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Abstract:  Our group recently defined two novel data-driven modeling methodologies: The Design of Dy-

namic Experiments (DoDE) and the Dynamic Response Surface Methodology (DRSM). These two methods 

enable the quick and efficient data-driven modeling of processes with a partial understanding of their inner 

workings. They generalize the Design of Experiments (DoE) and the Response Surfaces Methodology 

(RSM). DoDE allows time-varying inputs, and DRSM models time-varying process outputs. 

In this paper, we combine the above data-driven tools and partial knowledge of a batch polymerization 

process to develop an integrated data and knowledge-driven model. The optimization objective is to mini-

mize the process's batch time while producing the same product quality, increasing productivity.  The pro-

cess knowledge incorporated into the model consists of material and energy balances in which we lack a 

quantitative description of the rate phenomena, such as reaction or mass/heat transfer rates. The optimization 

is evolutionary; initially, targeting small improvements through constrained extrapolations around the nor-

mal operating conditions. Then, we build the first models and use such models to design the next set of 

experiments that meet our specifications. This cycle of running experiments and updating the models is 

repeated until an optimum is reached. After three cycles, we succeeded in reducing the batch time by 26%, 

while producing acceptable product. 

Keywords: Industrial Applications of Process Control, Batch and Semi-batch Process Control, Modeling of 

Manufacturing Operations, Data-driven Modeling and Optimization, Design of Dynamic Experiments, Dy-

namic Response Surface Model.

1. INTRODUCTION 

One of the most traditional ways to optimize a batch process of 

any type is to develop a knowledge-driven model in the form 

of material and energy balances quantifying the process's inner 

workings. Due to the complexity of batch processes, such 

knowledge-driven models are time and effort-intensive in their 

development.  Because batch processes are also characterized 

by small production rates, such knowledge-driven models' de-

velopment is often difficult to justify financially.  Furthermore, 

such models might not even be possible due to our lack of de-

tailed understanding of the process's inner workings.  

This paper uses two recently developed data-driven modeling 

tools, the  Design of Dynamic Experiments (DoDE) (Georgakis 

2013) and the Dynamic Response Surface Methodology 

(DRSM) (Klebanov and Georgakis 2016; Wang and Georgakis 

2017). Both are generalizations of the classical Design of Ex-

periments (DoE) and Response Surface Modeling (RSM) 

methodologies to enable dynamic inputs and model time-re-

solved output data.  Here we combine the DoDE and DRSM 

tools and our partial knowledge of the inner workings of the 

batch process of interest to gradually optimize it in each cycle 

of new experiments.  Despite the partial understanding of the 

process,  we postulate mass and energy balances for the reactor 

and the cooling section. These are used to back-calculate, from 

the online measurements, an estimate of the heat transfer rate 

between the reactor and cooling section, the reaction rate, and 

eventually the adiabatic temperature, 𝑇𝑎𝑑 . Adiabatic tempera-

ture is the temperature the reactor could reach if cooling is lost. 

For all new experiments, 𝑇𝑎𝑑  needs to meet a safety constraint 

limit.  From the back-calculated 𝑇𝑎𝑑values from the first set of 

experiments, a DRSM model is estimated and used as a con-

straint in optimizing the process. The proposed methodology is 

dependent on our ability to define the approximate material and 

energy/mass balances without the detailed knowledge of the 

corresponding rate phenomena. This hybrid modeling approach 

is applicable to many other processes.  

2. POLYMERIZATION PROCESS 

To explicitly introduce our novel methodology, it is best to de-

scribe the specific process of interest here.  The process studied 

is a semi-batch polymerization process making propylene gly-

col, an exothermic process. The process simulation, used in sil-

ico to perform the experiments, uses the detailed knowledge-

driven model by Nie and Biegler (Nie et al., 2013) for a semi-

batch jacketed stirred tank where the monomer is fed continu-

ously to the reactor.  

The coolant's inlet temperature, 𝑇𝑐𝑓(𝑡), and the incoming flow 

rate, 𝑞𝑐(𝜏),  could be used to control the reactor temperature.  

Either or both and the outgoing coolant's temperature, 𝑇𝑐(𝜏), 

are measured with great frequency. These time-resolved values 

will be the additional data utilized in the postulated heat and 

mass balances. These balances are used to calculate the 



 

 

 

polymerization rate, amount of unreacted monomer and the 𝑇𝑎𝑑  

value. 

 

Fig. 1. Sketch of simulated reactor 

The optimization objective is to reduce the batch time as much 

as possible, subject to meeting the product specifications and 

avoiding the violation of the adiabatic temperature rise con-

straint. The product quality constraints include the number av-

erage molecular weight, the number of unsaturated chains, and 

the unreacted monomer's concentration.  The desired values are 

given in Table 1. Additionally, a safety constraint on the adia-

batic temperature rise is set at a known maximum value 𝑇𝑎𝑑 <
𝑇𝑠𝑎𝑓𝑒𝑡𝑦 

Table 1.  Product Specification Required 

Output Constraints 
𝑦1 = MW 

(g/mol) 

𝑦2 = Unsaturated 

Chains (mmol/g) 

𝑦3 = Unreacted 

Monomer (ppm) 

Literature Base Case 

(Nie et al. 2013) 
950 0.033 120 

Literature Base Case 

(Nie et al. 2013) using 
our simulation 

947 0.031 118 

Literature Optimum  

(Nie et al. 2013) using 
our simulation 

835 0.028 134 

Using the detailed knowledge-driven model, the maximum re-

duction in batch time obtained by Nie et al. (Nie et al., 2013) 

was 47%. Here we will demonstrate that our data-driven ap-

proach will also significantly reduce the batch duration, namely 

26%, without any knowledge of the detailed model. Our 

method's advantage is that it is simple, quick, and can be used 

in many processes. The simulation model, developed by us in 

MatLab to simulate the literature's base case, yields the follow-

ing values for the above three quality variables:  𝑦1 = 947, 
𝑦2 = 0.033 and 𝑦3 = 118. They are shown in the middle row 

of Table 1, along with the Nie values. The slight differences in 

values are negligible. 

 

Fig. 2. Base Case Operation of the Process 

The process operation can be defined by four inputs: batch 

time, monomer feeding duration, reactor temperature, and 

monomer feed rate. The base case temperature is constant at 

𝑇(𝜏) = 397𝐾.  The monomer feed rate initially rises linearly 

and then remains constant with time, as shown in Fig. 2. 

3. OPTIMIZATION METHODOLOGY 

We start from the process's present operating conditions, de-

noted as the Base Case (BC). The assumption is that these ex-

periments are done at the production plant. Thus, we will aim 

for the smallest number of experiments.  The DoDE methodol-

ogy will define this set of experiments allowing them to only 

deviate from the BC operation by a controlled percentage.  

While we aim to learn how changes in the operating conditions 

affect the product specifications, we also wish to minimize the 

chance of producing an off-spec product.   

After the experiments are concluded, three RSM models are es-

timated to quantify the impact on the product's three specifica-

tions. This has been detailed elsewhere (Georgakis et al. 2016) 

and (Georgakis et al., 2020).  In the present paper, we utilize 

the available time-resolved measurements from the process not 

used in the previous study, such as the coolant's flow rate and 

exit temperature, to estimate the polymerization rate taking 

place and the amount of unreacted monomer in each experi-

ment at each instant. This is achieved by using the following 

balances:   

A) An overall energy balance for the cooling section to 

calculate the energy removed from the reactor.   

B) An overall energy balance on the reactor side to esti-

mate the energy released from the polymerization re-

action. 

C) An overall monomer balance to estimate the amount 

of unreacted monomer.  

From the above estimations of the unreacted monomer amount 

and the measured reactor temperature at each time instant, one 

can estimate the adiabatic temperature rise, 𝑇𝑎𝑑. This will tell 

us if the current experiment meets the safety constraint 

throughout the batch duration. The data from all experiments 

and at frequent time instants during each experiment can be 

used to estimate a DRSM model for  𝑇𝑎𝑑(𝑡, 𝑋), where X repre-

sents the factor values.  This DRSM model can be used to fore-

cast if a planned new experiment meets the safety constraint.  

The development and use of these DRSM models from inferred 

and not measured data is the main novelty we introduce. One 

should emphasize that we achieve this without detailed 

knowledge of the polymerization kinetics or the heat transfer 

rates between the reactor and the cooling section.  

The above hybrid modeling methodology, combining data-

driven tools with partial process knowledge, is applied to the 

above semi-batch polymerization reactor. The optimization is 

done by running experiments around the normal plant operation 

to maintain the same product spec as much as possible. This, 

we hope, will motivate industrial applications in the future.  
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4. PARTIAL PROCESS KNOWLEDGE DERIVATION: 

OVERALL HEAT AND MASS BALANCES  

Here we describe the mass and energy balances utilized to ob-

tain approximate information about the process's inner work-

ings. We start with the energy balance of the cooling section, 

assumed to be well-mixed. 

𝑉𝑐𝐶𝑝𝑐𝜌𝑐
𝑑𝑇𝑐

𝑑𝑡
= 𝑈𝐴(𝑡)(𝑇 − 𝑇𝑐) + 𝑞𝑐𝐶𝑝𝑐𝜌𝑐(𝑇𝑐𝑓 − 𝑇𝑐)    (7)  

From the measurements of 𝑞𝑐(𝑡), 𝑇𝑐(t), 𝑇𝑐𝑓(𝑡)  and the known 

values of all the constants, we can back-calculate the amount 

of heat transferred from the reactor 𝑄𝐻𝑇(𝑡) ≡ 𝑈𝐴(𝑡)(𝑇 − 𝑇𝑐).  

We now examine the reactor side. A similar energy balance for 

the reactor can be written as  

𝐶𝑝
𝑑(𝑚𝑇𝑇)

𝑑𝑡
= 𝑞𝑚(𝑡)𝜌𝑚𝐶𝑝𝑚(𝑇𝑚𝑓 − 𝑇𝑟𝑒𝑓) + 𝑄𝐻𝑇(𝑡) + 𝑄𝑅    (8) 

Here 𝑄𝑅 is the heat generated by the polymerization reaction, 

proportional to the polymerization rate 𝑃𝑅; 𝑄𝑅 = (−𝛥𝐻𝑟)𝑃𝑅. 

Since we know the incoming volumetric flow rate of the mon-

omer, 𝑞𝑚(𝑡),  we can calculate the total mass in the reactor 

𝑚𝑇(𝑡) (monomer, and polymer) through the following equa-

tion  𝑚𝑇(𝑡) = 𝜌𝑚 ∫ 𝑞𝑚(𝑡)𝑑𝑡
𝑡

0
 

Then, along with the measured reactor temperature 𝑇(𝑡) and its 

smoothened time derivative, we can back-calculate the overall 

polymerization rate in the reactor 𝑃𝑅(𝑡) from (8). Since we lack 

detailed information on the polymerization kinetics, we assume 

the very approximate reaction of  𝑀 → 𝑃.  The total amount of 

unreacted monomer, 𝑀 , can be calculated by the monomer 

mass balance:  

𝑑𝑀

𝑑𝑡
= 𝑞𝑚(𝑡)𝜌𝑚 − 𝑃𝑅(𝑡) (9) 

Which can be integrated to give 

 𝑀(𝑡) = 𝑀(0) + ∫ (𝑞𝑚(𝑠)𝜌𝑚 − 𝑃𝑅(𝑠))𝑑𝑠
𝑡

0
 (10) 

Finally, we can calculate the adiabatic temperature 𝑇𝑎𝑑(𝑡). 

𝑇𝑎𝑑(𝑡) = 𝑇(𝑡) + (−𝛥𝐻𝑟)𝑀(𝑡)/𝐶𝑝𝑚  (11) 

After the first set of experiments is performed, the back-calcu-

lated time-resolved values of 𝑇𝑎𝑑(𝑡) for each experiment are 

used to estimate the DRSM model for 𝑇𝑎𝑑(𝑡, 𝑋) under different 

operating conditions. Then, through this DRSM model, the 

𝑇𝑎𝑑(𝑡) profiles can be used as constraints on the design of the 

subsequent cycle of experiments.  

5. EVOLUTIONARY DESIGN OF DYNAMIC 

EXPERIMENTS (DODE) 

In this paper, multiple cycles of experiments are designed, con-

ducted, and modeled in an evolutionary optimization of the 

batch reactor. For example, the 2nd cycle of experiments is ap-

pended to the 1st cycle. The model based on the data from the 

first two cycles of experiments would be more accurate than 

that based on the 1st or 2nd cycle alone. The initial DoDE exper-

iments' operating conditions are allowed to deviate from the BC 

operation by only 10%, as not to disturb the product quality too 

much. The collected data will model the cause-and-effect rela-

tionship between the four process inputs mentioned above and 

the process outputs.  In the 1st cycle of DoDE, we only use the 

domain around the BC defined by the constraints. In the 2nd 

cycle of DoDE experiments, the range over which each factor 

can be selected is increased to explore larger departures from 

the BC operation. We now also impose the product quality con-

straints through the three estimated RSMs.  This was also done 

in (Georgakis et al. 2020) and (Georgakis et al. 2016). In a sig-

nificant departure, here we impose the 𝑇𝑎𝑑(𝑡, 𝑋) constraint on 

the design of the 2nd and subsequent cycles of experiments. In 

the 2nd cycle of experiments, we are interested in shorter batch 

times than those in the 1st cycle, which were only reduced by 

10%.  This is critical in enabling us to reduce that batch time 

further.  We explore cases in which the batch time is reduced 

between 10% and 30%. The temperature and monomer feed 

profiles are allowed to vary by 20% from the base case value, 

instead of the 10% allowed in the 1st cycle.  

All the constraints imposed in the 2nd cycle of experiments are 

linear, except four, which are nonlinear.  The four nonlinear 

constraints are applied in the 2nd and subsequent cycles of ex-

periments as they are not available during the 1st cycle. Three 

of the four nonlinear constraints model, through three RSMs, 

the impact of the operating conditions on the product specifi-

cations. One additional and special constraint of particular in-

terest for this publication is the 𝑇𝑎𝑑(𝑡, 𝑋) safety constraint ap-

plied through the estimated DRSM model. The applicable con-

straints are not listed here due to space limitations. 

Ideally, one should define the new runs through the D-Optimal-

ity criterion so that the uncertainty of the subsequent model's 

estimated parameters is the smallest. What further complicates 

this task is the desire to account for the uncertainty of the pa-

rameters of the DRSM and RSM models used in the con-

straints. These requirements make the optimization algorithm 

impossible to converge and forced us to abandon a rigorous 

pursuit of the D-Optimal design. Instead, we did the following.    

First, we generated a space-filling design using only the linear 

constraints on the factors. Among the 5000 possible experi-

ments satisfying the linear constraints, we select those that also 

meet the nonlinear safety and quality constraints defined by the 

DRSM and three RSM models, respectively. If we allow a 7% 

violation of the product quality constraints, 32 experiments sat-

isfy these constraints.  This deviation from the strict quality 

constraints is reasonable as the initial RSM models are approx-

imate. If the 7% allowed deviation is reduced to 5%, only nine 

experiments survive this filter. This shows how restrictive such 

constraints are.  

Out of the 32 points obtained with the 7% deviation, 20 have 

been selected for the second cycle of DoDE experiments be-

cause they have the largest value of the D-optimality criterion. 

6. DATA COLLECTION  

The initial set of 23 experiments consists of 20 distinct experi-

ments and three replicated ones at the BC conditions. The latter 

might already exist in the historical records of the process. The 

replicated experiments are needed to estimate the normal vari-

ability of the process. Because these experiments are performed 



 

 

 

in silico here, random noise of 5% is added to the BC experi-

ments' simulated output values.   

The batch time, 𝑡𝑏 is initially allowed to decrease up to 10% 

from the BC value 𝑡𝑏𝐵𝐶
. Similarly, the monomer feeding 

time, 𝑡𝑚, initially equal to 77.5% of 𝑡𝑏𝐵𝐶
, is also reduced by a 

maximum of 10% of its initial value.  The monomer feeding 

time is shorter than the batch time; their difference is called di-

gestion time.  This digestion period allows the polymerization 

of the remaining monomer in the reactor (Fig. 2). We write  

𝑡𝑏 = 𝑡𝑏𝐵𝐶
(1 + 0.1𝐴) with −1 ≤ 𝐴 ≤ 0  and  

𝑡𝑚 = 𝑎𝑚𝑡𝑏 = 0.775𝑡𝑏𝐵𝐶
(1 + 0.1𝐴) 

To avoid excessive departures from the present operating con-

ditions, a moderate deviation of  ±10% is allowed in the reac-

tor setpoint temperature (Fig. 3).  This setpoint is permitted to 

have a quadratic dependence on time.  

𝑇(𝑡) = 𝑇𝐵𝐶 (1 + 0.1𝑤1(𝜏1))  with  −1 ≤ 𝑤1(𝜏1) ≤ 1  (12) 

Here 𝜏1 is the dimensionless time of the batch duration, 𝜏1 =
𝑡 𝑡𝑏⁄ , and 𝑤1(𝜏1) is parametrized as in (2) 

𝑤1(𝜏1) = 𝐵𝑃0(𝜏1) + 𝐶𝑃1(𝜏1) + 𝐷𝑃2(𝜏1)  (13) 

with the following constraints −1 ≤ 𝐵 ± 𝐶 ± 𝐷 ≤ 1. 

 

Fig. 2. Monomer Feed Domain: BC operating conditions 

(blue line) and allowed range of experiments (green) 

The BC monomer feeding profile (blue line in Fig 2) is a piece-

wise function.  Between 0 and 𝑡𝑥 = 𝑎𝑥𝑡𝑏, it is linearly increas-

ing, and then it is kept at a constant value. The entire feed pro-

file is allowed to vary within 10% of the base case value for the 

designed experiments. The monomer flow rate in the second 

segment is varied ±10%  using the 𝑤2(𝜏2)  dynamic factor, 

where 𝜏2  is the dimensionless time during this segment, de-

fined by 𝜏2 = 𝑡 𝑡𝑚)⁄ . We now parametrize 𝑤2(𝜏2) with three 

polynomials  

𝑤2(𝜏2) = 𝐸𝑃0(𝜏2) + 𝐹𝑃1(𝜏2) + 𝐺𝑃2(𝜏2)  (14) 

To ensure more monomer is fed at the start of the batch, we 

require that 𝐸 − 𝐹 + 𝐺 ≥ 0. Since we are interested in mini-

mizing the amount of unreacted monomer at the end of the 

batch, we will impose the following constraint  𝑑𝑤2 𝑑𝜏2 ≤ 0⁄  

at the end of monomer feeding, 𝜏2 = 1.  For the same reason, 

we impose a 𝑑𝑤1 𝑑𝜏1 ≥ 0⁄  constraint at the end of the batch, 

𝜏1 = 1, forcing the reactor temperature to be non-decreasing 

with time at the end of the batch. 

 

Fig. 3. Temperature Domain: BC operating condition 

(blue line) and allowed range of experiments (green)  

 

Table 2.  Factor Values for 1st Cycle of Experiments 

# A B C D E F G 

1 0.00 1.00 0.00 0.00 0.75 0.35 -0.35 

2 0.00 0.25 0.95 -0.30 0.40 -0.45 0.15 

3 -1.00 -0.05 -0.75 0.25 0.90 0.15 -0.15 

4 -1.00 0.85 0.20 -0.05 0.30 -0.45 0.15 

5 -1.00 -0.45 0.95 0.50 -0.15 -0.30 -0.15 

6 0.00 -0.40 0.95 0.45 0.50 -0.75 -0.75 

7 -0.50 -0.05 0.05 1.00 0.35 -0.90 -0.25 

8 -0.50 0.40 0.85 -0.25 -0.60 -0.45 0.15 

9 -0.50 -0.30 -0.95 0.35 -0.05 -0.35 -0.30 

10 0.00 -0.90 -0.15 0.05 -0.15 -0.70 -0.15 

11 0.00 -0.10 -0.10 1.00 -0.50 -0.40 0.10 

12 -1.00 0.05 0.20 0.35 -0.45 -0.80 0.25 

13 -0.53 -0.80 0.25 0.05 0.95 -0.05 0.00 

14 -1.00 -0.50 -0.15 1.00 0.50 -0.40 -0.90 

15 -0.45 0.15 -0.05 0.15 0.30 -0.50 -0.80 

16 -0.53 -0.55 0.60 0.70 0.20 0.15 -0.05 

17 -1.00 0.00 0.75 -0.25 0.45 -0.95 -0.50 

18 0.00 0.50 0.00 0.50 0.85 -0.25 -0.15 

19 0.00 -0.50 -0.85 0.60 -0.25 -0.95 0.30 

20 0.00 -0.15 0.20 -0.05 0.30 0.20 -0.09 

21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

The adiabatic temperature rise constraint can only be imposed 

after the 1st cycle of experiments. Then, time-resolved data 

from the 1st cycle of experiments would have been collected, 

and the corresponding values of the adiabatic temperature, 

𝑇𝑎𝑑(𝑡), would have been calculated, using the material and en-

ergy balances described in the previous section. The DRSM 

model for 𝑇𝑎𝑑(𝑡) regresses such values against the remaining 

degrees of freedom, 𝑥1 = 𝐴, 𝑥2 = 𝐵, 𝑥3 = 𝐶, 𝑥4 = 𝐷, 𝑥5 =
𝐸, 𝑥6 = 𝐹 and , 𝑥7 = 𝐺. 

The initial set of 23 experiments is designed using the D-opti-

mal design with the MatLab coordinate exchange algorithm. 

The nonlinear constraints for the product quality and the maxi-

mum adiabatic temperature, will be imposed in the 2nd cycle of 

experiments. In the initial design, no such model is available to 

estimate how the operating conditions will affect the product 

quality and the adiabatic temperature.  In Table 2, the values of 
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the seven independent factors for these 20 distinct experiments 

and three replicate experiments at the center point are given. 

A schematic representation of the two time-varying factors in 

these experiments is given in Fig. 4.  After these experiments 

are completed, the collected data estimate three RSM models 

𝑦1, 𝑦2, 𝑦3  that represent the product specifications and the 

DRSM model for 𝑇𝑎𝑑(𝑡), mentioned above. We omit their de-

tailed description to focus on the evolutionary character of the 

modeling and optimization tasks.  

 

Fig. 4. Monomer Feed (top two subgraphs) and Tem-

perature Profiles (bottom subgraph) for 1st cycle of ex-

periments 

7. SUBSEQUENT CYCLES OF EXPERIMENTS 

Using the models obtained in the 1st cycle of experiments, we 

can now optimize the process both inside the initial and in an 

enlarged domain, allowing for a small extrapolation.  This ex-

trapolation is necessary as we aim for more considerable reduc-

tions in the batch time in our 2nd cycle of experiments. The pre-

sent paper's novelty uses the DRSM model to estimate the adi-

abatic temperature, which is used as an additional constraint in 

the design of the experiments during the 2nd and subsequent cy-

cles.  

 

Fig. 5. Predicted (---) versus actual (—) adiabatic tem-

perature profiles against the constraint (-.-)  

In the 2nd cycle, the initial 23 DoDE experiments are appended 

with 20 more runs in a new expanded domain.  Besides allow-

ing the batch time to be reduced by 25%, the domain for the 

monomer flow rate and the reactor temperature are allowed to 

vary by 25% from the BC values instead of the initial 10%.  In 

Fig. 5, we compare the predicted and the actual time profiles 

via the estimated DRSM model and the detailed simulation, re-

spectively.  Although the data are not matched perfectly, the 

DRSM model's performance is improving after every cycle.  

The lack of precision is because we approximated the complex 

polymerization rate in a very simplistic manner. In retrospect, 

one could have observed that experiments that violated the Tad 

limit had a low reactor temperature profile, resulting in mono-

mer accumulation. Therefore, one could have constrained the 

reactor temperature above 380K to avoid monomer accumula-

tion. Engineers' observations and critical analysis of the data 

after each cycle can improve the model's performance, but in 

our study, we did not want to bias and improve our results with 

the use of heuristic constraints that are bound to help as they 

are insightful. 

Furthermore, as we shift the experimentation domain towards 

shorter batch durations, the previously estimated DRSM and 

the RSM models are used in an extrapolative manner. Their 

predictions are less accurate the further away we extrapolate. 

To limit such uncertainties, one could have changed the domain 

more gradually. This necessitates an increased number of cy-

cles. A more accurate DRSM model for 𝑇𝑎𝑑(𝑡) could also have 

been estimated if a larger number of runs had been designed to 

determine all of the two-factor interaction terms. Since many 

runs might not be possible in the actual plant, using a pilot-

plant might be a more reasonable avenue for process optimiza-

tion.  

The DoDE-based optimization is stopped after the 3rd cycle be-

cause the new domain in the third cycle does not provide addi-

tional feasible regions compared to the 2nd cycle domain. Since 

no reduction in batch time can be found in the model, the prod-

uct specification constraints are relaxed by 5%, 10%, and 15% 

to explore optimum runs at the design space boundary. The pre-

dicted optimum experiment in each case is used for the 3rd and 

final cycle of experiments. The batch time is reduced by 26%, 

but the product specifications deviates by 15%. 



 

 

 

8. RESULTS  

The final data-driven optimal operating recipe after the above 

three cycles of experiments is shown in Fig. 6.  Comparing this 

result with the optimization results reported in (Nie et al., 

2013), the temperature and feed rate profiles are different in the 

two cases. The one presented here has a 26% reduction in batch 

time while the knowledge-driven model in the reference above 

provides a 47% reduction. 

 

Fig. 6.  Optimal profile by us using a data-driven model 

9. CONCLUSIONS 

In this study, a new hybrid data-driven modeling methodology 

has been presented.  It incorporates partial process knowledge 

through some mass and energy balances.  The experiments' de-

sign in the three evolutionary cycles was generated using the 

DoDE methodology. The data collected were used to estimate 

three RSM models for the product properties and a DRSM 

model for adiabatic temperature. All DoDE designs, besides 

those in the first cycle, used these RSM and DRSM models as 

constraints to design experiments that meet the desired quali-

ties of the product and ensure the reactor's safe operation. The 

result of this approach is decreasing the batch time by 26%.  

This is less than what was achieved in the literature using a de-

tailed knowledge-driven model of the process, which consumes 

significant time and effort.  
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