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Abstract: In this work, a model-based analytical framework is proposed to evaluate the
cost-effectiveness of process design alternatives with respect to their ability to participate
(particibility) in Demand Response (DR) services (such as load shifting under the Day-Ahead
market) through the use of supply curves. The supply curves relate available DR capability to the
investment cost of process design, and are constructed based on a specific DR service. Using the
California Independent System Operator (CAISO) wholesale electricity market as a reference,
the proposed framework is implemented to demonstrate the cost-benefits of considering DR
aspects at the design stage. As a motivating example, the developed framework is illustrated
using a CSTR-storage model, for which supply curves are generated under different scenarios.
A visualization is provided of the effect of the process design capacities on the DR capability,
as well as the limitations on the load-shifting capacity of a given process design.
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1. INTRODUCTION

Demand response (DR) has become increasingly impor-
tant as a strategy for balancing the power supply and
demand under an ambitious renewable portfolio stan-
dard, keeping the electric grid stable and efficient; de-
ferring upgrades to generation, transmission and distri-
bution systems; and providing other economic benefits to
customers. Energy-intensive industries could participate in
the electricity market through different DR mechanisms,
providing stability to the grid system as well as lowering
the operating costs (Gerke et al. (2020)). Generally, it
is well-recognized that participation in the DR market
requires that the specific energy-intensive process have
sufficient operational flexibility, and that the process dy-
namics should also be fast enough to respond to the rapidly
changing electricity price trends. One of the current bot-
tlenecks for residential and commercial applications in
terms of their ability to participate in the DR market is
the lack of advanced control equipment; yet for large-end
industrial electricity users, the cost of advanced metering
to facilitate DR participation does not appear to be a
significant barrier (Baldea (2017)); rather, DR design is
an extremely important consideration when decisions for
investments are made.

Currently, research in the DR area focuses mostly on
the scheduling and operation of energy-intensive processes
under time-varying electricity markets. In particular, the
operation of a process with direct participation in the
short-term market (e.g., Five-Minute Ahead Market) has
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gained significant attention among researchers (see, for ex-
ample, Dowling et al. (2017); Otashu and Baldea (2020)).
Also, model-based bidding strategies for industrial pro-
cesses have been investigated (e.g., see Schäfer et al.
(2018)). Above works have investigated the participation
of a fixed plant into the time-varying electricity market,
but the flexibility potential on the demand side from the
design perspective are not addressed. As for the design
problem, Liu et al. (2020) studied the flexible design of
a pump network under DR objectives, and Teichgraeber
and Brandt (2020) explored the design of a chlor-alkali
plant under the real-time electricity market (RTM). Both
works used a stochastic programming framework to ad-
dress the design problem; however, none of the current
studies directly addressed the impact of process design or
process dynamics (and the associated costs) on the ability
of the process to participate in DR services. Incorporating
DR objectives directly into the design and operation of
chemical processes needs to take account of the plant
capacity design as well as the intrinsic process dynamics,
which usually introduces significant nonlinearities into the
modeling. Furthermore, the design stage is usually at a
different time scale compared to the DR operational de-
cisions, which in general is in hours or even minutes, and
thus a multi-scale model is usually required, often leading
to an intractable model, where the impact of design on the
DR capability is difficult to quantify.

Motivated by above considerations, the objective of this
work is to systematically study the ”cost-effectiveness” for
the design of a process when considering the participation
in the DR market (particibility), specifically, the Day-
Ahead market (DAM). We propose a bottom-up approach,



starting with a first-principles dynamic model to construct
a high fidelity process operating range and then implement
the scheduling model to analyze a metric defined as
”load-shifting capacity”, which aims to quantify the DR
capability under a specific DAM electricity price profile.
The analysis is carried out under different design scenarios
to provide the supply curve, which helps to demonstrate
the relationship between investment and DR capability.

2. METHODOLOGY & MODEL FORMULATION

2.1 Problem Description

In this work, we present a bottom-up approach to analyze
the relation between process design (in our case, the
capital cost of the system) and load shifting potential,
through the supply curves. The supply curve, which is
widely used in the area of economics, is a graphical
representation of the correlation between the cost of a good
or service and the quantity supplied for a given period.
In the sections that follow, we discuss the framework
implemented in this work to analyze the cost-effectiveness
of a certain process design. We define a new metric, namely
load-shifting capacity, to quantify the DR capability of a
given process in terms of load shifting. The load-shifting
capacity metric is calculated using a scheduling-based
model integrated with process dynamics.

2.2 Overview of Analysis Framework

The first step in the framework is to generate the feasible
region for the operation-related decision variables. This
is performed using a first-principles dynamic model for
the given process. The specific focus of this part is to
provide the scheduling model with a feasible operating
range as well as the transition profile information. The
feasible region not only includes the operating range but
also provides information on whether specific operating
adjustments will violate the system constraints such as
safety concerns or production requirements. The second
step is to develop a scheduling-oriented operating model
to evaluate the potential of the load shifting under specific
process design or capacity. Here, we define a new metric,
shifted load, to quantify the DR capability. It is noted that
this metric is used to evaluate the load-shifting capacity
only under the DAM. As shown in Figure 1, the blue solid
line represents the scheduled operating profile, while the
orange dashed line represents the base load. Theoretically,
if the total product demand remains unchanged over a
period of time, the total production over time should not
change. Therefore, the area under the blue line and the
area under the orange line should be nearly equal for a
given period of time. We define the base load at time t as
Ebt and the real scheduled load as Est ; thus we can quantify
the load-shifting capacity as follows:

Eshift =
∑
t

|Ebt − Est |
2

. (1)

As one might notice, this value is equal to the grey area
in Figure 1. The last step in the proposed framework is
to construct the supply curve to demonstrate the ”cost-
effectiveness” of various design alternatives. The schedul-
ing model under different design parameters, such as reac-

Fig. 1. Demonstration of the load-shifting capacity con-
cept, where the blue line shows the real scheduled
production, and the orange dashed line shows the base
line.

tor size or inventory capacity, is implemented repeatedly,
and the results are used to construct the supply curve.

Scheduling Model The scheduling model presented herein
extends the model proposed in Tong et al. (2017). The
objective function for the operation is defined as follows:

Jschedule = min(Φ1 + Φ2 + Φ3), (2)

where Φ1 = γ
∑T

(Ptπt), Φ2 =
∑T

δrawFt and Φ3 =∑T
δsSt. The terms Φ1, Φ2, and Φ3 represent the energy

cost, the raw materials cost, and the inventory cost,
respectively. The parameter γ is the scaling factor that
links the production to the electricity consumption. The
terms Pt, Ft, and St represent the production rate at time
t, the set-point for the production rate at time t, and the
storage capacity at time t, respectively. πt, δ

raw and δs

represent the electricity price at time t, the raw material
cost and the inventory cost, respectively.

Production and transition The production and transi-
tion model are provided as:

Pt = Ft(1− ttranst ), (3)

where the production rate at time t, Pt, is set to the pro-
duction rate set-point, Ft, times the production duration
time, 1 − ttranst , which implies that production over the
transition time is treated as an off-spec product and is not
counted towards production that satisfies the demand. The
transition time is defined as:

ttranst = f(xt,∆xt). (4)

The transition time ttranst here is defined as a function of
the state variable xt, at time t, and the step change ∆xt.
It should be noted that in Tong et al. (2015), scheduling
was considered between a discrete set of operating modes
which were defined a priori. As a result, the transition time
variables were treated as parameters. However, as the aim
of the current scheduling formulation is to determine the
optimal operating mode at any given time, a discretization
strategy will not be practical here as the range of possible
operating modes could be considered infinite. This will
result in a significant increase in the number of binary
variables in the original model, thus making it intractable.



Fig. 2. A non-isothermal CSTR connected to a storage
system.

In Beal et al. (2018), however, the transition time was
estimated using the log function transformation. But it
is worth pointing out that a linearized feedback control
scheme was implemented in that study, and therefore pro-
vided a good fit only using the log function transformation.

The production rate set-point, Ft should also satisfy the
bounds and ramping constraint given below:

Ft ∈ [Fmin, Fmax] (5)

Ft − Ft−1 ≤ δ, (6)

where Fmin and Fmax define the minimum and maximum
production set-points, and δ defines the ramping limit.

Inventory constraint The inventory constraint are ex-
pressed as follows:

St = St−1 + Pt −Dt, (7)

where Dt is the demand at time step t. The bounds of
the inventory are given as 0 ≤ St ≤ Smax. Satisfying the
hourly demand is a hard constraint, and thus the inventory
tank is initially charged with a certain amount of on-spec
product S0, which will be defined asS0 = aSmax, and a and
is the percentage of the inventory size so as to make the
DR problem feasible. Also, to avoid depleting the product,
the storage at the end of the time period is set equal to
the initial storage (periodic terminal constraint):ST ≥ S0.
It is important to note that the complexity of the above
problem will depend on the transition time profile Eqn.
[4], which could be treated as a fixed parameter or as a
function. As a natural extension of the formulation in Tong
et al. (2017), we replace the fixed parameter assumption
and propose the use of a surrogate model for the transition
time.

Definition of the capital cost The capital cost is cal-
culated as log10C = K1 + K2log10(A) + K3[log10(A)]2,
where C is the capital investment; A is the capacity or size
parameter for the equipment; and K1,K2,K3 are the cost
coefficients. The equation and the values of the parameters
are taken from (Turton et al. (2018)).

3. CASE STUDY

We consider an illustrative case study inspired by earlier
works (Tong et al. (2015); Beal et al. (2018)), where a
non-isothermal CSTR is connected to a storage system
as shown in Figure 2. While the CSTR is usually not
considered as an electricity-intensive process, the nonlinear

dynamics of the system help to illustrate the proposed
framework and analysis approach.

3.1 Dynamic process model

The dynamics of the non-isothermal CSTR are derived
from standard material and energy balances and are cap-
tured by the following non-dimensionalized model:

dc

dt
=

1− c(t)
θ

− k0e
− n

T c(t), (8)

dT

dt
=
yf − T (t)

θ
− k0e

− n
T c(t) + α ∗ u(t) ∗ (yc − T (t)),

(9)

where θ = V
F , α = UAc

ρCpV
, yf =

ρCpTf

∆H , n =
EρCp

R∆H ,

yc =
ρCpTc

∆H and the state variables are c = cR
cf

, and

T =
ρCpTR

∆H . Meanwhile, the dimensionless temperature,
T , needs to satisfy the constraint:

0 ≤ T (t) ≤ 1, ∀t. (10)

In this study, the cooling water flowrate u(t) is used
as the only manipulated variable to control the reactor
temperature. The above CSTR model, together with the
process parameters, are taken from (Flores-Tlacuahuac
et al. (2008)).

As mentioned earlier, the specific control scheme for the
system could be designed differently. For example, in the
earlier works (Tong et al. (2015, 2017)), a PID control
scheme was implemented to execute the transitions be-
tween the different operating modes. For such a scheme,
however, the transition dynamics are dependent on the
choice of the PID tuning parameters. Given this, and the
fact that the aim of the current study is to assess the
DR potential for different design capacities, using a PID
controller in this case would require that the PID settings
be adjusted each time the design capacity is varied to
ensure that a meaningful comparison between the various
design alternatives is made without the added influence
of the controller tuning. To eliminate the dependence
on controller settings, we use in this study a dynamic
optimization-based control scheme that automatically ac-
counts for the transition effects. An exploration of the
influence of different control strategies on the potential
of DR particibility is the subject of other research work.

The objective function for the optimal control problem is
given by:

obj = Σt[α(c(t)− cs)2 + β(u(t)− u(t− 1))2], (11)

where α and β are the penalty weights, cs is the target con-
centration of the desirable product. The objective function
penalizes changes in the control action, as well as concen-
tration set-point errors. The above dynamic optimization
problem is solved using Pyomo (Hart et al. (2012)) and
using the differential-algebraic equation package (Nichol-
son et al. (2018)). A sample transition profile is shown in
Figure 3, where the transition occurs from the steady-state
with θ = 60 hr to the steady state with θ = 30 hr.

3.2 Transition time space generation

In order to generate data points for the transition time
profiles, the transition between two steady states corre-



Transition

Fig. 3. CSTR state and input transition profiles from
θ = 60 to θ = 30 hr.

sponding to different θ values, ranging from 8 to 80 hr, is
simulated via dynamic optimization. The transition time
value is then extracted from the profile obtained. Given
that the time constant is defined as θ = V

F , θ can be varied
(for a given reactor volume V ) by varying the inlet flowrate
F . For different θ values, there will be different steady-
states. Therefore, we vary θ to generate different steady-
states, and, thereafter, simulate the transition profiles from
one steady-state to another. As shown in (4), the state
variable would be θt and the step change would be ∆θt
correspondingly. The relation between Ft in (3) and θt
would be given as Ft = V

θt
. Also, Fmin and Fmax could be

replaced by: Fmin = V
θmax

and Fmax = V
θmin

.

All the simulations then provide a transition time space
to be used subsequently in the scheduling model. Figure
4 shows an example transition time space visualization
for a CSTR with a volume of 400 L. To incorporate this
information into the scheduling model, as the constraint
in (4), a functional relationship needs to be constructed.
One way to construct a sample surrogate model is to
utilize piecewise linear constraints. However, in general,
this approach will significantly increase the size of the
problem, since a significant number of binary variables is
required to accurately represent the data. In this work,
we formulate the transition time surface using the Big-
M reformulation (Grossmann and Trespalacios (2013)).It
worth to point out that in this work, an open-loop control
of a non-linear dynamics system is implemented. This
complicates the transition time space as shown in Figure 4.
However, in real application, a closed-loop strategy might
be implemented and thus, linearization of the system is
possible.

3.3 Results

The scheduling problem with the Big-M transition time
reformulation is solved in Pyomo with the Gurobi solver.

Fig. 4. Visualization of the transition time between two
steady states (as a function of the starting and ending
states) for a 400-L CSTR.

Fig. 5. Visualization of the operating profiles for a 400-L
CSTR.

In Figure 5, a sample scheduling result for the production
(top plot) and inventory (middle plot) under a represen-
tative electricity price profile (bottom plot) is shown. The
representative electricity price is taken from an aggregated
node in California for the first week in 2019. The inventory
and production profiles under the provided representative
electricity prices are met as expected, i.e., as the price
increases the production rate decreases and vice versa. To
construct the supply curve for a given case, a range of
parameters are used in the dynamic and scheduling mod-
els. For the design specifications, the CSTR size and the
storage capacity will be considered as the design variables.



Fig. 6. Supply curves for different CSTR sizes.

The CSTR size will range from 500 to 800 L, with an
incremental increase of 50 L, while the storage size will
range from 100 to 1000 L, with 50 L increments as well.

Supply curves under different CSTR sizes: Figure 6
shows the supply curves, where the capital cost is plotted
as a function the daily shifted load, for different CSTR
sizes (ranging from 500 to 800 L). The inventory cost
parameter, δs, in this case is set to zero, while the hourly
demand, Dt, is assumed to be constant and set to 50 L/hr.
Therefore, for a given CSTR size, the cost in Figure 6 can
be viewed as a function of the storage size as well.

The supply curve provides a visualization of the limitation
of how much load a certain design choice could potentially
shift for a given amount of capital investment. For exam-
ple, for the CSTR size of 650 L, increasing the daily load-
shifting capacity from 175 kWh to 350 kWh only requires
a modest increase in capital investment; however, beyond
350 kWh the steep increase in the investment cost associ-
ated with the storage size suggests a limitation on the load-
shifting capacity. It is intuitive to expect the range of daily
load-shifting capacity to increase as the inventory size is
increased. The supply curves, however, provide additional
visual information regarding the limitation on the load-
shifting capacity, implying that for a given CSTR design,
while increasing the storage size could help increase the
load-shifting capacity (and thus potentially yield profits
from the DR load-shifting), there exists a limit beyond
which the investment into additional storage capacity will
no longer be cost-effective. As can be seen from the figure,
this limit increases as the CSTR size increases, suggesting
that larger CSTRs enjoy a wider range of “cost-effective”
load-shifting capacities. Over this range, an increase in the
load-shifting capacity requires only a modest increase in
the storage investment cost.

Supply curves under different storage sizes: Figure 7
depicts the supply curves for different storage sizes, with
the inventory cost, δs, set to zero and the hourly demand,
Dt, set to 50 L/hr. In this case, for a given storage
size, the cost in Figure 7 can be viewed as a function
of the CSTR size as well. It can be seen that when the
storage size is small, i.e., in the range from 100 to 300
L, the increase in the CSTR investment exhibits a trend
similar to that in the supply curves in Figure 2, where
an increase in the CSTR size helps expand the range of

Fig. 7. Supply curves for different storage sizes.

load-shifting capacities, but only up to a limit beyond
which further CSTR size increases become no longer cost-
effective. However, for larger storage sizes, i.e., in the range
from 400 to 1000 L, the supply curves become parallel
to one another, which suggests that after the storage
reaches a certain size limit, to reach the same load-shifting
capacity, an increase of the storage size does not provide
any benefit. This is consistent with the trend observed
earlier in Figure 6.

Supply curves under different inventory costs: So far in
the analysis, we have assumed that no cost is associated
with storing the product. To illustrate the limitations
imposed by the cost of storing the product on the daily
load-shifting capacity, we present in this part the supply
curves for different values of the inventory cost parameter,
δs. The supply curves for this scenario are presented in
Figure 8. In this case, the hourly demand, Dt, is set to 50
L/hr and the CSTR size is set to 800 L. The results show
that the daily load-shifting capacity is limited by the cost
of storing the product. The case where δs = 0 (i.e., no
inventory cost) serves here as a base case. It can be seen
that as the inventory cost increases, the supply curve shifts
to the left, indicating a smaller range of cost-effective load-
shifting capacities. The lower the inventory cost, the higher
the capability of load shifting the system could reach. It is
to be noted that when δs = 0, the supply curve becomes
almost vertical around a daily load-shifted value of 450
kWh/Day, which might also mean that the highest load-
shifting for this system will be capped at around this value.

Supply curves under different hourly demands: In Figure
9, the supply curves for different values of the demand, Dt,
are presented. In this case, the CSTR size is set to 800 L,
while the inventory cost parameter δs is set to zero. It can
be seen that as the demand increases, the cost-effective
range of load-shifting capacities increases, and so does the
limiting load-shifting capacity. It is also interesting that
with the increase of the demand parameter, the distance
between the supply curves decreases. For example, the
supply curve for Dt = 50 L/hr almost overlaps with the
supply curve for the case with Dt = 60. This suggests that
given a fixed CSTR size the change in demand will no
longer have an effect on the capability of load shifting.



Fig. 8. Supply curves for different inventory costs, δs.

Fig. 9. Supply curves under different hourly demand
values.

4. CONCLUSIONS

In this work, we presented a sequential model-based ana-
lytical framework for assessing the potential of a process to
participate in DR load-shifting services based on the cost-
effectiveness of various design alternatives. The framework
brings together tools from dynamic modeling, optimal
control and operational scheduling, and culminates in the
construction of the system supply curves which quantify
the link between the capital investment of a given de-
sign and its DR load-shifting capability. For a conceptual
demonstration of the approach, a non-isothermal CSTR
combined with a simple inventory system was considered
as a case study. Future research work will focus on ap-
plying the proposed framework to a more complex and
realistic case study, as well as directly incorporating the
load shifting metric into the system design.
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