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Abstract: One of the approaches to green energy of interest in recent years is through the use
of hydrogen technologies in which the waste product of combustion is water rather than carbon
dioxide, nitrous oxides, and other pollutants generated by the burning of hydrocarbon fuels.
Ethanol steam reformers is one of the primary technologies with the potential to generate
hydrogen efficiently and reliably. This article investigates the design of nonlinear optimal
feedback control systems for ethanol steam reformers based on mechanistic models described by
a system of nonlinear partial differential-algebraic equations, aka singular/descriptor systems.
The mechanistic models are too complicated to simulate in real-time using the standard
numerical discretization methods, much less to directly incorporate such models as nonlinear
constraints into mechanistic model-based nonlinear model predictive control formulations. This
article employs a rather sophisticated multivariate form of the method of characteristics to
reformulate the nonlinear constraints into a much simpler form amenable to real-time control
implementations.
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1. INTRODUCTION

Hydrogen technologies have the potential to significantly
reduce air and water pollution and greenhouse emissions
from automobiles compared to the hydrocarbon-based fu-
els of today, i.e., gasoline, jet fuel, natural gas, and ethanol.
The waste product of using hydrogen in automobiles,
when used in hydrogen fuel cells with oxygen, is water.
A drawback of employing hydrogen as a fuel in automo-
tive applications is that the hydrogen posed an explosion
hazard associated with it having the highest gravimetric
energy density (kJ/g) of all known substances, and that
the hydrogen must be stored under very high pressure
for the volume of the fuel tank to be practical. One of
the promising technologies for providing safe hydrogen
transport is to store the fuel in the form of a low-pressure
liquid, and then use an on-board reformer to generate
hydrogen when needed (Zhang et al., 2016). A highly
selective membrane is used to allow only the hydrogen gas
to exit the reformer to feed the fuel cell, with the other
products of low energy density stored on-board until time
to re-fuel. During refilling of the fuel tank, the products in
a separate tank are pumped out of the vehicle and later
? Financial support from the MIT-Spain Seed Fund is acknowledged.

processed in facilities at much higher efficiencies than what
is feasible on the automotive applications. Of the reforming
technologies, ethanol steam reforming is among the most
promising.

The use of ethanol steam reformers for hydrogen pro-
duction requires the design of real-time feedback control
strategies to ensure efficient operation of the entire system
while suppressing the effects of disturbances such as the
large variations in internal and external temperatures dur-
ing automotive operation. The limited control studies for
ethanol steam reforming include decoupled proportional-
integral-derivative (PID) controllers (Biset et al., 2009;
Garćıa et al., 2010; Garcia et al., 2013) which do not explic-
itly take constraints into account, model predictive con-
trol systems which explicitly take constraints into account
(e.g., (Recio-Garrido et al., 2012; Perez et al., 2016),(Serra
et al., 2017)). These studies include the implementation of
a real-time model predictive control algorithm based on a
linear input-output model and so did not require estimator
design (Torchio et al., 2016). Although a linear control
algorithm will give adequate closed-loop performance for a
small enough region of operation, as demonstrated in that
study, the full range of potential operation induced much



larger nonlinearities, and a nonlinear model predictive con-
trol algorithm would give better closed-loop performance
– at least in the case in which input, state, and output
constraints are explicitly taken into account.

As a first step towards nonlinear model predictive control
design, we recently completed the first detailed theoret-
ical analysis of the nonlinear dynamics of ethanol steam
reforming (Reyero et al., 2020). By applying a null-space
analysis, the mechanistic model was shown to be a singular
(aka descriptor) distributed parameter system, namely,
that the governing equations of energy and species ma-
terial balances had both spatially distributed and alge-
braic character. Further, a method was proposed for the
construction of approximate reduced-order nonlinear dy-
namics models that reduced the computational cost while
retaining most of the structure of the original governing
equations and the dependency on physical model parame-
ters.

While the resulting reduced-order models could be directly
incorporated into real-time nonlinear model predictive
control, some assumptions were made that limited the
practicality of the results. The assumptions were that
the temperature was constant and the axial flow velocity
had a weak dependency on the species concentrations
and temperature. Both assumptions reduce the amount of
nonlinearity in the model dynamics, and result in model
uncertainty should the reduced-order model be incorpo-
rated into a nonlinear model predictive control algorithm.
This article removes these assumptions by taking a much
more sophisticated approach that introduces zero error
in the model reformulation. This new formulation retains
the same advantages of dependency on physical model pa-
rameters and greatly reducing the real-time computations
required when incorporating the model into a nonlinear
model predictive control algorithm. The theory has some
novel elements particular to the steam reforming system,
including the derivation of an analytical solution of the
generalized eigenvalues and left generalized eigenvectors
of an 8× 8 matrix.

The remainder of this article is organized as follows. Sec-
tion 2 summarizes the ethanol steam reformer system un-
der consideration including the involved chemical reactions
and the resultant nonlinear model. Section 3 describes a
class of nonlinear distributed parameter systems – quasi-
linear hyperbolic vector equations – which is a superset
for the governing equations for ethanol steam reforming.
Section 4 describes a mathematical derivation of the meth-
ods of characteristics that applies to the systems of first-
order hyperbolic equations in Section 3. Section 5 employs
these expressions with some additional theoretical analysis
to derive a reduced-order model which has much lower
computational cost, by exactly transforming the original
system of eight nonlinear partial-differential equations to
a systems of ordinary differential equations that provide
precisely the state information needed in a nonlinear model
predictive control design. Finally, Section 6 summarizes
the main conclusions.

2. SYSTEM DESCRIPTION

This article considers an ethanol steam reformer (ESR) as
a nonlinear dynamical system that consists of a catalytic

Fig. 1. Staged membrane reactor scheme

ethanol steam reactor in series with a a separation stage
that incorporates a selective membrane for removal of the
hydrogen (Perez et al., 2016; Reyero et al., 2020). The
two unit operations are placed inside of a single integrated
module, called a staged membrane reactor (López et al.,
2012). Since the system is described in detail in the
past publications, this section provides only a high-level
summary.

The chemical reactions that occur in the ethanol steam
reformer are (Uriz et al., 2011)

C2H5OH −−→ CH3CHO + H2 (1a)

C2H5OH −−→ CO + CH4 + H2 (1b)

CO + H2O −−⇀↽−− CO2 + H2 (1c)

CH3CHO + 3 H2O −−→ 2 CO2 + 5 H2 (1d)

The chemical reactions occur in a tubular packed-bed
reactor with a single inlet and a single outlet.

With modest assumptions detailed in past work (Reyero
et al., 2020), the mechanistic model for the two process
units are a function of the time and axial direction,
that is, have only one spatial dimension in the partial
differential equations describing the nonlinear dynamics
of the system. The eight governing equations for each
unit operation consist of seven species material balances
and one energy balance, and have the same mathematical
structure, which is in the form of a system of first-order
quasi-linear hyperbolic equations described in the next
section.

3. QUASI-LINEAR HYPERBOLIC EQUATIONS

Consider the class of nonlinear distributed parameter sys-
tems described by the first-order quasi-linear hyperbolic
vector equation

A(x, y, u)ux +B(x, y, u)uy = g(x, y, u), (2)

where u(x, y) ∈ Rm is an vector of distributed states with
each element being a function of the real independent
variables x and y, A(x, y, u) ∈ Rm×m and B(x, y, u) ∈
Rm×m are real matrices, g(x, y, u) ∈ Rm is a vector with



each element being an algebraic function of its arguments,
and ux := ∂u

∂x and uy := ∂u
∂y . Each individual equation

in (2) arises from conservation of some property, such as
mass, moles, particles, energy, or momentum.

The system (2) arises in numerous applications involving
fluid flows, broadly speaking, for systems in which the
overall dynamics are much more strongly affected by
advection (i.e., bulk fluid flow) than diffusive phenomena
(e.g., molecular diffusion, thermal diffusion, and viscosity).
Whether this assumption is valid can be assessed by
computing the Peclét number, which is the ratio of scalars
that quantify the relative importance of advective to
diffusive transport (Deen, 2011). For example, the Peclét
number Pe = Lv/D for mass transfer and Pe = Lv/α for
heat transfer, where L is the relevant length scale (e.g.,
maximum dimension of the system), v is the local velocity,
D is the molecular diffusivity, α is the thermal diffusivity.

In dynamic control applications, one of the independent
variables in (2) is time and the other is a spatial coordinate
or internal property such as particle size or age (in the
latter case, the equation is typically called a population
balance model, e.g., Gunawan et al. (2004); Rawlings et al.
(1993); Nagy and Braatz (2012)). The above governing
equation is a partial differential equation and said to be
regular if the matrix corresponding to the time variable
is nonsingular for all values of x, y, and u that can arise
during the dynamics, and is a partial differential-algebraic
equation and said to be singular (aka descriptor) if the
matrix can be singular for some x, y, and u. In nearly
all applications, the rank of the matrix is the same for
all allowable values of all values of x, y, and u due to
structural constraints induced by modeling assumptions.
In other words, the structural rank of the matrix is equal to
the rank of the matrix for any allowable value of x, y, and
u. Although this article considers only two independent
variables as that occurs in a large number of control
applications, the overall approach and results generalize
to systems with more than two independent variables in a
straightforward manner.

Many optimal control algorithms have been developed for
the case where (2) is regular, with the vast majority of that
literature considering the case of m = 1. Optimal control
design for the much more challenging case where (2) is
singular and m > 1 has been investigated by the authors
(Reyero et al., 2020), motivated by the specific application
of optimal control of steam reforming. After exploring
the models in some detail, we came to realize that the
system class (2) was actually quite pervasive in real pro-
cess control applications, including in tubular chemical
reactors and chromatography columns ranging from the
micro- to the macroscale. While the study and imple-
mentation of optimal control systems for tubular chemical
reactors have a long history (Georgakis et al., 1977; Zavala
and Biegler, 2009), we have not been able to locate any
publications that formulate a nonlinear optimal feedback
control system for singular systems described by (2) that
is implementable with low online computational cost, i.e.,
that did not require some form of spatial discretization of
the partial differential equations. The drawback of such
formulations for automotive applications is that the incor-
poration of such models into nonlinear model predictive

control algorithms results in a high computational cost
that would be better used for moving the automotive
vehicle than for carrying out the control calculations.

The main objective of this article is to present the first such
mathematical formulation, which we write as a nonlinear
model predictive control (NMPC) algorithm. The existing
NMPC formulations are all too computationally expensive
to be implementable in real time for m � 1, so a new
formulation was derived.

The next section describes theoretical background on the
method of characteristics for solving singular first-order
quasi-linear hyperbolic vector equations.

4. METHOD OF CHARACTERISTICS

The method of characteristics is an approach for simpli-
fying the computations associated with simulating hyper-
bolic partial differential equations, which has been used in
applied mathematics for decades (Courant and Hilbert,
1962) but not as heavily exploited in optimal control
theory and algorithms (some exceptions are Shang et al.
(2004) and Munusamy et al. (2013)). There are several
ways to interpret the method of characteristics, including
as a change between moving and non-moving reference
frames, as a complicated change in variables, as an exercise
in differential algebra, or in terms of vector calculus.

This section describes the mathematical approach used to
replace what are by far the most computationally expen-
sive constraints in a nonlinear model predictive control
formulation, which are partial differential-algebraic equa-
tions, with system of ordinary differential equations that
produce exactly the state information needed by the con-
trol algorithm. The mathematical analysis in this section
draws heavily on the theory on the numerical analysis and
simulation of hyperbolic systems of quasilinear systems,
especially the book (Rhee et al., 2001). To simplify the
form of the expressions, the arguments are not written
explicitly below.

The first step is to multiply both sides of (2) by a row

vector l>with l ∈ Rm:

l>Aux + l>Buy = l>g. (3)

The method of characteristics analyzes the dynamics in
terms of a characteristic curve, which is the ordered pair
(x(ω), y(ω)) parameterized by the real scalar ω. Multiply-
ing each term on the left-hand side of (3) by x(ω) and y(ω)
gives (

1

xω
l>A

)
uxxω +

(
1

yω
l>B

)
uyyω = l>g. (4)

Now if a vector l and ordered pair (x(ω), y(ω)) can be
found such that

1

xω
l>A =

1

yω
l>B, (5)

then (4) can be written as(
1

xω
l>A

)
(uxxω + uyyω) = l>g. (6)

Application of the chain rule

uω = uxxω + uyyω (7)

and multiplication by a scalar simplifies this expression to

l>Auω = l>gxω. (8)



Application of (5) gives the equivalent expression

l>Buω = l>gyω. (9)

The above expressions can be written using the chain rule
as

l>A
du

dx
= l>g (10)

and

l>B
du

dy
= l>g. (11)

The next step is to characterize the set of vectors l and
ordered pairs (x(ω), y(ω)) that satisfy (5). The expression
(5) defines the left generalized eigenvalue decomposition,
that is, multiplication by xω gives the equivalent expres-
sion

l>(A− σB) = 0. (12)

where

σ =
xω
yω

=
dx

dy
. (13)

Equation (12) has m solutions (possibly repeated) defined
by the generalized eigenvalues σk and left generalized
eigenvectors lk:

l>k(A− σkB) = 0, k = 1, 2, . . . ,m. (14)

Subroutines for computing the generalized eigenvalues and
eigenvectors given A and B – which are known matrices
for any values of x, y, and u – are available in most
linear algebra-related software packages including in LA-
PACK and Matlab (the eig command). Many algorithms
are available, including the QZ algorithm which requires
O(n3) floating point operations and O(n2) memory lo-
cations (Moler and Stewart, 1973; Demmel, 1997; Golub
and Loan, 1996) and is an extension of the QR algorithm
commonly used for regular eigenvalue problems. In appli-
cations, A, B, or both are sparse, and iterative solvers have
been derived that exploit sparsity to reduce computations
and memory and handle very high dimensionality (e.g., see
discussions in (Hao et al., 2016)).

Collecting (8) and (13) into a system of ODEs,

dy

dx
=

1

σk(x, y, u)
,

lk(x, y, u)>A(x, y, u)
du

dx
= lk(x, y, u)>g(x, y, u),

k = 1, 2, . . . ,m.

(15)
This system of 2m equations can be solved using any
standard ODE solver such as forward Euler-type numerical
scheme (Rhee et al., 2001). The above equations are solved
with an initialization being the state at the inlet boundary
condition for the non-time coordinate, and then collected
together to form ordered triplets (x, y, u), which are values
of the vector u for each ordered pair (x, y).

The characteristic equations can be integrated with re-
spect to time for any specific inlet conditions, and the
resulting solutions can be combined to construct all of
the distributed states, namely, temperature and species
concentrations. The complexity of the model equations
that serve as constraints in a nonlinear model predictive
control formulations are greatly reduced by replacing the
distributed parameter model (2) by a system of ODEs.
This reduced-order control-relevant model can be directly

incorporated into any standard nonlinear MPC formula-
tion.

5. REDUCED-ORDER MODEL FOR ETHANOL
STEAM REFORMING

This section applies the above expressions for the general
first-order quasi-linear hyperbolic equation (2) to the spe-
cific model for ethanol steam reforming given by Reyero
et al. (2020).

The model equations can be written as (Reyero et al.,
2020)

Mft +Nfz = g(t, z, f), (16)

with 1

f :=

(
F
T

)
, F =

F1

...
F7

 , (17)

M =

I −
1

‖F‖
Fe> − 1

T
F

0>
Cv

RT‖F‖
F

 , (18)

N =


RT

Ap
I 0

RT

Ap
e>

Cp

Ap
F

 , (19)

where

• I is the 7× 7 identity matrix,
• e ∈ R7 is the vector of ones,
• Fj is the flow rate of species j,
• ‖F‖ is the Euclidean norm of the vector F ,
• T is the temperature (in K),
• R is the ideal gas constant (in Pa m3/(mol K)),
• ρ is the membrane thickness (in m),
• cp and cv are the heat capacities (in J/(mol K)).
• p is the pressure (in bar),
• A is the cross-sectional area of the tubular reactor (in

m2),
• U is the overall heat transfer coefficient (in J/(m2 s

K)).

The equations in 16 can be simplified by writing the vector
f in terms of an orthonormal basis with ‖F‖ =

√
7u7.

Define

U :=

u1...
u7

 (20)

and Cu
v and Cu

p to be such that

Cu
v

u1...
u7

= CvF and Cu
p

u1...
u7

= CpF. (21)

Then, it can be shown that

1 In the sequel, x and y in Sections 3 and 4 are refered to as t and
z without loss of generality.



Mei =


ei, i = 1, . . . , 6

−u1
u7
e1 − · · · −

u6
u7
e6, i = 7

−u1
T
e1 − · · · −

u7
T
e7 +

Cu
vU√

7RTu7
e8, i = 8

(22)
and

Nei =



RT

Ap
ei, i = 1, . . . , 6

RT

Ap
e7 +

√
7RT

Ap
e8, i = 7

Cu
pU

Ap
e8, i = 8

(23)

Hence, the left-hand side of (16) for

u :=


u1
...

u7
T

 (24)

can be written as
Aut +Bux, (25)

where

A =



1 −u1
u7

−u1
T

. . .
...

...

1 −u6
u7

−u6
T

0 −u7
T

0
Cu

vU√
7RTu7


(26)

and

B =



RT

Ap
. . .

RT

Ap√
7RT

Ap

Cu
pU

Ap


, (27)

where the blank entries refer to zeroes.

This coordinate transformation results in a system of
equations which has the same form as in (2) but has a much
simplier matrix structure for the determination of the
generalized eigenvalues and left-generalized eigenvectors in
(12).

In particular, the analytical solution to det(A − σB) = 0
is

σk =
Ap

RT
, k = 1, · · · , 6, (28)

l1 =


1

0
...

0

 , . . . , l6 =



0
...

0

1

0

0


(29)

and σ7 and σ8 solve

det

 −σRT
Ap

−u7
T

−σ
√

7RT

Ap

Cu
vU√

7RTu7
− σ

Cu
pU

Ap

 = 0, (30)

which can be written as

RTCu
pU

(Ap)2
σ2 −

(
Cu

vU√
7Apu7

−
√

7Ru7
Ap

)
σ = 0, (31)

whose solutions are

σ7 = 0, σ8 =
Ap

RTCu
pU

(
Cu

vU√
7u7
−
√

7Ru7

)
. (32)

Since the eigenvalues are known, computing the left-
generalized eigenvectors l7 and l8 is almost straightfor-
ward.

The above expressions mean that the floating point oper-
ations and memory locations for determining the general-
ized eigenvalues and left-generalized eigenvectors for the
ethanol steam reforming model are much lower than the
O(n3) and O(n2) estimates given in Section 4 for gen-
eral first-order quasi-linear vector hyperbolic equations.
In particular, both floating point and memory costs are
negligible.

The online computational cost of solving the resulting
system of ODEs (15) directly or incorporating them as
constraints into a nonlinear model predictive control algo-
rithm is also much lower for the ethanol steam reforming
model than for the general equations. The σk and lk in
(15), as well as the matrix A and vector g, are simpler
known explicit functions of the x, y, and u at any point
in a dynamic simulation, so the computational cost is of
incorporating the 2m ODEs in (15) into a nonlinear model
predictive control algorithm would be very low (see, for
example, Shang et al. (2004) and Munusamy et al. (2013)),
e.g., by using a first-order forward Euler-type numerical
scheme. The mathematical structure of the equations and
the clear separation of time scales of the generalized eigen-
values suggest that further computational efficiency would
be obtained by using a splitting scheme, e.g., by solving
the ODEs for (

u7
T

)
(33)

and u1...
u6

 (34)

alternatively.

The characteristic equations derived above have a quite
different mathematical structure than what was reported
in Reyero et al. (2020). The theoretical analysis presented
here is much more complicated, but removes two ap-
proximations used in the past analysis that reduced the
nonlinearity compared to the original model equations
for the nonlinear distributed parameter system. As the
mathematical reformation herein does not introduce any
model error, the full nonlinearity of the original singular
distributed parameter systems (2) is captured and can
be exploited when incorporated into a nonlinear model
predictive control algorithm.



6. CONCLUSIONS

This article derives a reduced-order model for an ethanol
steam reformer that introduces no approximations in con-
verting a system of singular nonlinear distributed param-
eter systems to a system of nonlinear ordinary differential
equations for computing the states needed in nonlinear
model predictive control formulations. The low online
computational cost of the model equations is sufficiently
low (only 2m ordinary differential equations) to enable a
mechanistic model to be employed in real-time control cal-
culations while taking input, state, and output constraints
explicitly into account.

Although the analysis in this article was motivated by the
ethanol steam reforming, a similar spatio-temporal analy-
sis and control-relevant reduced-order model construction
is expected to be extendable to other tubular reactors,
membrane systems, and chromatography systems in which
the effects of advection on the spatio-temporal dynamics
are much stronger than the effects of diffusive phenomena.
Such dynamical systems with high Pećlet number com-
monly arise in chemical process control applications. The
overall approach should also be extendable to nonlinear
distributed parameter systems with additional coordinates
including intrinsic properties such as particle number,
mass, or age.
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López, E., Divins, N.J., and Llorca, J. (2012). Hydro-
gen production from ethanol over Pd-Rh/CeO2 with a
metallic membrane reactor. Catalysis Today, 193(1),
145–150.

Moler, C.B. and Stewart, G.W. (1973). An algorithm for
generalized matrix eigenvalue problems. SIAM Journal
of Numerical Analysis, 10, 241–256.

Munusamy, S., Narasimhan, S., and Kaisare, N.S. (2013).
Approximate dynamic programming based control of
hyperbolic pde systems using reduced-order models
from method of characteristics. Computers & Chemical
Engineering, 57(9), 122–132.

Nagy, Z.K. and Braatz, R.D. (2012). Advances and new
directions in crystallization control. Annual Reviews in
Chemical & Biomolecular Engineering, 3, 55–75.

Perez, E., Serra, M., Ocampo-Martinez, C., and Llorca, J.
(2016). Nonlinear model predictive control for hydrogen
production in an ethanol steam reformer with membrane
separation. In IEEE Multi-Conference on Systems and
Control, 1155–1160.

Rawlings, J.B., Miller, S.M., and Witkowski, W.R. (1993).
Model identification and control of solution crystalliza-
tion processes: A review. Industrial Engineering &
Chemical Research, 32(7), 1275–1296.

Recio-Garrido, D., Ocampo-Martinez, C., and Serra-Prat,
M. (2012). Design of optimization-based controllers
applied to an ethanol steam reformer for hydrogen
production. International Journal of Hydrogen Energy,
37(15), 11141–11156.

Reyero, P., Ocampo-Martinez, C., and Braatz, R.D.
(2020). Nonlinear dynamical analysis for an ethanol
steam reformer: A singular distributed parameter sys-
tem. In IEEE Conference on Decision and Control, 23–
29.

Rhee, H.K., Aris, R., and Amundson, N.R. (2001). First-
Order Partial Differential Equations Vol. 2: Theory
and Application of Hyperbolic Systems of Quasilinear
Equations. Dover Publications, Inc.

Serra, M., Ocampo-Martinez, C., Li, M., and Llorca, J.
(2017). Model predictive control for ethanol steam
reformers with membrane separation. International
Journal of Hydrogen Energy, 42(4), 1949–1961.

Shang, H., Forbes, J.F., and Guay, M. (2004). Model
predictive control for quasilinear hyperbolic distributed
parameter systems. Industrial & Engineering Chemistry
Research, 43(9), 2140–2149.

Torchio, M., Ocampo-Martinez, C., Magni, L., Serra, M.,
Braatz, R.D., and Raimondo, D.M. (2016). Fast model
predictive control for hydrogen outflow regulation in
ethanol steam reformers. In American Control Confer-
ence, 5044–5049.
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