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Abstract: Reinforcement learning aims to compute optimal control policies with the help
of data from closed-loop trajectories. Traditional model-free approaches need huge number
of data points to achieve an acceptable performance, rendering them not applicable in most
real situations, even if the data can be obtained from a detailed simulator. Model-based
reinforcement learning approaches try to leverage model knowledge to drastically reduce the
amount of data needed or to enforce important constraints to the closed-loop operation, which
is another important drawback of model-free approaches. This paper proposes a novel model-
based reinforcement learning approach. The main novelty is the fact that we exploit all the
information of a model predictive control (MPC) computing step, and not only the first input
that is actually applied to the plant, to efficiently learn a good approximation of the state value
function. This approximation can be included into a model predictive control formulation as a
terminal cost with a short prediction horizon, achieving a similar performance to an MPC with
a very long prediction horizon. Simulation results of a discretized batch bioreactor illustrate the
potential of the proposed methodology.
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1. INTRODUCTION

Reinforcement Learning (RL) is an area of machine learn-
ing concerned with how agents have to take actions in
Markov Decision Processes (MDP) in order to optimize
a cumulative reward. In Sutton et al. (1992), one of the
founding fathers of modern computational reinforcement
learning, Richard S. Sutton, already pointed out that re-
inforcement learning is actually direct adaptive optimal
control. Direct is to describe that most RL methods are
model-free, which means that they do not need to de-
pend on the model of the system dynamics; Adaptive is
to describe the data-driven nature of RL. These ideas
had been previously applied also in the field of process
control, mostly under the keywords of adaptive optimal
control and approximate dynamic programming, but it has
recently gained and increased attention (Shin et al., 2019),
(Spielberg et al., 2017), (Kim et al., 2020).

There are mainly two categories of reinforcement learning:
value-based methods and policy-based methods. Value-
based RL such as Q-learning (Mnih et al., 2013) typically
try to approximate the optimal state-action function,
Q∗(x, a), which denotes the expected least cumulative cost
of taking action a at state x. The optimal policy at a state
x is then the minimizer of Q∗(x, a) over all possible actions
a. Policy-based methods try to approximate the optimal
policy function π(x) directly. They typically update their
approximation based on the intuitive idea that if an action
is followed by less cumulative cost, then the tendency of

taking that action is strengthened (or reinforced). Most
policy-based methods use policy gradient (Sutton et al.,
2000) to update their parameters. Both categories have
remarkable achievements in the field of of board games
and modern computer games.

One major problem of RL is that most direct (model-
free) RL methods usually apply black boxes methods (e.g.
artificial neural networks) for function approximation,
resulting in non-interpretable behaviours for which it is
also hard to enforce safety critical constraints. In many
application domains, such as process control, the lack
of constraint handling, can prevent the application of
RL methods. To enforce constraint satisfaction of the
state and action trajectories generated by a reinforcement
learning policy, some recent works have combined Model
Predictive Control (MPC) with RL: (Gros and Zanon,
2019a), (Gros and Zanon, 2019b), (Zanon and Gros, 2020).
By solving the constraint optimization problem of MPC,
a safe policy can be obtained.

For RL, sample efficiency is another major problem, the
learning process often needs a large amount of data. Some
approaches of safe reinforcement learning (e.g. in Waber-
sich and Zeilinger (2018)) use a model predictive filter to
project the unsafe actions generated by model-free RL
controller to a safe action set. These approaches need
the knowledge of model dynamics for the predictive filter,
but this model knowledge is not efficiently exploited for
the training of the model-free RL policy. Furthermore,



Gros et al. (2020) has shown that the projected policy
might not be the optimal policy with safety constraint
satisfaction. By using MPC, a relatively good initial policy
at the beginning of the learning process can be obtained
by exploiting the model knowledge. When the optimal
value function can be exactly approximated, the policy
generated by the constraint optimization of MPC would
be optimal. The combination of MPC and RL can have,
besides the rigorous consideration of constraints, other
advantages. For example, since MPC is in practice imple-
mented with a finite prediction horizon, which can lead to
significant suboptimal performance, an RL approach can
be used to approximate the infinite-horizon cost, leading
to an improved performance.

In this paper, based on the interesting ideas proposed
in Gros and Zanon (2019b), Zanon and Gros (2020)
we aim to provide a novel contribution which improves
previous methods by exploiting more information from
the model knowledge and the MPC computation. Our
proposed method, which assumes knowledge of the model,
aims to learn the parametric state value function, which
can be used as the terminal cost of MPC leading to
an improved performance despite of a short prediction
horizon. Different from the quasi-infinite horizon MPC
methods, such as the one described in Chen and Allgöwer
(1998), where the terminal cost that determined from an
assumed linear state feedback is an upper bound of the
optimal value function, our proposed approaches tries to
learn the exact optimal value function from sampled data.
In addition, our methods also work for cases with time
varying references.

This work focuses on showing that the proposed method
has good theoretical and computational properties that
make it a good candidate to work in practice. The appli-
cation to realistic case studies with uncertain models is
part of our future work.

2. BACKGROUND

This section introduces some common concepts and nota-
tions related to reinforcement learning.

2.1 Markov Decision Process

Reinforcement learning usually considers that the dynam-
ics of the real system are described by a Markov Decision
Processes (MDP). A countable MDP is defined as a triplet
M = (X ,A,P), where X is the nonempty set of states and
the nonempty set of actions is denoted by A. The state
transition probability P assigns to each state-action pair
(x, a) ∈ X ×A a probability over X , which can be denoted
by P( · |x, a). For example, after taking decision a at state
x, the probability of reaching a new state x′ is P(x′|x, a).
After defining a stage cost function l that maps each state-
action pair (x, a) ∈ X ×A to a value in R, a transition step
of MDP can be denoted by a tuple (x, a, x′, l). This means
that after taking decision a at state x, the system comes
to a new state x′ and gets a stage cost l(x, a).

2.2 Concepts and notations

In this paper, we consider the learning goal of finding
a policy which minimizes the expected cumulative stage

cost. For clarity in the presentation, we summarize some
common concepts in reinforcement learning and optimal
control that will be used in the remainder of the paper.

(1) Policy: normally denoted as π( · |x). If policy π is a
applied to a system, then at state x, the probability
to take action a is π(a|x).

(2) V-value: V-value is also known as state value func-
tion. The V-value for a given policy π is defined as

V π(x) := Eπ,P
[ ∞∑
k=0

γkl(xk, ak)
]
, (1)

where γ is the discount factor and x0 = x. The
discount factor γ is a real number satisfying 0 <
γ < 1. Its purpose is to make this sum of stage
costs bounded. Eπ,P means it is an expectation with
respect to the policy π and the transition probability
P. The V-value V π(x) is also called the V-function.

(3) Q-value: Q-value is also known as state action value
function. The Q-value for a given policy π is defined
as

Qπ(x, a) := Eπ,P
[ ∞∑
k=0

γkl(xk, ak)
]
, (2)

where x0 = x and a0 = a. The Q-value function
Qπ(x, a) is also called the Q-function.

(4) Greedy policy: The greedy policy of a Q-function
Q is defined as

π(u|x) = 1, with u = argmin
a

Q(x, a). (3)

(5) Bellman equation: For a given V-function, the
Bellman equation with respect to a given π is

T πV (x) = Eπ,P
[
l(x, a) + γV (x′)

]
, (4)

where a and x′ are random variables of π,P. The
notation T πV means to apply T πV (x) for all x ∈ X .
For the Q-function, one gets

T πQ(x, a) = l(x, a) + γEπ,P [Q(x′, a′)]. (5)
The notation T πQ means to apply T πQ(x, a) for all
x ∈ X and all a ∈ A.

(6) Bellman optimality equation: For the V-function,
Bellman optimality equation is

T ∗V (x) = min
a

[
l(x, a) + γEP [V (x′)|x, a]

]
, (6)

where EP [ · |x, a] means an expectation of V (x′) with
respect to the conditional probability P(x′|x, a). The
notation T ∗V means to apply T ∗V (x) for all x ∈ X .
For the Q-function, one gets
T ∗Q(x, a) = l(x, a) + γEP [min

a′
Q(x′, a′)|x, a], (7)

where EP [ · |x, a] means an expectation of V (x′) with
respect to the conditional probability P(x′|x, a). The
notation T ∗Q means to apply T ∗Q(x, a) for all x ∈ X
and all a ∈ A.

From Szepesvári (2010), we know that T π and T ∗ are so-
called contraction mappings. For a contraction mapping
T in a Banach space B, it holds that for all V1, V2 ∈ B,
‖T V1 − T V2‖ ≤ ‖V1 − V2‖.
For a contraction mapping T and a sequence of functions
Vk or Qk the following Banach fixed-point theorem holds
(Szepesvári, 2010).



Theorem 1 (Banach fixed-point theorem). Let (X , d)
be a non-empty complete metric space with a contraction
mapping T : X → X . Then T admits a unique fixed-point
X∗ in X (i.e. T X∗ = X∗). Furthermore, X∗ can be found
as follows: start with an arbitrary element X0 in X and
define a sequence {Xn} by Xn = T Xn−1 for n ≥ 1. Then
Xn → X∗.

Proof. See (Szepesvári, 2010).

This means that one can recursively apply Vk+1 = T Vk or
Qk+1 = T Qk, and then when k goes to infinity, Vk or Qk
will converge to the fixed-point of the operator T , which
satisfies Vk = T Vk or Qk = T Qk. The equation Qk = T Qk
means Qk(x, a) = T Qk(x, a) for all (x, a) ∈ X ×A.

2.3 Value iteration and Q-learning

Value-based RL methods such as Q-learning are based on
value iteration. Here we briefly introduce value iteration
and Q-learning.

For our goal, the optimal policy π∗ should be the one
minimizing expected sum of stage costs.

π∗ = argmin
π

Eπ,P
[ ∞∑
k=0

γkl(xk, ak)
]
, (8)

A Q-function Q∗ satisfying T ∗Q∗ = Q∗ is the fixed-point
of the Bellman optimality equation and the greedy policy
associated to Q∗ would be π∗.

Value iteration is to learn Q∗ by recursively applying
the Bellman optimality equation. In a value iteration
step, Vk+1 = T ∗Vk or Qk+1 = T ∗Qk is applied for all
(x, a) ∈ X ×A. By Banach fixed point theorem, the value
function will converge to the optimal value function V ∗ or
Q∗, satisfying V ∗ = T ∗V ∗ or Q∗ = T ∗Q∗

Notice that for every iteration, the value over all input
space should be updated, which is not feasible for large
input spaces.

Q-learning is a modified version of value iteration, which is
feasible for large state-action spaces. Instead of updating
the Q-value of all state action pairs in one iteration, for
every iteration it only samples one previously encountered
transition tuple (x, a, x′, l) and applies

Qk+1(x, a)← Qk+1(x, a) + δ, (9)
with: δ = l +min

a′
Qk(x

′, a′)−Qk(x, a) (10)

where δ is called the temporal difference error (TD error)
and the left arrow←means to update the value Qk+1(x, a)
towards the target value l + min

a′
Qk(x

′, a′). When there
is enough exploration, i.e. every state action pair can
be sampled with positive probability, Q∗ can be learned,
enabling the learning of Q∗ for larger state-action spaces.

As we have shown, value-based methods make use of the
Bellman optimality equation to learn the optimal fixed
point V ∗ or Q∗. The fact that the operator T ∗ contracts
the value function at each iteration towards a unique fixed
point is essential. Therefore, any novel methods that uses
as update an operator different from T ∗, should prove that
the new operator also contracts the value function to the
optimal Q∗.

3. MPC PROBLEM FORMULATION

We consider discrete-time nonlinear systems. We assume
that the full state can be measured at each sampling time
and that we control the system using discrete-time MPC
with a parametric terminal cost. The MPC problem to be
solved at time t can be written as:
Uθ(x, a, t) :=

min
z

N−1∑
k=0

γklt+k(zk, uk) + γNVθ(zN , t+N) (11a)

s.t. z0 = x, u0 = a, (11b)
zk+1 = f(zk, uk), k ∈ IN−10 (11c)
g(zk, uk) ≤ 0, k ∈ IN−10 (11d)
gT (zN , uN ) ≤ 0 (11e)

πθ(x, t) :=argmin
a′

Uθ(x, a
′, t) (11f)

where z := {z0, u0, ..., uN−1, zN}, or more specifically
zθ(x, t) := {z0, u0, ..., uN−1, zN |(x, t)} is the predicted
trajectory at (x, t), lτ is the stage loss at time τ , θ is the
learnable parameter, f represents the dynamics, g is the
constraints and gT is the constraint for recursive feasibility.

The parameterized terminal cost is denoted by Vθ( · , · )
and has two arguments, the state and the time step.
The goal of the proposed reinforcement learning scheme
is to learn the optimal Vθ, so that this MPC with finite
prediction horizon N (potentially very short) has the
same performance of an MPC with approximately infinite
prediction horizon, while guaranteeing that the constrains
are satisfied as enforced by (11d).

4. PROPOSED APPROACH

4.1 Update Description

At time step t with state x, after action a is taken, we get
a stage cost lt(x, a) and reach a new state x′. We propose
to update Vθ by using the obtained stage cost as well as
the full result of the MPC computation defined by (11):

Vθnew(x, t)← lt(x, a)+

γUθ(x
′, πθ(x

′, t+ 1), t+ 1).
(12)

The term Uθ(x
′, πθ(x

′, t+1), t+1), in the right hand side
of (12) is obtained from MPC computation at (x′, t+ 1).

Besides differences in terms of parameterization, this up-
date has different theoretical basis from the method pro-
posed in Zanon and Gros (2020), which is using Bellman
optimality equation (6) for Q-learning. And it is also differ-
ent from the method of Gros and Zanon (2019a), which is
using Bellman equation (4) for value function evaluation.
This update is neither using Bellman equation (4) nor
Bellman optimality equation (6), so we should prove that
it will lead to some fixed point and this fixed point can
provide optimality. In the next subsection, we will show
that (12) leads Vθ to the fixed point of Bellman optimality
equation (6). In addition, unlike the previously mentioned
methods, an important advantage of our proposed method
is that it does not require complex sensitivity calculations,
which means that more complex parameterizations can be
used as function approximations (such as neural networks),



opening the door for the consideration of significantly more
challenging problems.

4.2 Optimality of the proposed update

As introduced in Section 2.3, Q-learning learns the optimal
state action value function Q∗ because it takes advantage
of the Bellman optimality operation T ∗, which has a fixed
point at Q∗. Here we want to show that (12) also has
similar effect and leads to the fixed point V ∗, and by
inserting Vθ = V ∗ into the MPC objective (34a), the MPC-
computed cost (Uθ) becomes Q∗.

We define an operator that performs the proposed update
for all x ∈ X and t ∈ I, where I is the set of time indices,
as:
T vV (x, t) = lt(x, πV (x, t)) + γUV (x

′, πV (x
′, t+ 1), t+ 1).

(13)
Subscript V of πV and UV is to show that they are
obtained by inserting a state value function V into the
MPC formulation of (11).
Assumption 1. A perfect model of the system dynamics
is available and the terminal constraints describe a feasible
control invariant set.
Assumption 2. V satisfies for all xt ∈ X and t ∈ I:

V (xt, t) ≥ min
(xt,at,xt+1)∈F

{
lt(xt, at)+γV (xt+1, t+1)

}
(14)

Where F denotes the set of feasible transitions.

We can first get a V satisfying this assumption by applying
T π of an arbitrary policy π to a initial Vinit.
Theorem 2. Under Assumption 1 and 2, a unique fixed
point of T vV = V exists and the fixed point can be
reached by recursively updating V with T vV . Moreover,
If T vV = V , then T ∗U = U = Q∗.

Proof. First, we define for all xt ∈ X and t ∈ I:

T (N)V (xt, t) := min
(xk,ak,xk+1)∈F

{ t+N−1∑
k=t

γk−tlk(xk, ak)+

γNV (xt+N , t+N)
}

T (N+1)V (xt, t) := min
(xk,ak,xk+1)∈F

{ t+N∑
k=t

γk−tlk(xk, ak)+

γN+1V (xt+N+1, t+N + 1)
}
.

(15)
When Assumption 2 holds for V we have:

T (N)V (xt, t) = min
(xk,ak,xk+1)∈F

{ t+N−1∑
k=t

γk−tlk(xk, ak)+

γNV (xt+N , t+N)
}

≥ min
(xk,ak,xk+1)∈F

{ t+N∑
k=t

γk−tlk(xk, ak)+

γN+1V (xt+N+1, t+N + 1)
}

= min
(xk,ak,xk+1)∈F

{
lt(xt, at)+

γT (N)V (xt+1, t+ 1)
}

(16)

So when Assumption 2 holds for V , it also holds for T (N)V ,
and similarly it holds for T (N+1)V as well.

Expanding T (N)V (xt, t), we get:

T (N)V (xt, t)

= lt(xt, πV (xt, t))+

γ min
(xk,ak,xk+1)∈F

{ t+N−1∑
k=t+1

γk−(t+1)lk(xk, ak)+

γN−1V (xt+N , t+N)
}

≥ lt(xt, πV (xt, t))+

γ min
(xk,ak,xk+1)∈F

{ (t+1)+N−1∑
k=t+1

γk−(t+1)lk(xk, ak)+

γNV (x(t+1)+N , (t+ 1) +N)
}

= lt(xt, πV (xt, t)) + γUV (xt+1, πV (xt+1, t+ 1), t+ 1)

= T vV (xt, t)
(17)

Under Assumption 1, the model used for prediction is
the same as the real dynamics, and by Assumption 2 the
inequality holds, so the last equation of (17) holds.

By (17) we have T (N)V ≥ T vV . Expanding T vV we have
for all xt ∈ X and t ∈ I:
T vV (xt, t) =lt(xt, πV (xt, t))+

min
(xk,ak,xk+1)∈F

{ t+N∑
k=t+1

γk−tlk(xk, ak)+

γN+1V (xt+N+1, t+N + 1)
}

≥T (N+1)V (xt, t)

= min
(xt,at,xt+1)∈F

{
lt(xt, at) + γT NV (xt+1, t+ 1)

}
≥ min

(xt,at,xt+1)∈F

{
lt(xt, at) + γT vV (xt+1, t+ 1)

}
(18)

The equation in (18) also holds because of Assumption 1,
the second inequality holds by (17)

By (16) and (18) we have when Assumption 2 holds for a
initial V , when recursively updating V with T vV , T NV
or T N+1V , the resulting V always satisfies Assumption 2.
Therefore in value iteration setting, we only need to start
with a initial V satisfying Assumption 2.

By (17) and (18):

T (N)V ≥ T vV ≥ T (N+1)V (19)

Next, we prove T (N) and T (N+1) have the same fixed point
as T ∗.
From (Szepesvári, 2010, Thm. 2 and Eq. (42)), we know
that

T ∗V (x, t) = min
(x,a,x′)∈F

{lt(x, a) + γV (x′, t+ 1)}

is a contraction mapping of γ-contraction and its fixed
point is the optimal state value function. T (N)V and
T (N+1)V can be proven to be contraction mappings of
γN -contraction and γN+1-contraction respectively using
the same way of proof for T ∗ in Szepesvári (2010). By the



Banach fixed-point Theorem, T (N)V and T (N+1)V have
unique fixed points. When V ∗ is a solution of T ∗V = V ,
we have for all xt ∈ S and t ∈ I:

T (N+1)V ∗(xt, t) = min
(xk,ak,xk+1)∈F

{ t+N∑
k=t

γk−tlk(xk, ak)+

γN+1V ∗(xt+N+1, t+N + 1)
}

= min
(xk,ak,xk+1)∈F

{ t+∞∑
k=t

γk−tlk(xk, ak)
}

=V ∗(xt, t).
(20)

So V ∗ is also a fixed point of T (N+1). Similarly, we can
prove T (N)V ∗ = V ∗. Because T (N) and T (N+1) both have
unique fixed points, they have the same fixed point as T ∗.
Now we prove that V ∗ is also a fixed point of T v. V ∗
satisfies Assumption 2 by the definition, so we can apply
inequality (19), for all xt ∈ X and t ∈ I:
T (N+1)V ∗(xt, t) ≤T vV ∗(xt, t) ≤ T (N)V ∗(xt, t)

V ∗(xt, t) ≤T vV ∗(xt, t) ≤ V ∗(xt, t)
T vV ∗(xt, t) = V ∗(xt, t)

(21)

We have already proved that if V = V ∗, then V is a fixed
point of T v. In order to prove uniqueness, we need to prove
that for all V v, which is a fixed point of T v, they are the
same as the unique fixed point V ∗ of T ∗.
For every V v satisfying T vV v = V v, we have for all xt ∈ X
and t ∈ I:
T vV v(xt, t) = lt(xt, at) + T vV v(xt+1, t+ 1)

≥ min
(xk,ak,xk+1)∈F

{
lt(xt, at) + T vV v(xt+1, t+ 1)

}
(22)

(22) means Assumption 2 holds for every V v. Then we can
get T (N)V v ≤ T ∗V v ≤ V v for all xt ∈ X and t ∈ I:

T (N)V (xt, t) = min
(xk,ak,xk+1)∈F

{ t+N−1∑
k=t

γk−tlk(xk, ak)+

γt+NV v(xt+N , t+N)
}

≤ min
(xt,a,xt+1)∈F

{lt(xt, a) + γV v(xt+1, t+ 1)}

=T ∗V v(xt, t) ≤ V v(xt, t)
(23)

By inequality (19) and (23), :

V v = T vV v ≤T (N)V v ≤ T ∗V v ≤ V v

V v ≤T ∗V v ≤ V v

T ∗V v = V v
(24)

So every fixed point of T v is also the unique fixed point of
T ∗.
Then we prove that for a sequence Vn, n ∈ N , V0 satisfying
Assumption 2, by iteratively applying Vn+1 = T vVn, the
limit of this sequence is V ∗.

For all V and all xt ∈ X , t ∈ I, by the fact that V ∗ is also
the unique fixed-point of T v:
|T vV (xt, t)− T vV ∗(xt, t)| = |T vV (xt, t)− V ∗(xt, t)|

(25)
By (19), when T vV (xt, t)− V ∗(xt, t) ≥ 0:

|T vV (xt, t)− V ∗(xt, t)| = T vV (xt, t)− V ∗(xt, t)
≤ T (N)V (xt, t)− V ∗(xt, t)
≤ |T (N)V (xt, t)− V ∗(xt, t)|
≤ ‖T (N)V − V ∗‖∞
≤ γN‖V − V ∗‖∞

(26)
The last inequality of (26) is from the fact that T (N) is
γN -contraction. When T vV (xt, t)− V ∗(xt, t) < 0, also by
(19) and the fact that T (N+1) is γN+1-contraction:
|T vV (xt, t)− V ∗(xt, t)| = V ∗(xt, t)− T vV (xt, t)

≤ V ∗(xt, t)− T (N+1)V (xt, t)

≤ |T (N+1)V (xt, t)− V ∗(xt, t)|
≤ ‖T (N+1)V − V ∗‖∞
≤ γN+1‖V − V ∗‖∞
≤ γN‖V − V ∗‖∞

(27)
Combining (26) and (27), we know that for all V and all
xt ∈ S, t ∈ I:

|T vV (xt, t)− V ∗(xt, t)| ≤ γN‖V − V ∗‖∞ (28)
So:

‖T vV − V ∗‖∞ ≤ γN‖V − V ∗‖∞ (29)
By (29) we know that under Assumption 1 by iteratively
applying (12), we can get V ∗.

Finally, we show that inserting V ∗ into the MPC under
Assumption 1 results in the optimal policy.

If V ∗ is inserted in the MPC problem under Assumption
1, the objective of the MPC at x, t becomes:

min
(xk,ak,xk+1)∈F

{ t+N−1∑
k=t

γk−tlk(xk, ak)+

γNV ∗(xt+N , t+N)
}
,

(30)

which is equivalent to:
min

(s,a,s′)∈F
{lt(x, a) + γV ∗(x′, t+ 1)} = min

a
{Q∗(x, a, t)}.

(31)
The value Q∗ in (31) is the solution of T ∗Q = Q, so the
policy π from the MPC is the greedy policy of Q∗.

With Theorem 2, we show that an optimal policy can be
learned when the model is known and enough exploration
of the state action space occurs. In practice, with a nominal
model, which does not exactly describe the real dynamics,
a robust MPC scheme such as (Mayne et al., 2011; Lucia
et al., 2013) can be used to ensure that the constraints are
satisfied also in the presence of uncertainty. Here we focus
on the theoretical optimality of the proposed method and
future work will tackle the case of uncertain models as well
as the removal of Assumption 2. In the following section,
a simulation study shows the advantages of the proposed
update.

5. SIMULATION RESULTS

We use a control task of a nonlinear system to demonstrate
that the proposed method can obtain the performance of



MPC with a large prediction horizon by solving a short-
horizon MPC with the proposed reinforcement learning
strategy.

The considered model of the batch bioreactor is continuous
and has 4 states and 1 control input. The four states are
concentration of the biomass Xs, the concentration of the
substrate Ss, the concentration of the product Ps and the
volume Vs. The control input uinp is the feed flow rate of Ss.
The system model is described by the ordinary differential
equations:

Ẋs = µ(Ss)Xs −
uinp

Vs
Xs,

Ṡs = −
µ(Ss)Xs

Yx
− vXs

Yp
+
uinp

Vs
(Sin − Ss),

Ṗs = vXs −
uinp

Vs
Ps,

V̇s = uinp,

(32)

where:

µ(Ss) =
µmSs

Km + Ss + (S2
s /Ki)

, (33)

The values for the different parameters, such that the inlet
substrate concentration Sin, the kinetic parameters µm,
Km, Ki , v and the yield coefficients Yx, Yp as well as more
information about the process can be found in Srinivasan
et al. (2003). The parameters Yx and Sin are set to be the
nominal values (Yx = 0.5 and Sin = 200).

The objective is to maximize the concentration of product
after 150 hours of production. The constraints are 0 l/h ≤
uinp ≤ 1 l/h and Xs ≤ 3.7 g/l.

The model described by (32) is discretized using Euler
method with a sampling time of 1 hour. We collect all the
states Xs, Ss, Ps, Vs in the vector x. Using f to denote the
Euler discretized system, the optimization problem to be
solved at each sampling time for the parametric MPC can
be written as:

Uθ(x, a, t) :=

min
z

N−1∑
k=0

γklt+k(zk, uk, uk−1) + γNVθ(zN , t+N)

(34a)
s.t. z0 = x, u0 = a, u−1 = ulast (34b)

zk+1 = f(zk, uk), k ∈ IN−10 (34c)
Gzk ≤ 3.7, k ∈ IN0 (34d)
0 ≤ uk ≤ 1, k ∈ IN0 (34e)

πθ(x, t) :=argmin
a′

Qθ(x, a
′, t) (34f)

where ulast is the input a at the last time step t− 1, and

lτ+k(zk, uk, uk−1) (35)
=0.18 + zTQz + (uk − uk−1)TR(uk − uk−1) (36)

Q =

[
0 0 0 0
0 0 −0.1 0
0 0 0 0

]
, R = 0.5, (37)

(38)

and

Fig. 1. Comparison of states and inputs

G =

[
1 0 0 0
0 0 0 0
0 0 0 0

]
(39)

We run the method proposed in Section 4 for 50 episodes,
with initial state is x0 = [1 , 0.5 , 0 , 120]T and prediction
horizon N = 6. We choose the parametric terminal cost
Vθ to be a neural network with tanh activation, 5 inputs,
1 output and two hidden layers of 20 and 30 neurons
respectively. Common strategies for value evaluation in
reinforcement learning like Schulman et al. (2015) can
be used for faster learning. Once the training has been
performed, we compare the performance of our method to
MPC schemes with different prediction horizons without
terminal cost. The results can be seen in Fig. 1. It can be
seen that the proposed method with an RL-based terminal
cost and a horizon N = 6 achieves a significantly better
performance than the standard MPC scheme with N = 6
or even higher.

Table 1 shows the comparisons of total losses and average
warm start computation time (ACT) in ms between MPC
trials with (marked in bold) and without learned terminal
cost, showing the computational and performance advan-
tages of the proposed method.

Table 1. Comparison of computation time and
total loss

N 6 7 8 9 10 11
ACT(ms) 6.36 6.70 7.12 7.57 7.97 8.82
Total loss 23.35 22.25 20.84 19.29 17.95 17.40

N 12 13 14 20 40 6+Vθ

ACT(ms) 9.40 9.74 10.35 12.83 29.09 7.14
Total loss 17.06 16.84 16.69 16.38 16.33 16.94

6. CONCLUSION

We proposed a method for combining model predictive
control and reinforcement learning. The method effectively
utilizes the full computation of the MPC for the learning
process. The theoretical optimality of this method is
analysed and proved. An experiment to control a discrete
nonlinear system is evaluated, and the results show that
the parametric terminal cost learned by this method
increases the performance of a finite horizon MPC without
adding significant computational time.

The theoretical analysis and simulations of this paper
are both dealing with nominal trajectories, where the



model can be considered to be exactly known. Future work
will focus on the study the performance of the approach
when the assumed model is uncertain and a detailed
performance comparison with other recently proposed
reinforcement learning schemes based on MPC.
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