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Abstract: Model-based control requires good accuracy of model parameters to achieve high
performance. Controller design under parametric uncertainties is therefore a challenging topic
in control system engineering. One well known control design for uncertain systems is adaptive
control. An adaptive controller has two tasks: process regulation and parameter learning.
Dual control explores the trade-off between the two seemingly conflicting tasks. The control
structure in an adaptive system consists of a model-based controller and a recursive update
rule for parameter estimation. In this paper, the adaptive control framework consists of model
predictive control for system regulation and recursive least squares for parameter estimation.
The requirement for persistent excitation is shown to be necessary for systems with high-
dimensional parameter space. Then, a dual formulation is proposed in an attempt to generate
excitation signals while maintaining control performance in the adaptive control scheme. The
algorithm is implemented and tested on a simulated SISO system.
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1. INTRODUCTION

Over the past few decades, model predictive control
(MPC) has become one of the most effective tools in
handling industrial control problems (Qin and Badgwell
(2003)). MPC exploits and optimizes trajectories of a plant
given a model that simulates the plant dynamics. An
approximate linear model is employed in many industrial
control examples and the performance can deteriorate over
time if the model is not updated to take into account vary-
ing operation conditions. An indirect adaptive control sys-
tem, which consists of a conventional model-based control
law with adjustable parameters and an model adaptation
loop, is an effective method to handle such problems.

Online parameter adaptation can be considered as a sys-
tem identification process that uses recursive parametric
estimation methods such as the gradient algorithm and
the recursive least square (RLS) algorithm. A necessary
condition for parameter convergence is persistent excita-
tion (PE), which is satisfied when the input signals have
rich information. However, the most common goal in con-
trol engineering is set point regulation and the degree of
excitation is usually not sufficient under normal operating
conditions. If external signals are applied to generate PE,
the control performance can be compromised.

Dual control theory (Feldbaum (1960)) discusses the
trade-off between the two tasks in adaptive control: tra-
jectory convergence and parameter convergence. The fist
goal is to control the system and the learning of parameters
comes second. Controllers with active learning components
aim to generate more informative signals to satisfy the PE
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condition. Since active learning with excessive or insuffi-
cient excitation compromises performance, a dual adaptive
controller is designed to optimally improve the learning
while maintaining control performance.

Adaptive model predictive control (AMPC) draws in-
creasing attentions from researchers but many challenges
remain open (Mayne (2014)). The majority of adaptive
MPC algorithms treat the control and learning as separate
tasks. This approach, called certainty equivalence adaptive
control, generates input signals that cannot be guaranteed
to be rich enough for good parameter estimation (Wit-
tenmark (1995)). One way of approaching this issue is
to design a dual controller, which actively explores the
system by ensuring a certain level of excitation, either
constantly or when needed. The model predictive control
and simultaneous identification (MPCI) framework is one
of the earliest attempts to formulate dual control based
on MPC (Genceli and Nikolaou (1996), Shouche et al.
(1998)). Several proposed controllers generate excitation
without a specific requirement. Rather, they include a
function of information or uncertainty in the MPC cost
function and optimize this function together with standard
control objectives. Heirung et al. (2015) propose and com-
pare two such formulations that converge to a standard
adaptive certainty-equivalence MPC (Åström and Witten-
mark (2013)) formulation as the uncertainty is reduced,
and show that the excitation can improve closed-loop
performance. For a set of finite-impulse-response (FIR)
systems, modification of the adaptive MPC formulation
can introduce exploratory properties. The approach mod-
ifies the nominally optimal input sequence by solving a
second optimization problem, the objective of which is to
reduce the set of possible models at the next time step



(Tanaskovic et al. (2014)). In these methods, excitation is
generated by heuristic modifications of the controller, with
the assumption that the resulting excitation improves per-
formance. While this type of algorithm may work well in
practice and improves performance over passive-learning
approaches, the excitation is not an implicit consequence
of optimizing for performance. The algorithm type does,
however, illustrate an important distinction: superimpos-
ing excitation on a nominally optimal control signal does
not generally result in optimal performance, and the inputs
are consequently not dual.

Dynamic programming (DP) can be considered as an ap-
propriate solution for dual control by optimally integrating
active learning with multistate decision making, which
Feldbaum identified in his pioneering papers (Feldbaum
(1960)). A scalar dual control problem with one unknown
parameter is investigated with dynamic programming, but
”the curse of dimensionality” prevents dynamic program-
ming from being a viable solution approach for high order
and multivariate adaptive systems. This has motivated the
use of approximate methods that directly approximate the
dynamic programming equations rather than the problem
formulation. It is worth noting that the use of DP provides
a direct link to machine learning, in particular reinforce-
ment or Q-learning, which is also referred to as heuristic
dynamic programming (HDP) (Werbos (1989)). In the
adaptive control community, the Q-learning approach is
referred to as direct adaptive control whereas methods
that learn a model and then compute control signals are
referred to as indirect adaptive control.

Chemical processes are normally nonlinear. However, it
cannot be expected that we can develop a good theory for
adaptive control of nonlinear systems, before the linear
problem is well understood. In this paper, we therefore
focus on adaptive control of linear models. Sections 2
and 3 contain a brief review of adaptive MPC, and
an introduction to RLS. We derive the proposed Dual
formulation in section 4. Simulation results are included
in section 5 and section 6 carries out a discussion and
lays future plans of interests.

2. MODEL PREDICTIVE CONTROL

We are interested in controlling systems with parameter
uncertainties and external noise. The system output is
given by the scalar product of a regression vector, a fixed
unknown parameter vector, and a disturbance variable so
that

y(t) = θTφ(t− 1) + v(t) (1)

We assume that the regression vector φ is generated by
data and known at time t. Furthermore, we assume that

we have obtained initial estimate θ̂(0) of the parameters
θ and their covariance P0. The distribution of the noise is
unknown, but is assumed to Gaussian for the algorithm
development.

In a typical application, the regression vector consists of
past outputs and inputs so that

φ(t− 1)T = (y(t− 1), ..., y(t− n), u(t− 1), ..., u(t−m))

and the parameters are organized in a corresponding
vector

θT = (a1, a2, ..., an, b1, b2, ..., bm)

This provides a linear in the parameter model and we can
apply standard estimation techniques such the adaptation
of the Kalman filter.

The problem we consider is how to choose input variables
so as to solve the predictive control problem

min
u

E

[
t+T∑
i=t+1

(y(i)− yref )TQ(y(i)− yref ) + u(i)TRu(i)|t

]
(2)

where Q and R are positive weighting matrices. By condi-
tioning on time step t, we mean that the prediction mecha-
nism utilizes system estimations up to t. The MPC control
law from equation 2 is not guaranteed to stabilize the
system theoretically. To ensure stability, infinite-horizon
prediction and the addition of well-measured terminal cost
are common modifications. In practical applications, in-
equality constraints are added for bounded inputs and out-
puts. The inequality constraints are not taken into account
in the following exposition as they make no difference to
the development of the main ideas.

3. CERTAINTY EQUIVALENCE FORMULATION

For an adaptive controller, we have an estimate θ̂(t) of the
parameter vector at time t. This vector can be updated
with parameter regression rules such as recursive least
squares (RLS) using incoming data.

The advantage of the least squares solution is that it
gives the best linear unbiased estimate (BLUE) when v(t)
follows a zero-mean Gaussian distribution. Under such
assumptions, it makes sense to use the estimated param-
eter vector to generate predictions. Such an approach is
referred to as certainty equivalence and we get to solve
the following problem.

min
u

t+T∑
i=t+1

(ŷ(i)− yref )TQ(ŷ(i)− yref ) + u(i)TRu(i)

s.t. ŷ(i+ 1) = θ̂(t)Tφ(i), i = t, · · · , t+ T − 1

(3)

The stochastic MPC problem (2) is now deterministic and
can be solved as a quadratic program once we have a
suitable algorithm for updating the parameters.

The parameters are usually updated using some version of
recursive least squares, which under some conditions, as
noted above give the optimal solution. In this case we get
the update

θ̂(t) = θ̂(t− 1) + P (t)φ(t− 1)e(t) (4)

where e(t) = y(t)− ŷ(t), with ŷ(t) = θ(t−1)Tφ(t−1). The
following recursive update for P then follows so that

P (t) = P (t− 1)−
P (t− 1)φ(t− 1)φ(t− 1)TP (t− 1)

1 + φ(t− 1)TP (t− 1)φ(t− 1)
(5)

These equations can be derived form the Kalman filter. It
follows that under suitable conditions

E{(θ̂(t)− θ)T (θ̂(t)− θ|t} = P (t) a.s.

4. DUAL FORMULATION

One important drawback of the CE approach is that it
does not include an explicit way of introducing excitation
into the system. Then, there is no guarantee that the
predictions will be optimal or even close to those that



would be generated by an optimal model. This problem
is compounded when the noise sequence is not Gaussian.

As described in the introduction, the idea behind dual
control is to recognize that the estimated parameters
are not accurate. To compensate then, it is necessary
to generate control actions that at the same time are
cautious, meaning robust in some precise sense, and also
explorative in the sense that they may deviate from
what is thought to be the optimal path in order to
gain information about the system. We will now see
how this dual approach can be developed from from the
stochastic problem (2) with constraints (1) . In practice
this means that instead of simply replacing the outputs
with estimated values of y in the objective function,
we show that the stochastic objective can be replaced
with and equivalent deterministic expression. The main
disadvantage of the reformulation is that the mathematical
programming problem is no longer a classical quadratic
program and more intensive numerical optimization is
needed.

Theorem. Suppose that the process noise sequence v(t)
is Gaussian. The stochastic problem (2) with constraints
(1) then can be written as the deterministic optimization
problem

min
u

t+T∑
i=t+1

(ŷ(i)− yref )TQ(ŷ(i)− yref )

+ u(i)TRu(i) + φ(i− 1)TLP (i− 1)LTφ(i− 1)

s.t. ŷ(i+ 1) = θ̂(t)Tφ(i)

P (i+ 1) = P (i)−
P (i)φ(i)φ(i)TP (i)

1 + φ(i)TP (i)φ(i)
, i = t, · · · , t+ T − 1

(6)

2

The matrix L is obtained via Cholesky decomposition of
Q: Q = LLT . This is the key result as it shows that the
stochastic problem described above has a deterministic
equivalent in the case that the noise process is white.
A similar development was provided in Heirung et al.
(2017) under more restrictive conditions. In this paper
a reformulation was shown that allowed the problem to
be solved a quadratically constrained quadratic program
(QCQP).

Proof of the Theorem:

At time step t, we have obtained observation y(t) and
attempt to compute a stabilizing yet information-rich
input signal u(t). We use y(t) to denote the time series
of output signals and u(t) to denote the time series of
input signals , i.e. y(t) = [y(0), · · · , y(t)], and u(t) =
[u(0), · · · , u(t− 1)].

To simplify the notations, a squared term is used in the
place of the quadratic term in the MPC objective function.
Given the prediction horizon T and starting from t+ 1,

E

[
t+T∑
i=t+1

(y(i)− yref )2 | y(t),u(t)

]

=E

[
t+T∑
i=t+1

(y(i)− ŷ(i) + ŷ(i)− yref )2 | y(t),u(t)

]

=E

[ t+T∑
i=t+1

(y(i)− ŷ(i))2 + 2(y(i)− ŷ(i))(ŷ(i)− yref )+

(ŷ(i)− yref )2 | y(t),u(t)
]

=E

[ t+T∑
i=t+1

(y(i)− ŷ(i))2 | y(t),u(t)
]
+

t+T∑
i=t+1

(ŷ(i)− yref )2

+ 2

t+T∑
i=t+1

(ŷ(i)− yref )E [y(i)− ŷ(i) | y(t),u(t)]

(7)

In appendix A, it is shown that θ̂ is an unbiased esti-
mator. Thus, ŷ is an unbiased estimator of y, i.e.E[y −
ŷ, | y(t),u(t)] = 0 and the second term is equal to zero.
Equivalently, for the quadratic form, we have

E

[
t+T∑
i=t+1

(y(i)− yref )TQ(y(i)− yref ) | y(t),u(t)

]

=E

[ t+T∑
i=t+1

(y(i)− ŷ(i))TQ(y(i)− ŷ(i)) | y(t),u(t)
]

+

t+T∑
i=t+1

(ŷ(i)− yref )TQ(ŷ(i)− yref )

(8)

The quadratic term in ŷ is the same term in the CE-MPC
objective. Since the weight matrix Q is positive definite, it
can take a Cholesky decomposition of the form

Q = LLT (9)

where L has the same rank as Q.

For the first expectation term,

E

[
t+T∑
i=t+1

(y(i)− ŷ(i))TQ(y(i)− ŷ(i)) | y(t),u(t)

]

=E

[
t+T∑
i=t+1

(y(i)− ŷ(i))TLLT (y(i)− ŷ(i)) | y(t),u(t)

]

=E

[
t+T∑
i=t+1

φ(j − 1)T θ̃(j − 1)LLT θ̃(j − 1)Tφ(j − 1) | y(t),u(t)

]
(10)

where θ̃ is the estimation error of θ, i.e. θ̃(t) = θ − θ̂(t).
The regression variables φ are also deterministic, then
applying equation B.8 we have



E

[
t+T∑
i=t+1

φ(j − 1)θ̃(j − 1)LLT θ̃(j − 1)Tφ(j − 1) | y(t),u(t)

]

=

t+T∑
i=t+1

φ(j − 1)E[θ̃(j − 1)LLT θ̃(j − 1)T | y(t),u(t)]φ(j − 1)

=

t+T∑
i=t+1

φ(j − 1)Cov[LT θ(j − 1)T | y(t),u(t)]φ(j − 1)

=

t+T∑
i=t+1

φ(j − 1)LTCov[θ(j − 1)T | y(t),u(t)]Lφ(j − 1)

=

t+T∑
j=t+1

φ(j − 1)LTP (j − 1)Lφ(j − 1)

(11)

Then, if we formulate the Based on the derivation of
RLS, matrix P decreases if the regressor vector is more
informative. By incorporating the update law for P as a
constraint in the optimization formulation, the dual MPC
can award exciting input signals. In another word, within
the prediction horizon, the P matrices become decision
variables and depend on how the system evolve while the
estimated parameters are fixed.

5. RESULTS

Control performance of the CE MPC and dual MPC is
compared in the following system.

y(t+ 1) = ay(t) + bu(t) + v(t) (12)

where true parameters are a = 1 and b = 2. In the

prediction model, the parameter vector θ̂(t) = [â(t) b̂(t)]
needs to be estimated. In all simulation cases, â is ini-

tialized to be 3 and b̂ is initialized to be 6, i.e. â(0) = 3

and b̂(0) = 6. The initial value of y is set to 0.5. The
weight matrices are applied to both MPC formulations,
with Q = 1, and R = 1. The prediction horizon is set to 5.
The performance is also compared with the performance
of a MPC with perfect knowledge of the system, i.e., â = 1

and b̂, and no parameter adaptations, which is referred to
as the optimal MPC. In all simulations, box constraints
are applied to input signals in the optimization problem
with −20 ≤ u ≤ 20.

In figure 1 and figure 2, the control performance of dual
MPC and CE MPC is compared in the presence of a
zero-mean Gaussian noise, i.e. v(t) ∼ N(0, 0.05) . The
CE MPC generates input signals that reach the bounds
of the constraints and a spike in the output signals is
observed, but the parameters converge close to the true
values afterwards. The control performance of the dual
MPC is comparable to the optimal MPC in the presence
of the zero-mean noise even though the parameters do not
converge to the true values.

In figure 3 and figure 3, the control performance of dual
MPC and CE MPC is compared in the presence of noise
signals sampled from a negative-mean Gaussian distribu-
tion, i.e., v(t) ∼ N(−0.1, 0.05). In the presence of the
negative-mean noise, the CE MPC generates oscillating
input signals that reach the bounds of the constraints but
the parameters do not converge to the true parameters.

Fig. 1. CE MPC with zero-mean Gaussian process noise:
v ∼ N(0, 0.05). The oscillations in input signals result
in a spike in the output, but parameter estimations
converge close to true values.

Fig. 2. Dual MPC with zero-mean Gaussian noise: v ∼
N(0, 0.05). The parameters did not converge to the
true parameters but the performance of the dual MPC
was fairly consistent to the controller with true plant
parameters.

The estimation of b becomes negative and the CE MPC
fails to control the system. The Dual MPC generates stabi-
lizing control signals that are consistent with the optimal
MPC. The parameter convergence properties are similar

to the zero-mean case with â reaching 1.7 and b̂ reaching
0.015.

The initial P0 is set to 1000 ∗ I2 and the changes in the
entries of P (t) for all four simulation cases are plotted in
figure 5. It can be observed that the peaks in input and
output signals correspond to large inner product of the
regression vector, which leads to the decrease in parameter
uncertainties.

6. DISCUSSIONS

We proposed a dual MPC formulation based on the
conventional CE MPC. The dual formulation is motivated
by utilizing the RLS algorithm in the MPC prediction
window and making use of the parameter covariance
matrix. In the CE-MPC framework, the past system
information are utilized in the update rule for the P matrix
(see appendix for a detailed derivation of RLS) but not in
the MPC module.



Fig. 3. CE MPC: v ∼ N(−0.1, 0.05). The estimation error
in b is present and the CE MPC failed to control the
plant to the zero set point.

Fig. 4. Dual MPC: v ∼ N(−0.1, 0.05). The dual MPC has
performance consistent with the optimal MPC.

Fig. 5. The history of changes in matrix P for the four
simulation cases presented in figure 1 - 4.

Instead of using estimated values of y in the objective
function, we aim at minimizing the expectation of (y −
yref )2 conditioned on system information from the past
embedded in y(t) and u(t) in the dual MPC objective
function. Then, we show that we can derive an equivalent
deterministic expression. We used simulation of a SISO
system to demonstrate the improvement of performance.
The bursting phenomenon is a common type of failure
and is observed in the CE MPC simulation results. It is
straightforward to see from the standard RLS derivation
in Appendix A that information-rich inputs explicitly
decrease P . Input signals with large absolute values have
an probing effect and decreases the uncertainties in pa-

rameter estimations, but it does not necessarily lead to
convergence of parameter estimations to true vales. The
dual effect is based on the introduction of the parame-
ter covariance matrix P in the optimization formulation.
The quadratic term with respect to P in the dual MPC
formulation (6) encourages large input signals to decrease
the values of elements in P , but penalizes large values of
inputs because u is an element in the regression vector φ,
which restricts the input signals when the estimation for b
is smaller than the true value. This offers an explanation
for the stabilizing performance of the dual controller when
the parameter estimations do not converge to the true
parameters. The simulation results show that the dual
MPC maintains stabilizing control performance when the
conventional CE MPC fails. We plan to extend the simu-
lations to higher-dimensional cases to examine consistency
of the dual MPC formulation. We also plan to study the
computation complexity induced by the dual formulation
and verify if reformulations of the optimization problem is
available.
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Appendix A. PARAMETER ESTIMATION:
RECURSIVE LEAST SQUARES

The RLS parameter estimator is obtained by minimizing
the squared error of the system output and output esti-
mations:



min
θ(t)

J(t) =

t∑
i=1

[y(i)−θ(t)Tφ(i−1)]2+(θ(t)−θ(0))TP−1
0 (θ(t)−θ(0)

(A.1)

In the second term, P0 is the covariance matrix for the
initial parameter estimation θ(0) and represents the prior
knowledge we have on θ(0). The value P0 can either
be computed via experimental trials or set as a positive
definite matrix of users’ choice.
Setting the derivative to zero:

∂J(t)

∂θ(t)
= −2

t∑
i=1

[y(i)− θ(t)Tφ(i− 1)]φ(i− 1) + 2P−1
0 (θ(t)− θ(0))

= 0
(A.2)

Then,
t∑
i=1

y(i)φ(i− 1) + P−1
0 θ(0)

=

[
t∑
i=1

φ(i− 1)φ(i− 1)T

]
θ(t) + P−1

0 θ(t)

(A.3)

Define a matrix P (t), the inverse of which is

P (t)−1 =

t∑
i=1

φ(i− 1)φ(i− 1)T + P−1
0 (A.4)

Then we get

P (t)−1 =

t∑
i=1

φ(i− 1)φ(i− 1)T + P−1
0

= P (t− 1)−1 + φ(t− 1)φ(t− 1)T

(A.5)

To derive recursive update for θ(t), From equation (A.3),
we get

P (t)−1θ(t) =

t∑
i=1

y(i)φ(i− 1) + P−1
0 θ(0) (A.6)

θ(t) = P (t)

t∑
i=1

y(i)φ(i− 1) + P (t)P−1
0 θ(0) (A.7)

Expand
∑t

i=1 y(i)φ(i− 1) and get,

t∑
i=1

y(i)φ(i− 1) =

t−1∑
i=1

y(i)φ(i− 1) + y(t)φ(t− 1) (A.8)

From equation A.6, we have, for
∑t−1

i=1 y(i)φ(i− 1),

t−1∑
i=1

y(i)φ(i− 1) = P (t− 1)−1θ(t− 1)− P−1
0 θ(0) (A.9)

Post-multiply by θ(t − 1) on both sides of equation A.5,
we get

P (t)−1θ(t− 1) = P (t− 1)−1θ(t− 1) + φ(t− 1)φ(t− 1)T θ(t− 1)

= P (t− 1)−1θ(t− 1) + φ(t− 1)ŷ(t)
(A.10)

and equation A.8 becomes

t∑
i=1

y(i)φ(i− 1) =P (t)−1θ(t− 1)− φ(t− 1)ŷ(t)

+ y(t)φ(t− 1)− P−1
0 θ(0)

(A.11)

Substitute into equation A.7, the recursive update rule for
θ(t) becomes,

θ(t) = θ(t− 1) + P (t)φ(t− 1)e(t) (A.12)

where e(t) = y(t)− ŷ(t).

According to the matrix inversion lemma, we get the
following recursive update for P

P (t) = P (t− 1)−
P (t− 1)φ(t− 1)φ(t− 1)TP (t− 1)

1 + φ(t− 1)TP (t− 1)φ(t− 1)
(A.13)

Appendix B. DUAL MPC DETERMINISTIC
FORMULATION

the following deterministic form for the expectation of the
parameter covariance matrix.
Given the following model

y(t) = θ(t− 1)Tφ(t− 1) + v(t) (B.1)

and v(t) is a modeling error . To denote information
acquired up to time t, we use the following notation.

yyy(t) = [y(1), · · · , y(t)]T (B.2)

φφφ(t− 1) =

 φ(0)T

...
φ(t− 1)T

 (B.3)

The parameter vector acquired from past information up
to time t is the least squares solution to yyy = φφφθ, which is

θ̂ = (φφφTφφφ)−1φφφT (φφφθ + vvv) = θ + (φφφTφφφ)−1φφφTvvv (B.4)

For the covariance of estimated parameters, we have

E
[
(θ̂(j)− θ)(θ̂(j)− θ)T | t

]
=E

[
(φφφTφφφ)−1φφφTvvv((φφφTφφφ)−1φφφTvvv)T

]
=E

[
(φφφTφφφ)−1φφφTvvvvvvTφφφ(φφφTφφφ)−1

]
=E

[
vvvvvvT

]
(φφφTφφφ)−1φφφTφφφ(φφφTφφφ)−1

=E
[
vvvvvvT

]
(φφφTφφφ)−1

(B.5)

Assume that the modeling error is a standard normal
distribution: E(v) = 0 and Cov(v) = 1.

From equation B.4, we can show that θ̂ is an unbiased
estimation of θ.

E[θ̂] = E
[
θ + (φφφTφφφ)−1φφφTvvv

]
= θ + (φφφTφφφ)−1φφφTE[vvv]

= θ
(B.6)

From equation B.5, we get

E
[
(θ̂ − θ)(θ̂ − θ)T

]
= E

[
vvvvvvT

]
(φφφTφφφ)−1 = (φφφTφφφ)−1

(B.7)
In the derivation of RLS, we have , at time step t, P (t)−1−
P (0)−1 =

∑t−1
j=0 φ(j)φ(j)T . By setting P (0) large enough,

e.g. P (0) = NI where N is a large real number (or
run random expreiments and collect system information
to construct P (0)), we have P (t)−1 ≈

∑t+−1
j=0 φ(j)φ(j)T .

Starting with time step t, we get

Cov[θ | y(t),u(t)] = E[θ̃(t)θ̃(t)T | y(t),u(t)] = P (t)
(B.8)


