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Abstract: Lithium-ion (Li-ion) batteries are increasingly pervasive and important in daily
life. We present a surrogate modeling approach that uses synthetic data generated by an
electrochemical model to approximate Li-ion battery dynamics using a Deep Neural Network.
Elechtrochemical models are needed to describe high current operation but are computationally
costly. As an initial study, we prototype our approach for the Single Particle Model. We use
a battery use-cycle and observations of concentrations and voltages to predict future battery
behavior. Given only the use cycle and knowledge that the battery is fully charged, the surrogate
model can accurately forecast observations of Li-ion concentrations and voltages for the entire
use cycle, as well as give a window of time for battery depletion.
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1. INTRODUCTION

Lithium-ion (Li-ion) batteries are increasingly important
as their use permeates daily life. Due to their high energy
densities, long lifetimes, and low cost, they are employed
across a wide array of applications. With recent moves by
governments and private citizens to curb green-house gas
emissions through the use of electric vehicles and energy
storage, the need for Li-ion batteries will only increase
(Dunn et al., 2011).

Many modeling techniques exist to study Li-ion batteries.
Equivalent circuit models are commonly used to study and
optimize battery performance, but they are not accurate
under a wide range of C-rates (the ratio of the discharge
current to the current draw which delivers the rated
capacity in one hour). Physics based models of Li-ion
batteries are more accurate but are too complex for online
optimization and control. To address this, various model
reduction or reformulation strategies have been proposed
(Forman et al., 2011; Speltino et al., 2009; Dao et al., 2012;
Zou et al., 2016). Reduced order models are useful and
effective tools, but involve reductions in model fidelity, or
are suited only to certain use cases (Mishra et al., 2016).

Other approaches for studying Li-ion batteries involve
data-fitting techniques, or recently, data-driven techniques
that make use of the growing wealth of machine learning
advances and applications. Data-driven approaches show
great promise but rely on good quality data, which can be
costly and difficult to acquire and is limited by experimen-
tal conditions or what is practical/possible to measure.
Additionally, machine learning techniques often lack the
interpretability or rigor of first principles models.

This has led to recent efforts to combine machine learning
techniques with mathematical modeling. These efforts in-
clude using neural networks as approximators in numerical
schemes for PDEs (Bar-Sinai et al., 2019; Hamilton et al.,
2019), the development of physics-informed neural net-
works, which utilize physical information in the construc-
tion of neural networks (Raissi et al., 2019), and the use
of neural networks as surrogate models (Zhu and Zabaras,
2018; Tripathy and Bilionis, 2018).

Motivated by these ideas we use machine learning tech-
niques to develop a surrogate model to replace a high-
fidelity electrochemical model (ECM). Rather than us-
ing experimental data to create a surrogate model, our
approach involves approximating the ECM with a Deep
Neural Network (NN). We use the the ECM to generate a
large data-set and train an NN to approximate the battery
dynamics via the synthetic data set.

While still a type of data-driven approach, the use of
synthetic data provides several benefits. Because the data
is synthetic it is not limited to measurable quantities,
any quantity that can be modeled can be approximated.
Parameters used as inputs in the ECM can be changed,
as well to create data representative of a variety of
chemistries. When using data-driven approaches on experi-
mental data, it may not always be clear how to describe the
underlying relationships being captured. With synthetic
data generated by an ECM, the DNN is in essence an
approximation of the underlying mathematical structure
of the model, and relationships are more readily apparent.

In this paper, we present an initial study prototyping
the surrogate modeling approach outlined above. We are



able to build a highly accurate surrogate model towards
the goal of replacing an ECM. We use a battery use-
cycle and observations of concentrations and voltages to
predict future battery behavior. Given only the use cycle
and knowledge that the battery is fully charged, the
surrogate model can accurately forecast observations of
Li-ion concentrations and voltages for the entire use cycle,
as well as give a window of time for battery depletion.

2. SYNTHETIC DATA GENERATION

Our goal is to train a NN to approximate battery dynamics
for use as a predictive surrogate model to replace a physics-
based model of a Li-ion battery. For this initial study we
elect to use the Single Particle Model (SPM) to simulate
the battery dynamics. The SPM is a reduced order model
for the Doyle-Fuller-Newman Model (Doyle et al., 1993).
The SPM model is derived under the assumption that the
transport limitations due to scaled intercalated Lithium
transport in the particles dominate over the limitations of
ion transport in the electrolyte. Under this assumption,
all particles can be assumed to see the same electrolyte
conditions and so it is sufficient to consider only one
representative particle in each electrode.

As a brief description, the SPM keeps track of the inter-
calated lithium concentration cs(r, t) in a representative
spherical particle in each electrode. Here, r is the depth
into the particle. Also considered are simple models of
electrolyte and solid conductivity. For this study, we con-
sider the isothermal case. Some representative cs(r, t) plots
at fixed t are shown in Fig.6. The SPM dynamics add
important detail to cs(r, t), that is not captured by simpler
models (which for the most part consider cs(r, t) constant
in r, or implicit inequivalent circuit models.)

We generate data for both training and testing the NN
model with Python Battery Mathematical Modelling (Py-
BaMM), an open source Python library for mathemati-
cal battery modeling (Sulzer et al., 2020). PyBaMM was
selected for its robustness, ease of use, and because of
its functionality in both specifying input parameters and
use-cycles for battery simulations. A full description and
derivation of the SPM as implemented in the PyBaMM
library can be found in (Marquis et al., 2019).

2.1 Synthetic use cycles

Many applications of interest for Li-ion batteries involve
high energy demands and fast C-rates. For example, Elec-
tric Vehicles (EVs) are an application area of great interest
where high C-rates arise. It is also in the parameter space
of high C-rates that a more descriptive electrochemical
model is needed as opposed to an equivalent circuit model.
Motivated by these considerations, we generate synthetic
use cycles that capture rapid fluctuation conditions and
contain high-discharge rates.

We select a 100-second window for prediction/sampling.
Starting from a fully charged battery with zero current
being drawn and uniform Li-ion concentration in particles
and electrolyte, the use cycle is given by a piece-wise linear
continuous current function I(t) (see fig.1).

Each line segment in I(t) is defined on a 100 second time
window and is described by its two end points (tj , Ij) and

Fig. 1. A diagram illustrating the piece-wise linear use
cycle I(t). Each I(tj) = Ij for j = 0, 100, . . . ,M ∈
100N is drawn from the triangle distribution with the
density function shown in Fig. 2.

(tj+1, Ij+1), where j = 0, 100, 200 . . . ,M ∈ 100N. Each
Ij ∈ {Ij |j > 0} is drawn from a triangle distribution T .
The probability density function for T has a minimum
value of zero, a peak at 1/Imax, and a maximum value
of Imax, where Imax is the maximum current that can be
drawn over a 100 seconds interval from a fully charged cell
(see fig.2). The simulated data contains many different
trajectories from full state of charge to the minimum
voltage cut-off.

Fig. 2. The probability density function for T . The proba-
bility that any sampled Ij will fall in the interval [a, b]
is given by P(a ≤ Ij ≤ b) =

∫ a

b
f(I)dI. The chance

of sampling an Ij close to Imax is quite low, so the
likelihood of depleting the battery quickly is also low.

For this choice of Imax, the voltage curves depend strongly
on changing Li-ion concentration levels. This means that
the dynamics of the system cannot be modeled by an
equivalent circuit model and a more descriptive model like
the SPM is needed (see Fig.6 ).

3. MACHINE LEARNING FRAMEWORK

We construct and train a feedforward Deep Neural Net-
work (DNN) to approximate the battery dynamics. More
specifically, the DNN is a non-linear map between inputs
and outputs that approximates the battery dynamics using
observations from the simulated data.



Because we would like to capture non-linear dynamics a
DNN is a natural choice. Additionally, DNNs are excellent
function approximators that have been applied across
many disciplines and applications with highly accurate
results (Cybenko, 1989).While training a DNN can be
computationally costly, offline predictions after training
are inexpensive enough to be done on a low-power CPU.

3.1 Approximating Battery Dynamics with a DNN

The NN model is trained to predict future battery behav-
ior over a 100-second horizon, given information on the
input current, the terminal voltage, and concentration of
lithium in each electrode at the start of the prediction
window.

For each 100-second time window Tj = [tj , tj+1] in the
data set, the DNN is trained on the current at time tj ,
and time tj+1, the terminal voltage at time tj , and the
concentrations profiles csn(tj) and csp(tj) in the nega-
tive and positive electrode. Note that these concentration
profiles are not measurable quantities. The only concrete
information known is that initially they are constant in r
at a fully charged state. The DNN is trained to predict
terminal voltage, V (t), at time tj+1, the concentration
profiles in the negative and positive electrodes at time tj+1,
and whether the battery failed during time window Tj . If
the battery failed in the time window being considered,
the last values before failure are considered instead.

Concretely, letting tN denote the last second of battery
operation before failure, the inputs to the DNN are

x = [I(tj), I(tj+1), V (tj), csn(tj) csn(tj)] ,

where j + 1 ∈ {100, . . . ,M} or j + 1 = N , and the targets
are

y =

{[
1, V (tN ), csn(tN ), csp(tN )

]
, if failure[

0, V (tj+1), csn(tj + 1), csp(tj + 1)
]
, o/w

. (1)

The desired outputs for the DNN are of mixed type,
because the goal is not only to categorize battery failure,
but also to predict future observations based on current
observations. The former calls for logistic regression, while
the latter is trained for prediction accuracy via a Mean
Squared Error (MSE) loss. The overall loss function for
the DNN is the sum of binary-cross-entropy loss and MSE.

The DNN has three dense hidden layers, each with a
Rectified Linear Unit (ReLU) activation function. There
are two output layers; one performs logistic regression
and is thus sigmoid activated, while the other predicts
future behavior and has a ReLU activation (see fig.3 for a
schematic of the NN model architecture). The Network is
trained with Keras, using ADAM as the optimizer with a
learning rate of 0.001. The Network is trained with 24, 822
total parameters.

4. MODEL PERFORMANCE

In this section we describe how the NN model’s perfor-
mance was assessed and then describe its performance.

4.1 Training, and testing data

We generate a data set of 15,000 use cycles using the
procedure outlined in sec. 2.1. We select M = 15 so that
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Fig. 3. Schematic of the DNN Model architecture.

each use cycle is 1, 500 seconds long. Because each use
cycle I(t) in the data set is generated by sampling from
the triangle distribution T , for almost all of the use cycles
in the data set, the battery does not make it all the way
to 15, 000 seconds, but instead is depleted before reaching
IM . To be more precise, there are 165 use cycles in the
data set that do not deplete the battery. The distribution
of how long the battery lasted before depletion, which we
will refer to as run-time, is shown in Fig. 4 for all the
simulations in the data set.
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Fig. 4. A histogram of battery run-times for all the battery
simulations in the data set.

The simulation data for each battery run is split into 100
second blocks, to generate a set of samples for training
and testing the NN model. For a given block Bj in a run,
the start and end values coincide with the end points Ij
and Ij+1 of the line segment in the use cycle that was
used to generate the simulation data for that block, i.e.
the simulation data is split according to the pieces in the
piecewise-linear use cycle. If the battery failed in the time
window being considered, Bj will only be (N(mod100) <
100 long. From each block of data, the first and last values
are taken to generate a set of samples for training the NN
model.

The data set of 15, 000 runs generates 126, 355 total
samples. We split the samples data set into two pieces for
cross-validation purposes. The Training data set consists of
65% of the samples, 82, 131 samples in total. The Testing
data set, which is held back for exclusive use testing
the accuracy of our NN model, is made up of the other



35% of the total samples, 44, 223 total samples. Model
performance on these data-sets is presented in the next
section.

4.2 Metrics

To evaluate the predictive performance of the model we use
several metrics, Mean Squared Error (MSE), Mean abso-
lute percentage error (MAPE) and categorical accuracy.

Mean Squared Error is given by

1

m

m∑
i=1

(y∗i − yi)
2 (2)

where y∗i is a predicted value generated by the DNN, yi is
the corresponding target value in the data set, and m is
the total number of data samples. (MAPE) is defined as

1

m

m∑
i=1

|y∗i − yi|
yi

× 100. (3)

Categorical accuracy measures how often a predicted cat-
egory is the correct category for a given data sample and
is simply the number of correctly categorized samples,
divided by the total number of samples. The first two
metrics are used to asses how well the model is able to
predict V (t) and csn(t) at time tj+1 or tN , while the
categorical accuracy metric, assesses how well the model
is able to predict battery depletion.

4.3 Model Accuracy

Model performance for the metrics outlined above is pre-
sented in Table 1. We see that the model is able to predict
battery failure with close to 100% accuracy for both the
training data set and the testing data set. The Mean ab-
solute percentage error for predicted future concentrations
and voltages is close to one percent for both the testing
and training data. In other words, the model shows very
good predictive ability on the testing data set and is able
to capture the battery dynamics modeled by the SPM with
high accuracy.

Table 1. The Predictive accuracy of the model
as measured by the Loss functions and Metrics.

Data Total Binary Cross MSE MAPE Categorical
Loss Entropy accuracy

Training 0.0070 0.0069 7.6e-05 0.8843 0.999
Testing 0.0072 0.0072 7.18e-05 1.2782 0.998

4.4 Li-ion Concentrations

An advantage of our surrogate modeling approach is that
our NN model has the ability to estimate information
that cannot be directly measured. One such quantity is
the concentration of Li-ions in the negative and positive
electrodes. These concentrations hold a wealth of useful
information. For example the state of charge (SOC) of the
battery can be directly calculated from Li-ion concentra-
tions by integration. In addition, the surface concentration
plays a key role in determining cell voltage.

We would like to get a better sense of the model’s predic-
tive accuracy for Li-ion concentrations in the negative and
positive electrodes. Towards this end, we generate a new
smaller testing data set, T2, created via the same proce-
dures as the original training and testing data sets, but
independent of and after model training and validation.
This data set is comprised of 1, 000 runs, which when split
into blocks come out to 9, 319 samples.

While it is encouraging that the MSE for predicted concen-
trations is very low, this metric doesn’t provide any insight
into how well the NN model approximates the shape of the
Li-ion distribution in the particles. To get a sense of this we
present a heat map of the prediction error as a percentage
of the true concentration profile for all samples in T2 in
Fig. 5.
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Fig. 5. Heat map of errors in particle concentration pre-
dictions as a percentage of the true value, across
all samples, at each of the measured distances (r)
along the particle radius. The Heat map on the left
corresponds to the negative particle, and the one on
the right to the positive particle.

We see that the prediction error is low across the entire
particle for the positive and negative particles. The Error
in the positive electrode is higher overall than the error
in the negative electrode. However, both Heat Maps show
that error is for the most part evenly distributed across the
particle. This demonstrates that predictions provide not
just a good approximation on average, but overall shape
fidelity.

To examine the variance in prediction accuracy, we select
three samples from T2. These are chosen according to
the following procedure; Given the distribution of MSE
when comparing predicted concentrations to true ones,
the samples with error closest to the 25th, 50th, and
27th percentile values of the distribution are chosen. Note
that these errors will occur at different samples for the
positive and negative electrodes, so all together there are
six samples. Concentration profiles for these samples are



shown in Fig.6, along with prediction error as a percentage
of the true values. This error is scaled by a factor of three to
make it more visible on the graphs. The left column shows
the samples chosen from the negative MSE distribution,
while the right column shows the samples chosen from the
positive distribution.
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Fig. 6. Negative and Positive particle concentration pro-
files for samples selected from the upper, middle, and
lower quartile of the distributions of MSE for pre-
dicted vs true values. The left column of figures shows
the samples chosen from the MSE distribution for the
Cathode. The right column shows the samples chosen
from the MSE distribution for the Anode. Percentage
error is shown in grey around the concentration pro-
files. These errors are scaled up by a factor of three to
make them more visible on the graph. True csn and csp
are shown in yellow and teal respectively. Predicted
profiles denoted by c∗sn and c∗sp are plotted with dot
markers and shown in blue and purple respectively.

The six samples in Fig.6 give a representative snapshot of
the range of model performance. Shape fidelity and overall
accuracy are high for all samples, even the samples corre-
sponding to the 75th percentile MSEs. The topographical
shapes of the errors observed in fig.5 align with the shape
of the errors along the profiles. For example, errors in
the positive particle are lower at the center and surface
of the particle and higher than those in the negative
particle. These observations agree with error patterns in

Fig. 5. This provides further evidence that our six samples
are representative of the overall data set and NN model
performance.

5. MULTI-STEP PREDICTION

The previous section demonstrated that the NN model is
able to accurately forecast 100 seconds into the future. A
natural next step is to gauge if error accumulates for a
longer forecast horizon. To test this, we recursively feed
NN model forecasts, back into the model over k steps.

Recalling that the trained NN model is a nonlinear map
between inputs x and predicted outputs, we adopt the
notation x 7→ F (x) = y∗ ≈ y to describe this relationship.
Given a synthetic use cycle I(t) from data set T2, the input
data for t = 0, x0 = [I(t0), I(t1), V (t0), csn(t0) csn(t0)], is
run through the NN model to get the one-step forecast

y∗
1 =

[
V ∗(t1), c∗sn(t1), c∗sp(t1)

]
= F (x0). Here the super-

script ∗ is used to indicate that a quantity is an approx-
imation generated by the Neural network. The two-step
forecast is F (x∗

1) = F ([I(t1), I(t2),y∗
1]) = y∗

2. Repeating
iteratively, the k-step forecast is

y∗
k = F

([
I(tk), I(tk+1), y∗

k−1

])
= F (x∗

k−1). (4)

It is important to note that for any use cycle I(t), we start
with I(0) = 0, and the battery fully charged. This means
that csn(0) and csp(0) have the same constant profiles for
any use-cycles, and V (0) also has the same value for all
use cycles. So, the only information the NN model has
that distinguishes any trajectory that starts at t = 0 from
another is the future current I(t1).

We asses model performance for k-forecasting over the
testing data set T2 from the previous section. For each run
of the 1, 00 runs in T2, we perform k iterative forecasting
steps. We stop when the NN model predicts battery
depletion after the kth forecast.

Table 2. MSE for k-step forecasts vs true
observations

k V csn csp
1 7.24E-04 9.75E-06 3.76E-05
2 3.18E-04 2.48E-05 9.57E-05
3 2.35E-04 4.39E-05 2.05E-04
4 2.52E-04 8.37E-05 4.23E-04
5 2.20E-04 1.26E-04 7.20E-04
6 2.58E-04 1.60E-04 1.08E-03
7 3.54E-04 1.90E-04 1.43E-03
8 6.20E-04 2.11E-04 1.82E-03
9 8.40E-04 2.22E-04 2.13E-03
10 1.73E-03 2.17E-04 2.46E-03
11 1.30E-03 2.36E-04 2.84E-03
12 1.49E-03 2.37E-04 3.30E-03
13 6.82E-03 2.80E-04 3.39E-03

Tables 2 and 3 show the MSE and MAPE for the k-step
forecast of terminal Voltage, negative particle concentra-
tions, and positive particle concentrations across all runs
in T2. Due to the distribution of run times (see fig.4) the
number of runs used to calculate errors for the k-step
forecasts is variable. For example, the 8-step forecast is
computed using the most runs.



Table 3. MAPE for k-step forecasts vs true
observations

k V csn csp
1 6.77E-03 3.51E-03 9.91E-03
2 4.09E-03 6.09E-03 1.41E-02
3 3.28E-03 8.98E-03 1.94E-02
4 3.43E-03 1.37E-02 2.69E-02
5 3.27E-03 1.87E-02 3.42E-02
6 3.54E-03 2.34E-02 4.10E-02
7 3.87E-03 2.78E-02 4.59E-02
8 4.49E-03 3.19E-02 5.07E-02
9 5.27E-03 3.51E-02 5.38E-02
10 6.55E-03 3.63E-02 5.71E-02
11 6.24E-03 3.83E-02 6.08E-02
12 8.19E-03 4.08E-02 6.53E-02
13 1.33E-02 4.70E-02 6.53E-02

While the error does accumulate over a battery run, the
model is able to forecast the entire battery run with
surprisingly high accuracy. This can be seen in Fig. 7,
which depicts predicted and actual terminal voltage pro-
files for selected MAPE distribution percentiles for an 8-
step prediction. This demonstrates that given only a use
cycle and knowledge that the battery is fully charged, the
NN model can predict concentration profiles and voltages
for the entire trajectory to discharge.

Fig. 7. The figure on the left shows the terminal voltage
for a run selected to be close to 25th percentile of
the MAPE distribution for T2 at step k=8, the right
shows the 75th percentile.

6. CONCLUSION

We have demonstrated that a NN can replace a Single par-
ticle dynamics electrocehmical model of a Li-ion battery
and give accurate predictions of voltage, particle concen-
trations, and failure time through an entire use cycle. This
NN has a significantly reduced computational cost which
is crucial for control and battery managements strategies.
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