎 − 𝒈𝒎(𝒙~, 𝒖, 𝜽)]𝑇𝜮𝑹

−1[𝒀𝒎 − 𝒈𝒎(𝒙~, 𝒖, 𝜽)]

2

+
∑ 𝒘𝑇𝑞

𝑖=1 𝑸𝒄
−1∆𝑡−1 𝒘

2
+ 𝑙𝑛 det(𝑯𝒙~

), 

where 

𝒘 = 𝒙~(𝑡𝑖) − 𝒙~(𝑡𝑖−1) − 𝒇(𝒙~(𝑡𝑖−1), 𝒖(𝑡𝑖−1), 𝜽)∆𝑡 

(8) 

In Equation (8), the subscript ~ is used to indicate B-spline 

approximations for the state trajectories. The first two terms 

involve the diagonal elements 𝑅𝑦𝑟
 and 𝑄𝑥𝑠

 in matrices 𝑹 and 

𝑸𝒄, respectively. Here, 𝑁𝑟 is the number of measurements for 

the rth response variable, and 𝑞 is the total number of discrete 

time points where random disturbances are assumed to enter 

the system. The third term involves the residuals between the 

stacked vector of measurements 𝒀𝒎 and the stacked vector of 

predictions 𝒈𝒎, weighted by 𝜮𝑹, which is an error covariance 

matrix for the stacked measurements. The fourth term 

considers the weighted residuals between the estimated state 

trajectories and their predictions. The last term involves a 

Hessian matrix 𝑯𝒙~
 containing second derivatives with 

respect to the spline coefficients in 𝑩 (Liu et al., 2022). 

Estimating 𝜻  from Equation (8) using gradient-based 

optimization methods is difficult, because analytical 

derivatives of 𝑙𝑛 𝑑𝑒𝑡(𝑯𝒙~
) with respect to the elements in 𝜻 

are prohibitively complicated. To address this challenge, an 

iterative two-step process was developed to avoid complicated 

derivative calculations (Karimi and McAuley, 2014; Liu et al., 

2022). 

Previously, the SPET method was developed for systems 

where all measurements are sampled with the same frequency 

and without delay (Liu et al., 2021). SPET was used to 

estimate 𝜽, 𝑸𝒄, 𝑹 and 𝜮𝜽 via LAMLE and then to obtain 𝑸𝑘 
and 𝑹𝑘, the tuning parameters for EKF’s implementation:  

𝑸𝑘 =  𝑨𝜽 𝑘𝜮𝜽𝑨𝜽 𝑘
𝑇 + 𝑸𝒄∆𝑡,  

where 

𝑨𝜽 𝑘 =
𝜕𝑭

𝜕𝜽
│�̂�

𝑘│𝑘
,�̂� =

[
 
 
 
 
𝜕𝐹1

𝜕𝜃1

…
𝜕𝐹1

𝜕𝜃𝑃

⋮ ⋱ ⋮
𝜕𝐹𝑋

𝜕𝜃1

…
𝜕𝐹𝑋

𝜕𝜃𝑃]
 
 
 
 

│�̂�
𝑘│𝑘

,�̂� 

(9) 

𝑹𝑘 = 𝑯𝜽 𝑘𝜮𝜽𝑯𝜽 𝑘 
𝑇 + 𝑹, 

where 

𝑯𝜽 𝑘 =
𝜕𝒈

𝜕𝜽
|�̂�

𝑘│𝑘
,�̂� =

[
 
 
 
 
𝜕𝑔1

𝜕𝜃1

…
𝜕𝑔1

𝜕𝜃𝑃

⋮ ⋱ ⋮
𝜕𝑔𝑋

𝜕𝜃1

…
𝜕𝑔𝑋

𝜕𝜃𝑃]
 
 
 
 

│�̂�
𝑘│𝑘

,�̂� 

(10) 

In Equation (9), 𝑨𝜽 contains partial derivatives of the system 

functions 𝑭 with respect to the parameters 𝜽, and ∆𝑡  is the 

sampling interval. Notice that, this expression for 𝑸𝑘 accounts 

for stochastic disturbances and for uncertainties in model 

predictions due to parameter uncertainties 𝜮𝜽. Similarly, 

Equation (10) for the measurement-error covariance matrix 𝑹𝑘 

takes in to account the potential influence of parameter 

uncertainties on the predicted outputs in 𝒈. 

In the current article, the SPET method is extended to handle 

more complex scenarios with nonstationary disturbances, 

time-varying parameters, delay, and multi-rate measurements. 

In the first step of the algorithm, LAMLE is used to estimate 𝜽, 

𝑸𝒄, 𝑹 and 𝜮𝜽 from historical data. This estimation process is 

performed offline, which allows delayed measurements to be 

handled by shifting them backward in time. Unlike the earlier 

development of SPET, which assumed simple stationary 

Gaussian process disturbances (Liu et. al., 2021), the extended 

framework considers more complex process noise structures. 

This allows for the modeling of sustained shifts in process 

behavior by incorporating time-varying parameter states 𝒙𝜃 , 

and additive nonstationary process disturbances  𝒙𝑛𝑠  in 

addition to the regular states 𝒙𝑓 that arise from fundamental 

balances. The formulation of the SDE process models 

becomes:  

�̇�𝑓(𝑡) = 𝒇(𝒙𝑓(𝑡), 𝒙𝜃(𝑡), 𝒖(𝑡), 𝜽) + 𝒙𝑛𝑠(𝑡) (11) 
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�̇�𝜃(𝑡) = 𝟎 + 𝜼𝜃(𝑡) (12) 

�̇�𝑛𝑠(𝑡) = 𝟎 + 𝜼𝑛𝑠(𝑡) (13) 

So that, the corresponding 𝑸𝒄 is: 

𝑸𝒄 = [

𝟎 𝟎 𝟎
𝟎 𝑸𝒄

𝜃 𝟎

𝟎 𝟎 𝑸𝒄
𝑛𝑠

] (14) 

Note that Equations (11) and (13) assume perfect material and 

energy balance equations when variations in 𝒙𝜃  and 𝒙𝑛𝑠  are 

considered. As a result, matrix 𝑸𝒄 in Equation (14) contains 

zeros as diagonal elements at the top left. During the 

estimation of 𝑸𝒄, 𝜽 and 𝑹 using LAMLE, these zero elements 

of 𝑸𝒄 are already known and do not require estimation. 

However, this situation introduces a divide-by-zero issue in the 

LAMLE objective function  (Equation (8)), because 𝑸𝒄
−1 

appears as a weighting factor. To resolve this issue, Liu et al., 

(2022) suggested replacing the zero diagonal elements with 

very small values. This approach ensures the invertibility of 

𝑸𝒄, while indicating that the material and energy balances are 

accurate and should be enforced during LAMLE parameter 

estimation. Further details on how to use LAMLE results to 

tune and implement EKFs systems with time-varying 

parameters, nonstationary disturbances, multi-rate data and 

measurement delays are provided by Liu (2023). 

4.  CASE STUDY 

A CSTR case study first developed by Marlin (2000) has been 

augmented with stochastic terms to account for nonstationary 

disturbances and time-varying parameters as shown in Table 

2. This case study is used to demonstrate and evaluate the 

proposed extensions to SPET.  

Table 2. SDE model for CSTR 

𝑑𝐶𝐴

𝑑𝑡
=

𝐹(𝑡)

𝑉
(𝐶𝐴0(𝑡) − 𝐶𝐴(𝑡)) − 𝑘𝑟(𝑇)𝐶𝐴(𝑡)

=  𝑓1(𝑥1(𝑡), 𝑥2(𝑡), 𝑘𝑟𝑒𝑓(𝑡), 𝑢(𝑡), 𝜃) 
(15) 

𝑑𝑇

𝑑𝑡
=

𝐹(𝑡)

𝑉
(𝑇0(𝑡) − 𝑇(𝑡)) + 𝛾𝑘𝑟(𝑇)𝐶𝐴(𝑡) − 

𝑈𝐴(𝐹𝑐)(𝑇(𝑡) − 𝑇𝑐𝑖𝑛(𝑡)) + 𝑀(𝑡) 

= 𝑓2(𝑥1(𝑡), 𝑥2(𝑡), 𝑘𝑟𝑒𝑓(𝑡),𝑀(𝑡), 𝑢(𝑡), 𝜃) 

(16) 

𝑑𝑘𝑟𝑒𝑓

𝑑𝑡
= 𝜂𝑘𝑟𝑒𝑓

(𝑡) (17) 

𝑑𝑀

𝑑𝑡
= 𝜂𝑀(𝑡) (18) 

𝑈𝐴(𝐹𝑐) =
𝑎𝐹𝑐

𝑏+1

𝑉𝜌𝐶𝑝(𝐹𝑐 +
𝑎𝐹𝑐

𝑏

2𝜌𝑐𝐶𝑝𝑐
)
 

(19) 

𝛾 = −
Δ𝐻𝑟𝑥𝑛

𝜌𝑐𝑝

 (20) 

𝑘𝑟(𝑇) = 𝑘𝑟𝑒𝑓 exp (−
𝐸

𝑅
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓

)) (21) 

𝑦𝐶(𝑡𝑚𝐶,𝑗) = 𝐶𝐴(𝑡𝑚𝐶,𝑗 − 2.0) + 𝜀𝐶(𝑡𝑚𝐶,𝑗)  

for 𝑗 = 0… 𝑛𝐶 
(22) 

𝑦𝑇(𝑡𝑚𝑇,𝑗) = 𝑇(𝑡𝑚𝑇,𝑗) + 𝜀𝑇(𝑡𝑚𝑇,𝑗)        

for 𝑗 = 0… 𝑛𝑇 
(23) 

The concentration of reactant A, 𝐶𝐴 , and the reactor 

temperature, 𝑇, are fundamental process states. Equation (15) 

is a material balance on the reactant, and Equation (16) is an 

energy balance on liquid in the reactor. The process inputs  

𝒖 = [𝐹, 𝐶𝐴0, 𝑇0, 𝑇𝑐𝑖𝑛 , 𝐹𝑐]
𝑇  include the feed flow rate 𝐹 , feed 

concentration 𝐶𝐴0 , feed temperature 𝑇0 , inlet coolant 

temperature 𝑇𝑐𝑖𝑛 , and coolant flow 𝐹𝑐. Figure 1 shows input 

trajectories used in a typical simulated dynamic experiment. 

True parameter values and model constants used to generate 

synthetic data are shown in Tables 3 and 4. 

 

Table 3. Simulation parameters 

Parameter True Value Units 

𝐸/𝑅 8.3301×103 K 

𝑎 1.678×106 -  

𝑏 0.5 - 

𝑄𝑐𝑘𝑟𝑒𝑓
 2.5×10-5 min−3 

𝑄𝑐𝑀
 0.5 K2  min−3 

𝑅𝐶  4×10-4 kmol2 m−6 

𝑅𝑇 0.25 K2 

Table 4. Model constants 

Description Symbol Value Units 

Heat capacity of reactor 

contents 
𝐶𝑝 1 cal g−1 K−1 

Heat capacity of coolant 𝐶𝑝𝑐 1 cal g−1 K−1 

Reference temperature 𝑇𝑟𝑒𝑓  340 K 

Volume of the reactor 𝑉 1 m3 

Density of reactor 

contents 
𝜌 106 g m−3 

Density of coolant 𝜌𝑐 106 g m−3 

Enthalpy of reaction Δ𝐻𝑟𝑥𝑛 -130×106 cal kmol−1 

Figure 1. Input trajectories used to generate simulated dynamic data 
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In Equation (15), the material balance contains a time-varying 

rate constant 𝑘𝑟𝑒𝑓 , which accounts for unknown impurities and 

poorly understood side reactions not explicitly modeled. This 

parameter is treated as an additional nonstationary state (as 

𝑥3 = 𝑘𝑟𝑒𝑓 ), and its dynamics are influenced by a stationary 

stochastic disturbance 𝜂𝑘𝑟𝑒𝑓
, as shown in Equation (17). To 

address uncertainties in the energy balance, an additive 

stochastic mismatch term 𝑀  is included. This nonstationary 

disturbance captures uncertainties that are due to heat loss to 

the environment, fouling in the cooling coil, and viscosity 

changes in the reactor liquid. In Equation (18), 𝑀 is driven by 

stationary stochastic disturbance 𝜂𝑀 . Measurement equation 

(22) accounts for a 2.0-minute time delay in the concentration 

measurement, while Equation (23) assumes no delay in the 

temperature measurement. Measurement noise is taken into 

account through the inclusion of 𝜀𝐶  and 𝜀𝑇 in Equations (22) 

and (23), respectively. It is assumed that stationary stochastic 

disturbances 𝜂𝑘𝑟𝑒𝑓
 and 𝜂𝑀, as well as the measurement errors 

𝜀𝐶  and 𝜀𝑇 , follow white Gaussian distributions and are 

independent, so that the continuous process error covariance 

matrix 𝑸𝒄 and the measurement error covariance matrix 𝑹 are: 

𝑸𝒄 =

[
 
 
 
 
0 0 0 0
0 0 0 0
0 0  𝑄𝑐𝑘𝑟𝑒𝑓

0

0 0 0  𝑄𝑐𝑀]
 
 
 
 

 

(24) 

𝑹 = [
𝑅𝐶 0
0 𝑅𝑇

] 
(25) 

The continuous stochastic disturbances 𝜂𝑘𝑟𝑒𝑓
 and 𝜂𝑀  are 

included in the simulated data using discrete noise with a time 

interval of ∆𝑡 = 0.2 min (Varziri et. al., 2008). In simulated 

experiments, the concentration is measured every 1.0 minute, 

resulting in a total of 64 measurements per experiment (𝑛𝐶 = 

64), and  temperature measurements are taken more frequently 

at intervals of 0.2 minutes, resulting in 𝑛𝑇  = 320. 

A total of 600 sets of simulated experimental data were 

generated using the CSTR SDE model, with each set 

corresponding to a different random noise sequence. Out of 

these, 500 data sets were used for estimating model parameters 

and tuning parameters and 100 were used for EKF testing. 

4..1 Simultaneous parameter estimation and tuning (SPET) 

for the CSTR system 

LAMLE was first used to estimate the elements of 𝜻 =

[𝑎, 𝑏,
𝐸

𝑅
, 𝑩𝑇 , 𝑹𝒅𝒊𝒂𝒈

𝑇 , 𝑸𝒄 𝒅𝒊𝒂𝒈
𝑇 ]

𝑇

 and to determine the covariance 

matrix �̂�𝜽  for the model parameters. In some cases, 

practitioners may have multiple batches of historical data 

instead of just one. In this case study, five batches of historical 

data were used for each set of estimated parameters. As a 

result, the LAMLE objective function for the five batches was: 

𝐽𝐿𝐴𝑀𝐿𝐸,𝑚𝑢𝑙𝑡𝑖 = ∑ 𝐽𝐿𝐴𝑀𝐿𝐸,𝑚

5

𝑚=1

 (26) 

where 𝐽𝐿𝐴𝑀𝐿𝐸,𝑚  is obtained from the right-hand side of 

Equation (8) for each batch of data. 

Diagonal elements of the discrete model-error covariance 

matrix �̂�𝑘   were determined using Equation (9) as follows: 

[
 
 
 
 

�̂�𝐶

�̂�𝑇

�̂�𝑘𝑟𝑒𝑓

�̂�𝑀 ]
 
 
 
 

𝑘

= 𝑨𝜽 𝑘�̂�𝜽 𝑨𝜽 𝑘
𝑇 +

[
 
 
 
 

0
0

�̂�𝑐𝑘𝑟𝑒𝑓

�̂�𝑐𝑀 ]
 
 
 
 

∆𝑡  

(27) 

Since the output functions of the CSTR are independent of the 

parameters, the measurement-error covariance matrix is time 

invariant: 

�̂�𝑘 = �̂� = [
�̂�𝐶

�̂�𝑇

]  

(28) 

Details on how to set the initial state covariance matrix 𝑷0│0, 

and how to the formulate the discretized dynamic model to 

account for extra states arising due to the time-varying 

parameter 𝑘𝑟𝑒𝑓 , nonstationary disturbance 𝑀 and ten periods 

of measurement delay are provided elsewhere (Liu, 2023). 

4.2 Results and discussion 

Estimated model parameters and tuning factors were obtained 

using SPET and a more conventional approach where the 

model parameters were first obtained using weighted least 

squares (WLS) estimation. Using WLS, fixed values of 𝑘𝑟𝑒𝑓  

and 𝑀 were estimated along the other model parameters. In the 

conventional approach, the diagonal elements of �̂�𝑘  were 

obtained by minimizing the sum of squared innovations (SSI) 

based on the 5 batches of  historical data used for parameter 

estimation. The SPET and conventional WLS+SSI estimates 

and tuning factors were then used to implement EKFs with 

new online data. 

Figures 2 and 3 compare the performance of both approaches 

for one-step ahead predictions and updated states, 

respectively. The results demonstrate that both approaches 

perform well, as they closely align with the measured values 

and true trajectories. On average, the SPET approach yields 

superior results compared to the WLS+SSI approach for this 

specific test run (Run 80). 

 
Figure 2. Measurements (∗) and one-step-ahead predictions using 

SPET (⸺) and WLS+SSI (⸺) 
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Figure 3. True trajectories (┅) and updated state estimates using 

SPET (⸺) and WLS+SSI (⸺) approaches for Test Run 80 

The performance of the EKFs is summarized in Figure 4, 

which shows the sum-of-squared prediction errors (SSPE) and 

sum-of-squared state errors (SSSE) for the 100 sets of test data. 

Equations used for computing SSPE and SSSE for 𝐶𝐴 and 𝑇 as 

shown in the boxplots in Figure 4 are: 

𝑆𝑆𝑃𝐸𝐶 = ∑(𝑦𝐶(𝑡𝑚𝐶,𝑗) − �̂�𝑝(𝑡𝑚𝑐,𝑗 − 2.0))
2

𝑁𝐶

𝑗=1

 

 

(29) 

𝑆𝑆𝑆𝐸𝐶 = ∑(𝐶(𝑡𝑚𝐶,𝑗) − �̂�(𝑡𝑚𝐶,𝑗))
2

𝑁𝐶

𝑗=1

 

 

(30) 

where �̂�𝑝(𝑡𝑚𝑐,𝑗 − 2.0) = �̂�𝑑10 5𝑗│5𝑗−1 and �̂�(𝑡𝑚𝐶,𝑗) = �̂�5𝑗│5𝑗 

𝑆𝑆𝑃𝐸𝑇 = ∑(𝑦𝑇(𝑡𝑚𝑇,𝑗) − �̂�𝑝(𝑡𝑚𝑇,𝑗))
2

𝑁𝑇

𝑗=1

 

 

(31) 

𝑆𝑆𝑆𝐸𝑇 = ∑(𝑇(𝑡𝑚𝑇,𝑗) − �̂�(𝑡𝑚𝑇,𝑗))
2

𝑁𝑇

𝑗=1

 

 

(32) 

where �̂�𝑝(𝑡𝑚𝑇,𝑗) = �̂�𝑗│𝑗−1 and �̂�(𝑡𝑚𝑇,𝑗) = �̂�𝑗│𝑗  

Figure 4 also shows the results of a "True" scenario, which 

serves as an ideal benchmark for comparison. In the "True" 

scenario, perfect model parameter values and tuning factors 

were used, to show the best possible performance that could 

be achieved by an EKF with noisy new data. The results 

clearly demonstrate the effectiveness of the SPET-based EKF, 

which performs almost as well as a perfectly tuned EKF with 

perfect model parameters. Moreover, the average SSPE and 

SSSE of 𝐶𝐴 for the SPET approach are 11% and 42% better, 

respectively than for the WLS+SSI approach. As shown in 

Figure 4, the medians of the SPET and the WLS+SSI 

approaches are similar (with SPET having slightly smaller 

medians), but the inter-quartile ranges (IQRs) for SPET are 

smaller than those of the WLS+SSI approach. The smaller IQR 

values indicates that the SPET results are more robust to 

random measurement error and stochastic process 

disturbances. One possible factor contributing to the superior 

EKF performance achieved with SPET, compared to 

WLS+SSI, is the improved estimation of model parameters 

(better median and smaller IQRs), as shown in Figure 5. 

Considering the nonstationary states 𝑘𝑟𝑒𝑓  and 𝑀 during 

LAMLE parameter estimation led to improved estimates of 

parameters 𝑎, 𝑏 and 𝐸/𝑅 compared to assuming that 𝑘𝑟𝑒𝑓  and 

𝑀 were time invariant during WLS parameter estimation.  

 

Figure 4. Boxplots for EKF performance using SPET and WLS+SSI  

 

Figure 5. Boxplots for estimates of model parameters using LAMLE 

and WLS, true parameter values (┅)  

Additional scenarios considered by Liu (2023) reveal that 

benefits of using SPET compared to conventional WLS+SSI 

are obtained when data sets of different sizes are available for 

estimating model and tuning parameters. In situations where 

the modeler has prior knowledge about some or all of the 

model parameters in 𝜽 , the LAB (Laplace Approximation 

Bayesian) method (Karimi and McAuley, 2018) can be applied 

instead of LAMLE. This Bayesian approach can be 

particularly useful when dealing with small historical data sets 

or data sets with too little excitation to estimate all the model 

parameters without prior knowledge. We anticipate that the 

advantages of the SPET approach will become more beneficial 

in larger parameter and state-estimation problems, although 

further testing is necessary to validate this hypothesis.  

While using SPET, we have identified a potential concern 

related to the computational time required. Specifically, the 
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off-line estimation of model parameters from 5 batches of 

historical data using LAMLE took approximately 2 hours on a 

Lenovo ThinkPad X280 computer, whereas the WLS+SSI 

approach only required ~20 minutes. This difference in 

computational time could become more significant for larger-

scale systems, where the computational requirements of SPET 

may become burdensome. However, it is worth noting that this 

issue can be addressed by improving the implementation of the 

optimization algorithm. By improving the algorithm's 

efficiency, the computational time for SPET can be reduced in 

future, making it more attractive for larger-scale systems. 

Testing of the algorithm using large systems is an important 

next step. 

5. CONCLUSIONS 

In conclusion, this article has focused on the development and 

improvement of state estimation techniques for chemical and 

biochemical processes, specifically targeting the use of EKFs 

in complex situations involving nonstationary disturbances, 

time-varying parameters, multi-rate data, and measurement 

delays. The Simultaneous Parameter Estimation and Tuning 

(SPET) method has been extended to address these 

complexities effectively. Through testing using a nonlinear 

CSTR case study, the results have demonstrated the 

superiority of the SPET approach over the traditional 

sequential approach employing weighted least squares (WLS) 

for parameter estimation and minimizing squared innovation 

terms for EKF tuning using historical data. The extended 

SPET method has achieved more accurate and reliable online 

model predictions and state estimates, resulting in significant 

improvements in average sum-of-squared prediction errors 

and sum-of-squared state errors, specifically a reduction of 6% 

and 42%, respectively, for the delayed concentration in the 

tested scenario. 

Furthermore, the proposed SPET methodology holds great 

potential for advanced state estimators such as Moving 

Horizon Estimators (MHEs), Unscented Kalman Filters 

(UKFs), and Ensemble Kalman Filters (EnKFs), which all 

benefit from accurate model parameters and reliable estimates 

of process and measurement noise covariances. To further 

validate and explore the capabilities of the SPET methodology, 

future work should involve testing it on larger systems and real 

process data. The continuous development of formal methods 

for tuning EKFs, especially in complex situations, will 

contribute to the advancement of state estimation techniques 

in chemical and biochemical engineering. 
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