REFERENCES Baldea, M. (2017). Employing Chemical Processes as Grid-Level Energy Storage Devices. In G.M.Kopanos, P.Liu, and M.C.Georgiadis(eds.), Advances in Energy Systems Engineering, 247—271. SpringerInternational Publishing, Cham. doi:10.1007/978-3-319-42803-19. URL https://doi.org/10.1007/978-3-319-42803-19. Beal, L.D., Petersen, D., Grimsman, D., Warnick, S., andHedengren, J.D. (2018).Integrated Scheduling and Control in Discrete-time with Dynamic Parameters and Constraints. Computers & Chemical Engineering, 115, 361{376. doi:10.1016/j.compchemeng.2018.04.010. Dowling, A.W., Kumar, R., and Zavala, V.M. (2017). A multi-scale optimization framework for electricity market participation. Applied Energy, 190, 147{164. doi: 10.1016/j.apenergy.2016.12.081. Flores-Tlacuahuac, A., Moreno, S.T., and Biegler, L.T. (2008). Global Optimization of Highly Nonlinear Dynamic Systems. Industrial & Engineering Chemistry Research, 47(8), 2643{2655. doi:10.1021/ie070379z. Gerke, B.F., Gallo, G., Smith, S.J., Liu, J., Raghavan, S.V., Schwartz, P., Piette, M.A., Yin, R., and Stensson, S. (2020). The California Demand Response Potential Study, Phase 3: Final Report on the Shift Resource through 2030. Technical report. Grossmann, I.E. and Trespalacios, F. (2013). Systematic modeling of discrete-continuous optimization models through generalized disjunctive programming. AIChE Journal, 59(9), 3276{3295. doi:10.1002/aic.14088. Hart, W.E., Laird, C., Watson, J.P., and Woodru, D.L. (2012). Pyomo { Optimization Modeling in Python. doi:10.1007/978-1-4614-3226-5 2. Liu, Y., Fan, Y., Palazoglu, A., and El-Farra, N.H. (2020). A exible design framework for process systems under demand-side management. AIChE Journal, 66(7). doi:10.1002/aic.16249. Nicholson, B., Siirola, J.D., Watson, J.P., Zavala, V.M., and Biegler, L.T. (2018). pyomo.dae: a modeling and automatic discretization framework for optimization with dierential and algebraic equations. Mathematical Programming Computation, 10(2), 187{223. doi: 10.1007/s12532-017-0127-0. Otashu, J.I. and Baldea, M. (2020). Scheduling chemical processes for frequency regulation. Applied Energy, 260, 114125. doi:10.1016/j.apenergy.2019.114125. Schafer, P.,Westerholt, H.G., Schweidtmann, A.M., Ilieva, S., and Mitsos, A. (2018). Model-Based Bidding Strategies on the Primary Balancing Market for Energy-Intense Processes. Computers & Chemical Engineering, 120, 4-14. doi:10.1016/j.compchemeng.2018.09.026. Teichgraeber, H. and Brandt, A.R. (2020). Optimal design of an electricity-intensive industrial facility subject to electricity price uncertainty: stochastic optimization and scenario reduction. Chemical Engineering Research and Design, 163, 204{216. doi:10.1016/j.cherd.2020.08.022. Tong, C., Palazoglu, A., and El-Farra, N.H. (2017). A Decomposition Scheme for Integration of Production Scheduling and Control: Demand Response to Varying Electricity Prices. Industrial & Engineering Chemistry Research. doi:10.1021/acs.iecr.7b00869. Tong, C., Palazoglu, A., El-Farra, N.H., and Yan, X. (2015). Energy demand management for process systems through production scheduling and control. AIChE Journal, 61(11), 3756{3769. doi:10.1002/aic.15033. Turton, R., Shaeiwitz, J., Bhattacharyya, D., and Whiting, W. (2018). Analysis, Synthesis, and Design of Chemical Processes: Analy Synth Desig Chemi Prn 5. International Series in the Physical and Chemical Engineering Sciences. Pearson Education. URL https://books.google.com/books?id=eV5gDwAAQBAJ.