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Abstract: An optimal control framework was employed to obtain optimal supersaturation/temperature 

policies for controlling the crystal mass, size, and shape that meet target product specifications. It uses a 

bivariate population balance model that includes crystal nucleation, growth, dissolution, and 

disappearance. The optimal control scheme, solving a dynamic optimization problem, was applied to the 

batch cooling crystallization of potassium dihydrogen phosphate. The population balance model was 

evaluated in open-loop experiments, showing good prediction for the mean characteristic lengths and 

number of particles, both for the supersaturation and undersaturation zones. The deterministic optimal 

control simulations demonstrated the application of the control action policies to produce crystals of 

desired mass and average shape for different control targets.  
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1. INTRODUCTION 

Crystallization is a chemical process prevalent in the 

industry, being characterized as a solid-liquid separation 

technique that generates products with a high degree of 

purity, in a single step, with a low degree of energy demand. 

Such capacity makes crystallization an attractive technique 

for the manufacture of many solid materials, especially fine 

chemicals, and drugs. Due to the complexity of the 

phenomena involved in crystallization, it is challenging to 

model and control these processes to achieve the desired 

product quality and process efficiency. 

Population balance models are traditionally used for 

crystallization processes. Such models are often used in the 

literature with three main objectives (Lewis et al., 2015): as a 

predictive model of the size and shape of the particles once a 

kinetic model has been established, for the proper estimation 

of the kinetic model parameters from experimental results, 

and for control and optimization of process conditions in 

order to obtain a desired size or shape distribution of the 

crystals, given an already established kinetic model. 

The development of adequate control strategies depends on 

the search for representative models, combined with 

analytical instrumental technological advancement, which 

currently arouses growing research interest (Gao et al., 2017; 

Nagy and Braatz, 2012). Specifically, concerning the control 

objectives in batch crystallizers, there is a wide variety of 

control strategies due to the alternatives of manipulating 

variables in non-continuous systems to achieve a specific 

operational or production objective. In a classical review, 

Rawlings et al. (1993) discussed temperature policies to 

achieve optimal control of the average crystal size. The use of 

an open-loop strategy using temperature cycles is employed 

by Nagy et al. (2011), adopting an optimal temperature policy 

to eliminate fines, by allowing dissolution cycles.  

About model-based control schemes, the use of the MPC 

(Model Predictive Control) becomes viable and increasingly 

attractive if the model's output variables can be measured and 

monitored, such as, for example, the concentration of the 

solute and the crystal size distribution (Damour et al., 2010; 

Kalbasenka et al., 2012). The dynamic programming 

approach is also a model-based scheme to establish the 

control policy, but control input policies can be calculated 

offline a priori and stored. In this way, it has the advantage of 

making it possible to close the loop more simply in practice. 

The dynamic programming in crystallization control is 

reported using empirical models, such as Markov State 

Model based on experimental measurements (Griffin et al., 

2016; Grover et al., 2020). 

In addition to the concern with the particle size, modeling for 

the shape (crystal habit) may be necessary and of progressive 

use in the development of predictive modeling and control of 

crystallization processes. However, controlling the particle 

shape presents an additional difficulty, both from the point of 

view of the model design and the measurement of important 



 

 

     

 

variables during the process. The number of control studies 

related to crystal shape is yet limited (Bötschi et al., 2018). 

For these cases, the use of multidimensional PBM, in turn, 

presents greater complexity, mainly due to the difficulty of 

experimental measurements of the size of the crystals in 

multiple directions combined with possible computational 

difficulties for their solution.  

The use of temperature cycling experiments (using growth-

dissolution cycles) as a strategy to modify the crystal shape 

was studied in the past. Jiang et al. (2014) estimate both size-

dependent growth and dissolution kinetics parameters in a 

2D-PBM solved using the method of characteristics. In that 

study, the authors predicted the crystal shape for the 

monosodium glutamate. Eisenschmidt et al. (2016) developed 

an optimal control scheme based on the temperature cycling 

strategy, showing experimentally the efficiency of controlling 

the crystal shape through two dimensions of crystals of 

potassium dihydrogen phosphate (KDP). The size-

independent growth and dissolution kinetics for KDP were 

previously estimated from experiments at constant 

supersaturation and undersaturation levels (Eisenschmidt et 

al., 2015). In that study, the authors defined a region in state 

space to track only the seed crystal evolution, thus 

disregarding nucleation and disappearance phenomena. 

Regarding crystal shape control, a simulation control study 

that evaluated the effects of optimal control policies and 

spatial variations on crystal shape was performed (Ma et al., 

2002). A 2D-PBM considering only growth phenomenon for 

the L-glutamic acid was developed and applied 

experimentally in closed-loop feedback control for 

experiments with different control targets (Yang et al., 2012). 

Using this same approach and still taking into account only 

the phenomenon of crystal growth, optimal temperature 

control, and optimal supersaturation control were compared 

in terms of performance in achieving the shape control targets 

in a real crystallizer for the L-glutamic acid (Ma et al., 2012).  

A simulation study applying a less complex size and shape 

control approach that does not need kinetic models for a 

crystallization process considering only growth proves 

efficient (Bötschi et al., 2018). This model-free approach, 

called path following control (PFC) proved attractive 

compared with more complex schemes such as NMPC 

(Nonlinear Model Predictive Control) that require the 

availability of growth rates. The experimental validation of 

PFC as a suitable feedback control scheme for shape was 

obtained for the β L-glutamic acid crystallization 

(Rajagopalan et al., 2019). 

For crystal shape control in a continuous process, an NMPC 

was developed by Kwon et al. (2014a) to control the shape of 

lysozyme crystals using a mixed suspension mixed product 

removal (MSMPR) reactor with a fine-particle trap. Good 

results were obtained for the regulation of the average crystal 

aspect ratio operating in a growth cycle. The authors 

employed an 1D moment model for the crystal volume 

distribution. A feed-forward control was designed by Kwon 

et al. (2014b) for the lysozyme crystals using a plug flow 

configuration, producing crystals with desired size and shape 

under feed flow disturbance rejection. 

In this study, a bivariate population balance model (2D-

PBM) was developed for KDP. The 2D-PBM was developed 

for supersaturated and undersaturated conditions, making it 

possible to use temperature cycling to achieve the desired 

product specification. The good agreement of the model 

prediction with experimental results makes the 2D-PBM 

approach attractive in optimal control strategy to reach 

targets of mass, size, and shape of KDP crystals. 

2. METHODS 

2.1 Model development 

For modeling the morphology of KDP crystals, two 

characteristic dimensions called L1 and L2 were used as 

internal coordinates of the population balance equation 

(PBE). KDP crystals have a crystalline habit, as shown in 

Fig. 1, and the choice of the two characteristic lengths was 

also used by Yang et al. (2006), Ma et al. (2002) and 

Gunawan et al. (2002). 
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Fig. 1: KDP crystal and the characteristics lengths. 

Taking into account these two internal variables in the state 

space, a bivariate number density distribution 1 2( , , )n L L t  is 

established, in [# /(μm2 · cm3 of solvent)]. 

In this work, the supersaturation S  was considered as the 

driving force and input variable: 

 
*/S c c=                                      (1) 

where c is the solute concentration and 
*c  is solute 

equilibrium concentration, in [g of solute / cm3 of solvent]. 

The variation of the solvent density with temperature was 

neglected. 

First, for supersaturated conditions ( 1S  ), the phenomena 

considered were the crystal growth and nucleation, and the 

PBE applied to the batch crystallizer yields: 
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where 1G  (3) and 2G (4) are the crystal growth rates in [μm / 

min], B denotes the nucleation rate in [# / (min · cm3 of 

solvent)] (5), and () is the Dirac delta function. 
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where ,1gk , ,2gk  and bk  are pre-exponential constants; 
,1gaE , 

,2gaE  and 
baE  are activation energies; TM  is the mass of 

crystals per solvent volume; ,1g , ,2g , b  and   are 

exponent parameters; R  is the universal gas constant; and T 

is the suspension temperature. 

For undersaturated conditions (S < 1), the PBE yields: 
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where 1D  and 2D  are the crystal dissolution rates in 

[μm/min], 1 2, 0D D   (7,8). 
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where ,1dk  and ,2dk  are pre-exponential constants; 
,1daE , 

,2daE  are activation energies; ,1d  and ,2d  are exponent 

parameters. 

In this case of S < 1, the solute concentration is lower than 

the solubility, and crystals can dissolve continuously and in 

the extremal case, some fines may disappear. 

2.2 Cross-moment equations and numerical approach 

Moments of the crystal size distribution were decided to be 

used as state variables (and also measured variables by image 

analysis) for the purpose of the crystal size and shape control 

in this work. Using the method of moments, the cross-

moments ,i j  defined in the space of two dimensions are 

given by: 

, 1 2 1 2 2 1
0 0

( , , )i j
i j L L n L L t dL dL

 

=       (9) 

When applying the cross-moment integral transform operator 

to (2) and (6), the following cross-moment set of ODEs is 

obtained. 
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The integral transformation for the moment equations of ,0i  

yields: 
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In the same way, for 0, j : 
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For the zeroth order cross moment 0,0 : 
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For undersaturated conditions ( 1S  ), it was experimentally 

observed that 2 1L L  at any time. Therefore, the outgoing 

particle flux at the 2 0L = boundary, that is 2 1( ,0, )D n L t , is 

zero, and the characteristic curves leave the domain only at 

the 1 0L =  plane. Consequently, the terms 

2 1 1 1

0

( ,0, )iD L n L t dL



 in (11) and 2 1 1

0

( ,0, )D n L t dL



  in (13) 

are null. Additionally, under the assumption that 2L is close 

to zero when 1 0L = , the high-order ( 0j  ) moment fluxes 

1 2 2 2

0

(0, , )jD L n L t dL



  in (12) can be neglected. 

However, the evaluation of the flux 1 2 2

0

(0, , )D n L t dL



 is 

needed in (13) to close the model. Defining the marginal 

density distribution 
1 1( , )Ln L t as: 
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this particle flux is given by 
11 (0, )LD n t . The equation for 

1Ln is obtained by integrating (6) in the whole 2L  domain, 

being given by: 
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+ =

 
    ( 1)S                (15) 

where the particle flux at 2 0L =  was again not considered 

due to the experimental evidence that 2 1 ,L L t  . The 

numerical calculation of (15) is less laborious and have a 

lower computational cost when compared to the calculations 

of n  using (6). For (15), the high-resolution finite volume 

method (“HR-  = -1 scheme”) by Qamar et al. (2006) was 

employed. 

In this way, having the marginal density distribution at the 

boundary 1 0L =  by solving (15), the number of particles that 

leave the domain per solvent volume, dN [#/cm3], can be 

accounted during a sampling time t  by the following 

integral: 

  
11( ) (0, )

t

d L

t t

N t D n d 

−

= −               (16) 

Thus, (13) for 1S   can be explicitly integrated in one time 

step to give: 

0,0 0,0( ) ( ) dt t t N = −  −             (17) 

In order to relate third order cross-moments with the mass of 

crystals and solute concentration, the volume of a single KDP 

crystal can be expressed by (Borchert, 2012; Ma et al., 2002): 

  
2 3

1 2 2 1 1

2
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3
cV t L L L L L= −        (18) 

In this way, the mass of crystal per solvent volume TM  can 

be expressed by:  
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         (19) 

The crystal mass balance can be defined, in the same manner, 

by: 

   1 2 1 2( , , ) ( , , )c c
c

dm t L L dV t L L

dt dt
=   (20) 

Using (18) and the definition of the growth/dissolution rates: 
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By a mass balance and integrating (21) in the whole internal 

variable domain, the solute concentration equation can be 

represented by: 
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    (22) 

By switching the model for each zone, the developed 

approach can describe the system behavior as the temperature 

is increasing, causing dissolution and disappearance of KDP 

crystals, and decreasing, causing crystal growth and 

nucleation. 

Based on the structure of the models presented in this section, 

the kinetic parameters for nucleation, growth, and dissolution 

were estimated for KDP for a given set of experiments. 

Details of the adopted approach are described in Moraes et al. 

(2019). Numerical integration of the model during the 

parameter estimation process was done by the integrator code 

DASSLC v3.9 (Secchi, 2014). Section 3.1 presents the results 

for the model prediction compared to experimental results. 

2.3  Experimental Setup 

Crystallization and dissolution experiments for KDP (Synth, 

> 99%) in distilled water were performed in a 1-liter jacketed 

glass vessel (Syrris®) with a two-blade stirrer (Orb®) 

operating at a rate of 400 rpm. A peristaltic pump 

(MasterFlex L/S) was coupled to the vessel to provide 

adequate sampling and conduction of the suspension through 

the image analyzer equipment (QICPIC-LIXELL Sympatec®) 

at a flow rate of 140 cm3/min. This external sampling loop 

was made online during the experiments. The image analyzer 

continuously obtained videos of the sample suspension at a 

frequency of 100 frames per second. At each 1 minute 

(sampling time), the data was acquired. The images of all 

crystals captured by the images were used to estimate the 

state of size and shape. The WINDOX Sympatec® software 

allows real-time monitoring of the solid phase by acquiring 

variables of size and shape of the crystals (such as the cross-

moments). 

The temperature measurements were done using a 

thermocouple in contact with the solution. The 

thermoregulator (thermostatic bath, Huber® Petite Fleur) was 

connected to the vessel's cooling jacket for temperature 

control. For the liquid phase (solution), the solute 

concentration was determined by a conductivity sensor 

(Gehaka® CG2000) in situ. The conductivity ( ) was related 

to the solute concentration and temperature by a calibration 

equation: 

1,0 0,1 1,1 0,0( , )c T T c Tc    = + + +   (23) 

where 1,0 , 0,1 , 1,1  and 0,0  were parameters estimated. 

The KDP equilibrium concentration 
*c  in the following 

polynomial form, empirically described by Eisenschmidt et 

al. (2006), was used in this work: 

* 2( )c T AT BT C= + +          (24) 



 

 

     

 

The schematic representation of the experimental setup used 

in this work is shown in Fig 2. 

2.3 Optimal control framework 

Once the deterministic model was obtained, the dynamic 

optimization problem described by Grover et al. (2020) was 

solved to obtain optimal control policies to produce KDP 

crystals with desired mass, size, and shape for deterministic 

simulations. The supersaturation was used as the control 

input in this strategy. 

In this way, with a primary objective of reaching a target 

state position x


, the optimal control input policy can be 

expressed as follows (Grover et al., 2020): 
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where  * *
0 1, ... , Nu u −  is the optimal control policy;   and   

are tuning parameters; ( ),τx xd   is the distance-to-target 

function; f  is the model. 

The control vector state for the KDP mass-size-shape-control 

was: 

1 2x
T

m L L =     (26) 

where m is the mass of crystals; 1L  and 2L  are the number 

mean characteristic lengths: 

1 1,0 0,0

2 0,1 0,0

L

L

 

 

=

=
                             (27) 

The dynamic optimization problem of (25) was solved offline 

for a discretized set of states, in (26), and input 

(supersaturation setpoints). 

The solutions of (25), supersaturation policies, are stored for 

each time and state. For a practical control scheme, the 

temperature can be chosen as manipulated variable. For that, 

from the supersaturation policies of (25), the temperature 

policies can be obtained by inversion using (23) and (24). 

A schematic for the experimental setup proposed with a 

feedback loop applying this optimal control strategy is shown 

in Fig. 2. 

Complementary deterministic simulations (ideal case with no 

process-model mismatch) for KDP mass-size-shape control 

were performed using the calculated control policies. 

Reachable targets that span a considerable portion of the state 

space were set and shown in Section 3.2. 
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Fig 2: Schematic representation of the experimental setup and 

the feedback optimal control strategy. 

 

3. RESULTS AND DISCUSSION 

3.1  Experimental Results and Model Prediction 

To demonstrate the adequacy of the model developed and 

discussed in Section 2.1, experimental results obtained for 

KDP crystallization/dissolution experiments are presented for 

model validation. In Figs. 3 and 4, supersaturation and 

undersaturation regions were investigated, respectively, 

showing satisfactory results for model predictions. The model 

adequately captured the growth and nucleation kinetics for 

supersaturation zones and dissolution and disappearance for 

undersaturation zones. 

In Fig. 3, it is possible to see that, in addition to the crystal 

growth (by increasing the characteristic lengths), an increase 

in 0,0  indicates that the formation of new nuclei has 

occurred. For the 3–35-minute time interval, a notable 

deviation between predicted and experimental data in 0,0  

may be explained by the more significant deviation between 

the calculated temperature policy and that performed 

experimentally in that time interval. Experimentally, this may 

have occurred due to a nonuniform temperature field in the 

vessel since this large initial value of S requires a fast 

decrease in the cooling jacket temperature. 

As for the undersaturation zone experiment (Fig. 4), in 

addition to the shrinkage of the crystals, it is exemplified that 

the strategy adopted in this work to deal with the 

disappearance of the crystals is effective, due to the good 

prediction of the model to decrease 0,0 . This strategy was 

well established because it is defined in the boundary 

condition for null lengths. It is a proper way to store the 

number of crystals that disappeared (leave the domain) and, 

thus, make it possible to correct the distortion at the zeroth 

order moment. 



 

 

     

 

3.2  Simulation Results for Optimal Control 

Table 1 shows the run targets and batch times for the 3 

deterministic runs performed. 

The choice of the spatial orientation using the three variables 

in (23) allows better visualization of the crystallization 

trajectory. Using this plot, in addition to checking the yield 

(mass) of the process, it is possible to follow both the average 

characteristic lengths L1 and L2 (indicating the crystal size). 

Table 1: Deterministic runs evaluated 

   target x


    

[g, μm, μm] 

Batch 

time [min] 

Run 1 [6, 200, 400] 90 

Run 2 [8, 60, 200] 90 

Run 3 [10, 100, 150] 90 

In this way, it is possible to monitor the relative position of 

L1 and L2 along the batch, which indicates the change in the 

crystal shape by altering the slope of the trajectory, analyzing 

the L1 × L2 plane. It is illustrated by the simulation results for 

the three runs in Fig. 5. 

It is possible to observe different behavior of the trajectory 

depending on the required final target due to the implemented 

inputs. For Run 1, it only operates in supersaturation,   

obtaining a more straight-forward trajectory, indicating both 

increased yield and growth of the crystals until they reached   

the desired size and shape. For Run 2 and Run 3, the 

trajectory is perceived in areas of supersaturation and 

undersaturation.  

 The temperature policies were obtained from the 

supersaturation optimal policies combining them with the 

calibration and equilibrium equations. Furthermore, the 

simulated control could eliminate the error in the final crystal 

specification (distance from the target is near zero). 

When verifying the crystal shape, Fig. 6 shows that for Run 

1, the crystal aspect ratio does not vary significantly over 

time, indicating that the crystal growth in both directions 

follows a similar rate while there is an increase in mass until 

the target is reached. For Run 2 and Run 3, the most 

pronounced variation in the trajectory inclination (i.e. aspect 

ratio) is noticeable when changes are made between the 

regions of S > 1 and S < 1. 

4. CONCLUSIONS 

The theoretical model based on a 2D-PBM that incorporates 

nucleation and growth (in supersaturation zones) and 

dissolution and disappearance (in undersaturation zones) was 

obtained for KDP. It showed good predictions for open-loop 

batch crystallization experiments. The presented optimal 

control strategy application is experimentally suitable for 

closed-loop control, calculating the temperature setpoints 

based on the obtained optimal supersaturation policies. It is 

expected that this approach will be applied to different 

compounds and measuring techniques, to investigate not only 

the mass and size, but also the crystal shape. 
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Fig. 3: Precited and experimental values for supersaturation zone experiment: characteristic mean lengths (left), zeroth 

order cross-moment (middle) and supersaturation (right). Black lines represent the values predicted by the model. 
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Fig. 4: Precited and experimental values for undersaturation zone experiment: characteristic mean lengths (left), zeroth 

order cross-moment (middle) and supersaturation (right). Black lines represent the values predicted by the model. 
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Fig 6: L1 x L2 plot. Changes in trajectory slope indicate that 

aspect ratio changes. Targets are in green. Some scale 

representations of KDP crystals at different positions in space 

are shown 
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