
Interval state estimation based on
constraint propagation for a lithium-ion cell

using an equivalent circuit model ?

D. Locatelli ∗ B. S. Rego ∗∗ G. V. Raffo ∗∗ D. M. Raimondo ∗

∗Dept. of Electrical, Computer and Biomedical Engineering, University
of Pavia, Italy (email: diego.locatelli01@universitadipavia.it)

∗∗Graduate Program in Electrical Engineering, Dept. of Electronics
Engineering, Federal University of Minas Gerais, Brazil

Abstract: Battery management systems (BMSs) are responsible for controlling and monitoring
battery operations. In order to be effective, BMSs rely on mathematical models. The parameters
of these latter are usually obtained through an identification procedure which provides limited
accuracy. In addition, only cell current and voltage are usually measurable. For this reason, the
model states need to be estimated. In the following, we propose an interval state estimation of a
lithium-ion cell when using an equivalent circuit model, taking into account bounded parametric
uncertainty and measurement noise. Simulation results show the suitability of the proposed
interval estimator to provide a tight enclosure of the states, which is essential for fault detection
and model-based control of a lithium-ion cell.
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1. INTRODUCTION

Li-ion batteries have become of particular interest due to
their use in many commercial sectors, including portable
electronic devices, hybrid and electric vehicles, and grid
energy storage. High cell voltage, cycling durability, high
energy and power density are the main key factors that
make Lithium-ion the best trade-off between costs, perfor-
mance and efficiency compared to other battery types on
the market.

Battery Management Systems (BMSs) aim to make the
battery safe, reliable and efficient. As shown in Lu et al.
(2013), violation of temperature, current and voltage re-
strictions may result in lower performance as well as safety
issues. Advanced BMSs rely on mathematical models in
order to improve efficiency and monitor the battery cell
by estimating fundamental quantities such as the State
of Charge (SOC). Mathematical models for Lithium-ion
battery dynamics fall within two main categories: Equiva-
lent Circuit Models (ECMs) and Electrochemical Models
(EMs). EMs are very accurate and, therefore, very useful
when high fidelity is required, such as in simulations.
They are generally very complex models, which affects
the computational cost. On the other, hand ECMs are
simpler and used in real-time control system applications,
especially for online SOC and state estimation.

Look-up table methods are used for SOC estimation ex-
ploiting its relations with other measurable parameters
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as the Open Circuit Potential (OCP), but they are not
suitable for run-time operations (Xiong et al., 2017). This
is due to the fact that the OCP can be measured only
in stationary conditions. Coulomb counting is also one
of the main tools used for SOC estimation (Piller et al.,
2001), but it is not completely accurate because of drift
errors due to disturbances on the current measurement
and uncertainty on the cell capacity. Moreover, while SOC
estimation is important, in order to employ a model-based
controller, full state estimation is required.

Several stochastic approaches on state estimation have
been applied in the battery field, including Extended
Kalman filtering (Di Domenico et al., 2010; Bizeray et al.,
2015), sliding-mode observer (Kim, 2009), Sigma-point
Kalman filtering (Plett, 2006), Particle filtering (Tulsyan
et al., 2016), and Moving Horizon Estimator (Hu et al.,
2018).

The stochastic estimation approaches assume that proba-
bilistic distributions of the uncertainties are known. On
the other side, set-based estimation considers unknown
but bounded uncertainties. When physical bounds are
available (as for the case of ECM parameters), this second
option is more reliable since knowing the exact distribution
of the uncertainties is rarely the case in practice.

Different set representations have been used for state
estimation such as intervals (Jaulin et al., 2001), polytopes
(Shamma and Tu, 1997), zonotopes (Alamo et al., 2008),
and constrained zonotopes (Rego et al., 2020). The choice
of set representation depends on the accuracy required for
describing the set of interest, as well as the computational
burden. Another important factor, especially for highly
nonlinear systems, is to choose a methodology that can



better deal with the conservatism. This can be caused, for
example, by the dependency effect, the wrapping effect,
and linearization errors. To the best of our knowledge, set-
based estimation was used within the battery context only
in Zhang et al. (2020). This latter proposes a continuous-
time ECM-based interval observer for SOC estimation in
a parallel connected Li-ion battery pack. The proposed
observer assumes that continuous-time measurements are
available, which is not true in practice since sensors have
finite sampling rates. Moreover, the coupling between
parameters is not considered, which is usually present
when an identification procedure is performed.

In this paper, we develop a discrete-time interval observer
for a single Li-ion cell based on the forward-backward
method described in Jaulin et al. (2001). In particular,
parametric uncertainties are considered and obtained by
performing an identification procedure on data collected
on a well known EM, i.e. the Single Particle Model with
electrolyte dynamics (SPMe) (Pozzi et al., 2018). The
contributions of this paper are: (i) the identification of
ECM parameter bounds based on the Fisher Information
Matrix; and (ii) a discrete-time interval state estimation
method based on inclusion functions and constraint propa-
gation, which handles discrete-time measurement. Numer-
ical experiments show that the proposed methodology is
efficient and provides accurate enclosures for both the SOC
and the electric state variables of the ECM.

2. LITHIUM-ION CELL MODEL

A Single Particle Model with electrolyte dynamics (SPMe)
has been used in this work to simulate the “real plant”.
Terminal voltage data have been collected on the SPMe
in order to identify the parameters of the ECM used for
state estimation purposes (as described later in Section
3). This electrochemical model is general for cells utiliz-
ing two composite electrodes (cathode and anode) with
active insertion material, electrolyte and inert conducting
material. SPMe allows to trace the dynamics of chemical
quantities, such as surface and average stoichiometries and
ions concentrations, in the electrolyte and solid phases. For
the complete description of the SPMe we rely on Pozzi
et al. (2018) in which the parameters refer to a Kokam
SLPB 75106100 cell. Note that in this paper, differently
from (Pozzi et al., 2018), we assume that the cell is kept
in a climatic chamber at constant temperature (isothermal
process).

The ECM considered in this work for state estimation
purposes is the Thévenin model depicted in Fig. 1. It
consists of three parts: (i) the open circuit potential
Voc(t); (ii) two internal resistors R0 and R1; and (iii) the
capacitor C1. This latter is useful to describe the charge
and discharge transient of the cell. The electrical behavior
of the ECM is derived from Kirchhoff and Ohm’s laws, as
it is shown in the following system equations:

ż(t) = − I(t)

Cbatt
,

V̇c1(t) = − Vc1(t)

R1(t)C1(t)
+

I(t)

C1(t)
,

(1)

where z(t) is the cell SOC, Vc1(t) the voltage drop across
the parallel R1 − C1, Cbatt is the nominal cell capacity,

Voc(t)

R0

R1

C1

V (t)

Vc1(t)

I(t)

Fig. 1. Thévenin equivalent circuit model of the Lithium-
ion cell.

and I(t) is the input current. Note that we adopt the
convention that the battery is charged by a negative
current.

In accordance with Perez et al. (2017), in order the ECM to
better approximate the SPMe, R1 and C1 can be expressed
as nonlinear functions of the SOC

R1(t) = R1,0 +R1,1z(t) +R1,2z(t)
2, (2)

C1(t) = C1,0 + C1,1z(t) + C1,2z(t)
2. (3)

Finally, the output voltage equation can be computed as

V (t) = Voc(t)−R0 I(t)− Vc1(t), (4)

where the overall open circuit potential, Voc(t), is ex-
pressed here as a ninth degree polynomial function of the
SOC, given by:

Voc(t) = 3.592 + 0.9082 z(t)− 0.57 z(t)2+

− 2.979 z(t)3 + 6.56 z(t)4 − 4.238 z(t)5+

+ 0.8608 z(t)6 − 1.676·10−10 z(t)7+

+ 1.143·10−10 z(t)8 − 2.982·10−11 z(t)9.

(5)

This latter is obtained by a fitting procedure, starting from
equation (14) in Pozzi et al. (2018). This is necessary since
the surface stoichiometries θp and θn are not considered
in our ECM (1). Note that in stationary conditions (i.e.
when no current is applied), surface stoichiometries can
be defined as SOC functions. Compared with the OCP
nonlinear function of the SPMe, the polynomial function
in (5) is still very accurate (Root Mean Square Error
RMSE = 3.896·10−4). Moreover, being a simpler expres-
sion, it results in less conservatism when evaluated through
interval arithmetic.

The identification of the ECM parameters, besides the Voc
which is assumed known a priori as in (5), relies on the
procedure described in Section 3.

3. IDENTIFICATION OF THE ECM PARAMETERS

The ECM described in Section 2 can be formally written
as 

ẋ(t) = f(x(t),u(t),φ),

y(t) = g(x(t),u(t),φ),

x(t0) = x0,

(6)

φ , [R0 R1,0 R1,1 R1,2 C1,0 C1,1 C1,2 Cbatt] . (7)

In order to apply the interval state estimation method
proposed in this work the ECM is firstly discretized
according to the Euler’s method, thus obtaining



Fig. 2. Training and validation current input profiles.


x(k + 1) = xk + Tsf(x(k), u(k),φ),

y(k) = g(x(k), u(k),φ),

x(k0) = x0,

(8)

where Ts is the sampling time, and k ≥ k0 is the time step.

According to Perez et al. (2017), R1 and C1 exhibit a
different SOC relation for the charging and discharging
phase. In this work, we consider the charging phase only.
The parameter estimation is performed starting from data
collected on the “real plant”, here assumed to be the
SPMe. We consider as initial condition an almost com-
pletely discharged cell at rest, i.e. x0 = [0.017 0]

T
(ECM

states), and as input signal, defined over a time horizon
k̄, the one reported in Fig. 2. Note that a sufficiently
exciting input profile helps the identifiability and reduces
parametric uncertainties.

Remark 1. Even though the ECM parameters still need
to be estimated, x0 can be easily obtained when a cell is
at rest. In this case, the voltage across the parallel R1−C1

is zero, V coincides with Voc, and z(0) can be computed
from equation (5) 1 .

The system is affected by measurement noise that ranges
within the interval [−3mV, 3mV ]. In order to use the
following identification procedure, in this section, we ap-
proximate it as i.i.d. Gaussian noise d(k) ∼ N (0, σ2

y)
with σy = 1mV . In particular, for the true value of the
parameter vector φ∗, one has measurements ŷ(k,φ∗) =

g(x(k),u(k),φ∗) + d(k). Let Ŷ(φ∗) ∈ Rk+1 denote the
vector of observed output data over the time horizon k =
k0, . . . , k0+k̄. Then, it holds that Ŷ(φ∗) ∼ N (Y(φ∗),Cy),
where Y(φ∗) stands for the output vector in the absence of

measurement noise and Cy ∈ R(k+1)×(k+1) for the diago-
nal measurement covariance matrix given by Cy = σ2

yIk+1.

Once the training data is collected, the parameters can
be estimated by solving the following maximum likelihood
optimisation problem

1 The OCP is assumed known a priori.

Fig. 3. Validation profile of the terminal voltage.

φ̂ = arg min
φ

(Ŷ(φ∗)−Y(φ))T C−1y (Ŷ(φ∗)−Y(φ))

s.t. model dynamics (8),

0 ≤ h(x(k),u(k),φ), (9a)

φmin ≤ φ ≤ φmax, (9b)

where Y(φ) stands for the output vector obtained by
solving, for a given φ, system (8) over the time horizon
k = k0, . . . , k0 + k̄. Equation (9b) allows to account
for physical bounds on the parameters, e.g. R0 ≥ 0,
Cbatt ≥ 0. Similarly, equation (9a) is required to bound
SOC-dependent variables such as R1 and C1. In practice,
assuming functions (2) and (3), have the same concavity
as in Perez et al. (2017), one can force the positivity of
these quantities by setting constraints on their values for
z = 1 and z = 0 (concave case), or for the z corresponding
to the minimum value of the function (convex case). This
latter can be found analytically. Further constraints can be
added when prior knowledge on the parametric bounds is
available. The value of the estimated parameters, obtained
by solving problem (9), for data collected by applying the
experiments in Fig.2 (blue), is reported in Table 1.

Table 1. Estimated ECM parameters.

R0(Ω) R1,0(Ω) R1,1(Ω) R1,2(Ω)

0.093 0.0221 −0.07 0.0672

C1,0(As) C1,1(As) C1,2(As) Cbatt(As)

235.52 7.7613 104 −7.0974 104 2.6963 104

The ECM model with the estimated parameters has been
tested in validation against the SPMe, using the validation
profile in Fig. 2 (red) and the same initial condition of
the training phase. As shown in Fig. 3 the results are
good but some discrepancy is present. For state-estimation
and control purposes, it is important to quantify how
accurate the obtained parameter values are. Since Ŷ(φ∗)

is a random variable, one has that also the estimated φ̂ is
a random variable with covariance matrix Cφ̂ ∈ R8×8.

Similarly to Pozzi et al. (2018), we rely on the Fisher
Information Matrix (FIM) to obtain an estimate of Cφ̂.

According to the Cramer-Rao bound, the FIM provides a
lower bound on the parameters covariance matrix

Cφ̂ ≥ (F(φ̂))−1 = ((S(φ̂))T C−1y S(φ̂))−1, (10)
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Fig. 4. Parametric correlation matrix.

where F(φ̂) ∈ R8×8 is the FIM, and S(φ̂) is the sensitivity

matrix computed as S(φ̂) , ∇φ̂Y(φ̂).

Remark 2. Despite the FIM inverse being commonly
used in the literature to quantify the parametric uncer-
tainty, this method can be inaccurate for several reasons:
(i) it provides only a lower bound of Cφ̂; (ii) it relies on lo-

cal parameter sensitivity (which assumes a linear relation-
ship between model parameter variations and simulation
results); (iii) it is not able to capture the non-Gaussian
case since it estimates only the covariance matrix; (iv) it
assumes that the model structure used in the identification
phase is correct. Future work will consider better esti-
mates by considering higher-order terms in local sensitivity
analysis, by using global sensitivity analysis and take into
account the error committed when approximating a high-
fidelity model with a reduced one (see e.g. Weber et al.
(2019)).

The estimated correlation matrix Rφ̂
2 , obtained using the

FIM, is reported in Fig. 4. Non-zero off-diagonal values
testify a correlation between the parameters in (7). In
order to take into account this feature when using the
interval state estimation of the next section, a linear

change of variable is made ψ̂ = Tφ̂ where T is chosen
as the inverse of the eigenvector matrix of Cφ̂

3 . By doing

so, one obtains that the covariance matrix Cψ̂ of the new

parameter set ψ̂ is diagonal.

The use of an unbounded distribution to describe the
parametric uncertainty is overly conservative since phys-
ical electric parameters cannot be negative nor exceed
meaningful values (it does not make any sense for the
Kokam SLPB 75106100 cell we consider to have a resis-
tance of MΩ). For this reason, in the following section, we

restrict each element of the parametric uncertainty ψ̂i to

the following domain [ψ̂i − 3
√
Cψ̂(i, i), ψ̂i + 3

√
Cψ̂(i, i)],

thus truncating to ± 3 times the standard deviation of

2 Given D =
√

diag(Cφ̂), the correlation matrix can been derived

by Rφ̂ = D−1Cφ̂D
−1.

3 Since Cφ̂ is symmetric, then it has a complete set of orthogonal
eigenvectors and therefore T is invertible.

the parameter. These sets are further reduced by con-

sidering the physical limits of the original parameters φ̂
(e.g. positivity for each SOC value). Note that, getting
a reference system with a diagonal covariance matrix is
very important since intervals are not able to capture any
coupling between variables.

The identification phase has been implemented using
CasAdi (Andersson et al., 2019). The optimisation prob-
lem has been solved with IPOPT, a primal-dual interior
point method interfaced with CasADi.

4. SET-BASED STATE ESTIMATION METHOD

The set-based state estimation method proposed in this
paper relies on intervals. In the following, some basic op-
erations and notations of interval analysis are introduced.

Let x, x ∈ R, such that x ≤ x. An interval [x] ⊂ R is a

nonempty set of real numbers defined by [x] , {x ∈ R :
x ≤ x ≤ x}. Moreover, the midpoint and the radius of

an interval [x] are defined by mid([x]) , (1/2)(x+ x) and

rad([x]) , (1/2)(x−x), respectively. The set of all intervals
over R is denoted by IR. The set of all interval vectors in
Rn is denoted by IRn. A box [X] ∈ IRn is defined as [X] =
([x1, x1], . . . , [xn, xn]). The midpoint and radius of [X] are

defined by mid([X]) , (mid([x1, x1]), . . . ,mid([xn, xn])

and rad([X]) , (rad([x1, x1]), . . . , rad([xn, xn]), respec-
tively. A real arithmetic operation � is extended to inter-
vals [x1], [x2] ∈ IR by [x1]�[x2] , {x1�x2 : x1 ∈ [x1], x2 ∈
[x2]}. The intersection of two intervals is defined as [x1] ∩
[x2] , [max{x1, x2},min{x1, x2}]. Inclusion functions and
basic operations are defined in Moore et al. (2009).

4.1 Problem formulation

Consider the discrete-time nonlinear model written below{
x(k) = f(x(k − 1),u(k − 1),w(k − 1)),

y(k) = g(x(k),u(k),v(k)),
(11)

for k ≥ 1, with y(0) = g(x(0),u(0),v(0)), f : Rn × Rnu ×
Rnw → Rn, g : Rn × Rnu × Rnv → Rny , where w ∈ [W ]
and v ∈ [V ] are the unknown-but-bounded process and
measurement disturbances, respectively.

The objective is to obtain accurate interval enclosures
[X̂](k) of the state variables x(k) which are consistent
with the nonlinear system (11) and the measurement yk.
Given an initial set [X̄](0) such that x(0) ∈ [X̄](0), in this
paper we proceed through the prediction-update algorithm
(Rego et al., 2020), which is based on computing intervals

[X̄](k) and [X̂](k) such that

[X̄](k) ⊇{f(x(k − 1),u(k − 1),w(k − 1)) :

x(k − 1) ∈ [X̄](k − 1), w(k − 1) ∈ [W ]}, (12)

[X̂](k) ⊇{x(k) ∈ X̄(k) :

g(x(k),u(k),v(k)) = y(k), v(k) ∈ [V ]}, (13)

where (12) is referred to as the prediction step, and
(13) as the update step. We assume that an interval
enclosure [X̄](0) of the initial state x(0) and the current
measurement y(k) for k ≥ 0 are known.

In this paper, the guaranteed state estimation is performed
in an efficient way by combining inclusion functions with



forward-backward constraint propagation (FBCP) (Jaulin
et al., 2001). For each time k, given the previous state

set [X̂](k− 1), the prediction step (12) is performed using
inclusion functions (Moore et al., 2009), resulting in the
predicted interval [X̄](k) such that x(k) ∈ [X̄](k). On the
other hand, the update step (13) is computed by solving
a Constraint Satisfaction Problem (CSP).

To obtain [X̂](k), the general problem is to refine [X̄](k)
and [Y ](k) by removing values in the respective domains
that are not consistent with each other. This corresponds
to a CSP H, which is formulated as

H : y(k) =g(x(k),u(k),v(k)), x(k) ∈ [X̄(k)],

y(k) ∈ [Y (k)], v(k) ∈ [V ],

whose solution set is defined as S , {y(k) ∈ [Y ](k),x(k) ∈
[X̄](k) : y = g(x(k),u(k),v(k)),v(k) ∈ V }.
To solve H, during the forward constraint propagation
phase, the state set [X̄](k) is first propagated through g
using inclusion functions, considering intermediate vari-
ables, yielding an output interval [Y ](k) which is refined
by intersecting it with the measurement y(k). During the
backward propagation, the nonlinear mapping g is swept
backwards and the interval [Y ](k) obtained in forward
propagation phase is used to refine [X̄](k). The proposed
FBCP algorithm for the ECM is detailed in the next
section.

4.2 State estimation of the Lithium-ion cell using FBCP

The FBCP algorithm proposed in Jaulin et al. (2001) is
composed of three intermediate steps (contractor decompo-
sition, forward update, and backward update), here applied
to the ECM example.

We consider (8) describing the ECM with output function

g given by (4). The process disturbance w(k) = Tφ̂ is
determined by the parametric uncertainties in the ECM by
means of the transformation matrix in Section 3, bounded

by w(k) ∈ [W ] , T[φ̂].

On the other hand, the output disturbance vk comprises
both parametric uncertainties and the output additive
measurement noise d(k) ∈ [d] ⊂ R, with [d] defined in

Section 3, as v(k) , [w(k)T d(k)]T . Note that, since R0

is correlated to the other parameters appearing in (7) (see
Fig.4), v(k) depends also on w(k).

In order to mitigate the dependency effect that arises
when considering the polynomial function (5), Voc(k) is
rewritten using the centered form suggested in Hansen and
Walster (2003), as

Voc([x1](k)) = p0(k) +

9∑
i=1

pi(k)([x1](k)− c)i, (14)

where c , mid([x1](k)), with [x1](k) , [z](k) being the
first component of [X̄](k), pi being auxiliary variables

given by p0(k) , Voc(c) and pi(k) , (1/i!)V
[i]
oc (c), i ∈

{1, . . . , 9}, and V
[i]
oc (c) denoting the i-th derivative of (5)

with respect to z(k), evaluated at c.

1) Contractor decomposition. The function g derived from
(4) is first decomposed into a “primitive” form comprised

of simplified expressions in which only one function or
one elementary operation is present. This is achieved by
introducing intermediate variables [hi] given by

[hi](k) , ([x1](k)− c)i, i ∈ {1, . . . , 9}, (15)

which allow to rewrite the polynomial function (5) as

[Voc](k) = p0(k) +

9∑
i=1

pi(k) [hi](k). (16)

2) Forward update. Given the measurement y(k), we first

subtract the noise interval [d], obtaining [Y ](k) , y(k)−
[d]. Then, we compute the intersection

[Y ](k)← [Y ](k) ∩ [[Voc](k) + [x2](k) +R0u(k)], (17)

in order to refine [Y ](k). Note that if no measurement is
available at time k, this set is initialized as (−∞,+∞).

3) Backward update. The decomposed function g is swept
backwards. Every variable appearing on the right-hand-
side of g is made an explicit function of the other variables
appearing in the forward update, as follows

[Voc](k)← [Voc](k) ∩ [[Y ](k)− [x2](k)−R0u(k)], (18a)

[x2](k)← [x2](k) ∩ [[Y ](k)− [Voc](k)−R0u(k)]. (18b)

For assessing the state of charge [x1](k), equation (16)
is swept backwards and decomposed into multiple ex-
pressions, passing first through the intermediate variables
[hi](k), for i = 1, . . . , 9, as

[hi](k)← [hi](k) ∩
[ 1

pi(k)

(
[Voc](k)− p0(k)

−
∑
j 6=i

pj(k)[hj ](k)
)]
.

(19)

The interval [h1](k) is further refined as follows. Since
[h1](k) is zero centered by definition (see (15)), the fol-
lowing logic is necessary for retrieving both positive and
negative even roots to [h1](k):

[h1](k)←[h1](k) ∩i∈{2,4,6,8} ([hi](k)
1
i )

= [h1](k) ∩i∈{2,4,6,8} ([−|hi|
1
i , |hi|

1
i ]).

For odd roots, [h1](k)← [h1](k)∩i∈{3,5,7,9}([αi, αi]), where

(i) αi , hi
1
i if [hi](k) > 0, αi , −(|hi|

1
i ) otherwise, and

(ii) αi , −(|hi|
1
i ) if [hi](k) < 0, αi , hi

1
i otherwise, with

hi and hi being the lower and upper bounds of [hi](k),
respectively. Finally, the refinement of the SOC interval is
done through the intersection [x1](k)← [x1](k)∩ [h1](k)+

c. The interval enclosure [X̂](k) for the update step (13)

is then given by [X̂](k)← [x1](k)× [x2](k).

Remark 3. Steps 2 and 3 can be repeated iteratively to
obtain a more refined enclosure [X̂](k) (Jaulin et al., 2001).
Nevertheless, for the ECM, one iteration demonstrated to
provide sufficiently accurate enclosures, as illustrated in
Section 5.

Remark 4. Since intervals cannot capture the fact that
w(k) is constant, as well as the dependencies between
v(k) and w(k), the application of the FBCP algorithm
to the ECM is then conservative. Future work will explore
other set representations such as zonotopes, which allow
to effectively manage this dependency and to reduce
conservatism.
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Fig. 5. Current input profile I(t) applied to the ECM.

5. NUMERICAL RESULTS

This section presents the results obtained by applying the
interval state estimation method to the considered Li-ion
cell during the charging phase with an input profile as in
Fig. 5.

The initial state set [X̄](0) is centered in the initial
state condition (z(0), Vc1(0)) = (0.3, 0). We consider an
initial state uncertainty of 1% for the SOC and a much
lower uncertainty on the voltage Vc1 of 0.0001%V . This
is justified by assuming that the battery is in stationary
condition at t = 0 after a rest period (see Remark 1).
The open loop state estimation is computed using only
the prediction step (12) with natural inclusion function 4 ,
at each time step k. Fig. 6 depicts a comparison between
state sets computed in open loop (pink) and closed loop
(green) respectively, highlighting the result obtained after
the refinement procedure related to FBCP.

A further comparison between open and closed loop esti-
mation is also shown in Fig. 7, in which the areas of the
enclosures are calculated at each time k. Note that, despite
the improved accuracy, the sets mildly increase over time.
This is due to the increase of the SOC with time due
to charging, which results in more conservative interval
enclosure of the polynomial (16). As it can be noticed, the
use of the FBCP approach (closed-loop) significantly re-
duces the size of the obtained intervals and still guarantees
that the real state trajectory x(k) (depicted in blue in Fig.

6) belongs to [X̂(k)]. The simulation has been done with
Matlab 2020a, while all interval operations were performed
using INTLAB 9 (Rump, 1999). The plots in Fig. 6 has
been done using MPT (Kvasnica et al., 2004).

6. CONCLUSION

This paper developed a discrete-time interval observer for
a single cell Li-ion battery based on Jaulin et al. (2001).
Parameters have been identified by mean of least squares
method using voltage data collected on an SPMe. Para-
metric uncertainties have been derived exploiting FIM,

4 This is equivalent to replace each variable by its interval enclosure
and apply elementary interval operations (Moore et al., 2009).

whose inverse approximates the covariance of the param-
eters. A variable transformation of the parameters have
been performed to take their correlation into account.
Results demonstrate tight enclosures on the states over
time, which is corroborated by comparing open and closed
loop state estimation. Future work will consider the ageing
and temperature dynamics to address the degradation and
safety of the cell, as well as the application of set-based
estimation to battery packs, the usage of a different set
representation to reduce the conservativeness, and perform
joint state and parameter estimation.
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