
An Optimization Framework for Solving
Integrated Planning and Scheduling
Problems for Dense Energy Carriers

R. Cory Allen ∗,∗∗ Stefanos G. Baratsas ∗,∗∗

Rahul Kakodkar ∗,∗∗ Styliani Avraamidou ∗∗

Joseph B. Powell ∗∗∗ Clara F. Heuberger ∗∗∗∗

C. Doga Demirhan ∗∗∗ Efstratios N. Pistikopoulos ∗,∗∗

∗Artie McFerrin Department of Chemical Engineering, Texas A&M
University, College Station, TX, USA

∗∗ Texas A&M Energy Institute, Texas A&M University, College
Station, TX, USA

∗∗∗ Shell Technology Center, Royal Dutch Shell, Houston, TX, USA
∗∗∗∗ Shell Technology Center, Royal Dutch Shell, Amsterdam, NLD

Email address: stratos@tamu.edu (Efstratios N. Pistikopoulos)

Abstract: Due to rapid population growth, the global demand of energy and water resources are
accelerating. Simultaneously, there is a global trend to transition to renewable energy systems.
Recently, researchers have begun to investigate how green dense energy carriers (DECs) can
be apart of this transition. In this work, we present an optimization framework for solving
large-scale supply chain problems and we apply it to explore the economic and environmental
impacts of DECs. Specifically, we look at utilizing DECs to transport renewable energy produced
in areas with high solar and wind potentials to regions with low renewable potential. To reduce
the computational burden of the large-scale optimization problem, we have developed a greedy
randomized adaptive search procedure (GRASP). The GRASP leverages the linear programming
(LP) relaxation of the problem to generate feasible solutions. We have found that the GRASP is
able to reduce the computational time by approximately two orders of magnitude as compared
to a commercial grade mixed-integer linear programming (MILP) solver ran out-of-the-box on
large-scale instances.

Keywords: Scheduling and Optimization; Energy Processes; Industrial Applications

1. INTRODUCTION

Energy and water are vital for sustained life on earth. The
demands for these two resources have amplified due to
rapid population growth, urbanization, and improvements
in standards of living. According to the International
Energy Agency and the United Nations, the demand
for energy and water will increase 30% by 2050 and
50% by 2070 IRENA (2018); UN-Water and UNESCO
(2020). Tangentially, 90% of global power generation is
currently categorized as water intensive. Furthermore, a
large amount of energy is required to treat and transport
water to consumers. To meet the growing demands of
both energy and water, future infrastructure planning
decisions should explicitly consider implicit intrinsic nexus
connections Allen et al. (2019).

Currently, fossil fuels make up the lion’s share of feed-
stocks for energy generating systems. However, due to
their harmful effects on the environment, there has been a
push towards green energy generators such as solar and
wind farms. Unfortunately, the dispatchability of solar
and wind farms is subject to geographical factors, tem-
poral fluctuations, and stochastic intermittencies. While
electric power storage, namely, rechargeable batteries, un-

derground compressed air energy storage, and pumped-
storage hydro-power can address some of these challenges,
their performance is geographically dependent and/or still
capital intensive. An alternative approach would be to
utilize water and energy produced from solar and/or wind
farms to manufacture green dense energy carriers (DECs).
The DECs can then be stored in pressure vessels and/or
storage tanks so as to be converted into green electrical
power at a later time Demirhan et al. (2020, 2021); Palys
and Daoutidis (2020).

In this work, we propose a mixed-integer linear program-
ming (MILP) formulation for solving large-scale industrial
supply chain problems with DECs. The mathematical
modeling formulation is modeled as an integrated infras-
tructure planning and operational scheduling problem. To
address the known computational difficulties that come
with solving these types of problems, see Pochet and
Wolsey (2006), we have developed a greedy randomized
adaptive search procedure (GRASP) that we integrate into
a commercial grade MILP solver Feo and Resende (1995);
Oliveira et al. (2004). We demonstrate the effectiveness
of the framework wherein we examine producing DECs in
a region with high solar and wind potentials to partially
meet the energy demand of a region with low potentials.

We utilize an augmented pareto front to highlight the in-
trinsic energy-water nexus (EW-N) connections that exists
within green DECS.

The outline of this article is as follows: in Section 2 we state
the problem; in Section 3 we present the mathematical
programming formulation and the GRASP; in Section 4
we highlight and discuss the results; and in Section 5 we
provide some closing remarks.

2. PROBLEM STATEMENT

Consider a central planner who is trying to develop a
supply chain for renewable energy systems from the ground
up. The central planner would like to generate power via
solar and wind farms due to their low greenhouse gas emis-
sions; however, the central planner realizes both generators
suffer from seasonal variations, hourly fluctuations, asym-
metric intermittencies, and geographical variabilities. Con-
sequently, the central planner would like to incorporate
energy storage devices to ensure that the systems energy
demands are met on an hourly basis, while simultaneously
maintaining economic viability of the supply chain.

The central planner wants to leverage the high solar and
wind potentials in one region of the supply chain to par-
tially fulfill the energy demands of another region in supply
chain with low renewable potentials by utilizing DECs.
Specifically, the central planner would like to produce
hydrogen and ammonia solely in Amarillo, TX, (Texas)
via electrolysis and the Haber-Bosch process respectively,
both of which are powered by solar and/or wind farms.
Once the DECs are produced, they are stored in Texas
until they are transported to New York City, NY (New
York). The DECs can depart Texas once per day and
they arrive in New York 48 hours later. In New York,
renewable power can be produced locally by solar and/or
wind farms and can be stored in lithium-ion batteries.
Once the DECs arrive in New York, they can be stored or
utilized immediately for power generation, in conjunction
with locally generated renewable power, to partially meet
the areas energy demands.

The parameters, cost functions, material availabilities,
material demands, etc., utilized in this problem are taken
from a case study in the literature, see Demirhan et al.
(2020), except for the cost parameters for solar farms, wind
farms, and lithium-ion batteries, which have been updated
to more recent values NREL (2020).

3. SOLUTION FRAMEWORK

In this section, the framework for solving large-scale infras-
tructure planning and scheduling problems with DECs is
given and includes: (i) a generalized MILP formulation;
(ii) a problem specific GRASP; and (iii) the procedure to
integrate the GRASP into a MILP optimization solver.

3.1 Mathematical Programming Model

The generic MILP of the framework is given by Eq. (1).

min J1 + J2 + J3 + J4 + J5

s.t. Eqs. (2)− (11)
(1)

The constraints are given by Eqs. (2) – (11), and the
objective function terms are given by Eqs. (12) – (16).

Sets The sets and subsets utilized are as follows:

L locations, {l1, l2, . . . , l|L|}
M materials, {m1,m2, . . . ,m|M|}
O operating modes, {o1, o2, . . . , o|O|}
P processes, {p1, p2, . . . , p|P|}
S material storage units, {s1, s2, . . . , s|S|}
T time horizon, {t1, t2, . . . , t|T |}
W representative weeks, {w1, w2, . . . , w|W|}
E(·) tuples that represent from which locations

material, m ∈ M, is transported from and to
as well as the modes that a process and storage
unit, q ∈ P ∪ S, can transfer from and to

L(l,m)− locations where material, m̄ ∈ M, can be
routed from, {l̄ ∈ L | (l̄, l) ∈ E(m)}

L(l,m)+ locations where material, m̄ ∈ M, can be
routed to, {l̄ ∈ L | (l, l̄) ∈ E(m)}

O(q) operating modes, o ∈ O, that a component,
q ∈ P ∪ S, can operate in

O(o, q)− operating modes, ō ∈ O, that a component,
q ∈ P ∪ S, can previously operate in, {ō ∈ O |
(ō, o) ∈ E(q)}

O(o, q)+ operating modes, ō ∈ O, that a component,
q ∈ P ∪ S, can subsequently operate in, {ō ∈
O | (o, ō) ∈ E(q)}

P(l) processing units, p ∈ P, that are located in a
location, l ∈ L

S(l,m) storage units, s ∈ S, that are located in
a location, l ∈ L, that store a particular
material, m ∈M

T (w) time periods, t ∈ T , corresponding to a repre-
sentative week, w ∈ D

Parameters The parameters utilized are as follows:

βtm,l nominal demand of material, m ∈ M, that
must be met at a location, l ∈ L, during a
time period, t ∈ T

γm,l,l̄ maximum amount of material, m ∈ M, that
can be transported from one location, l ∈ L,
in the supply chain to another, l̄ ∈ L(m, l)+

γ̇m,l,l̄ fractional amount of material, m ∈M, lost in

transport between locations, l, and, l̄, where
(l, l̄) ∈ E(m)

ζ−q,o minimum percentage of the nameplate capac-
ity that a process or storage unit, q ∈ P ∪ S,
can operate at while in a given mode, o ∈ O(q)

ζ+
q,o maximum percentage of the nameplate capac-

ity that a process or storage unit, q ∈ P ∪ S,
can operate at while in a given mode, o ∈ O(q)

ηtp,m conversion factor of a material, m ∈ M, for a
process, p ∈ P, in a time period, t ∈ T

ρtm,l maximum amount of material, m ∈ M, that
can be purchased at a location, l ∈ L, during
a time period, t ∈ T

σ̇s fractional amount of material lost during a
time period for a storage unit, s ∈ S

τm,l,l̄ time periods required to transport material,

m ∈ M, between locations, l, and, l̄, where
(l, l̄) ∈ E(m)

τ−t time period prior to a time period, t ∈ T
τ+
t time period subsequent to a time period, t ∈ T
ωt weight assigned to a time period, t ∈ T

Cost Functions The cost functions utilized are as follows:

Γ(m, l, l̄, ·) piecewise linear function that approximates
the cost to transport material, m ∈ M, from
one location, l ∈ L, to another, l̄ ∈ L(l,m)+

Z(q, o, ō, ·) linear function that approximates the cost to
transition a component, q ∈ P ∪ S, operating
in mode, o ∈ O(q), to operating mode, ō ∈
O(o, q)+

N(q, ·) piecewise linear function that approximates
the cost of constructing a component, q ∈ P∪S

P (m, l, ·) piecewise linear function that approximates
the cost to purchase material, m ∈ M, at a
location, l ∈ L

Y (q, o, ·) piecewise linear function that approximates
the cost to operate a component, q ∈ P ∪ S,
operating in a mode, o ∈ O(q)

Binary Variables The binary variables utilized are as
follows:

ȳtq,o 1 if a component, q ∈ P ∪ S, is operating in
mode, o ∈ O, during a time period, t ∈ T ;
otherwise, 0

z̄tq,o,ō 1 if a component, q ∈ P ∪ S, is operating in
mode, ō ∈ O, during a time period, t ∈ T
and in mode, o ∈ O, during the previous time
period, where (o, ō) ∈ E(p); otherwise, 0

Continuous Variables The continuous variables utilized
are as follows:

gt
m,l,l̄

amount of material, m ∈ M, that is trans-

ported between locations, (l, l̄) ∈ E(m), in time
period, t ∈ T

ptm,l amount of material, m ∈ M, purchased at a
location, l ∈ L, in a time period, t ∈ T

sts storage capacity of a storage unit, s ∈ S, in
time period, t ∈ T

vq nameplate capacity of a component, q ∈ P ∪S
xtp production rate of a process unit, p ∈ P,

during a time period, t ∈ T
ytq,o production rate or capacity of a component,

q ∈ P ∪ S, in a mode, o ∈ O(q), during a time
period, t ∈ T

Material Balance Constraints Equation (2) is a material
balance constraint for each location, l ∈ L, and material,
m ∈ M, in the supply supply chain. It is assumed that
the cardinality of S(·, ·) is at most one. In the event that
there are multiple storage units that can store the same

material in the same location, quasi-axillary materials can
be created for each of the additional storage units.∑

s∈S(m,l)

(1− σ̇s) · s
τ−
t
s . . .

+
∑

l̄∈L(m,l)−

(1− γ̇m,l̄,l) · g
t−τm,l̄,l

m,l̄,l
+
∑
p∈P(l)

ηtp,m · xtp . . .

+ ptm,l = βtm,l +
∑

l̄∈L(m,l)+

gtm,l,l̄ +
∑

s∈S(m,l)

sts . . .

∀ t ∈ T , m ∈M, l ∈ L

(2)

Mode Transition Constraints Equations (3) – (5) are
utilized to model the operating modes, O(q), the compo-
nents, q ∈ P ∪S, can operate in and transition between. It
should be noted that the operating modes, O(q), implicitly
capture the minimum down-times, minimum run-times,
and ramping-times for each component, q ∈ P ∪ S.∑

ō∈O(o,q)+

z̄
τ+
t
q,o,ō −

∑
ō∈O(o,q)−

z̄tq,ō,o = 0 . . .

∀ t ∈ T , q ∈ P ∪ S, o ∈ O(q)

(3)

∑
ō∈O(o,q)−

ztq,ō,o = ȳtq,o ∀ t ∈ T , q ∈ P ∪ S, o ∈ O(q) (4)

∑
o∈O(q)

ȳtq,o = 1 ∀ t ∈ T , q ∈ P ∪ S (5)

Mode Mapping Constraints Equation (6) and Eq. (7)
are utilized to project the mode based variables into the
material balance constraint, Eq. (2).

sts =
∑

o∈O(s)

yts,o ∀ t ∈ T , s ∈ S (6)

xtp =
∑

o∈O(p)

ytp,o ∀ t ∈ T , p ∈ P (7)

Mode Based Bound Constraints Equation (8) and
Eq. (9) ensure that a component, q ∈ P ∪ S, can only
operate within its lower and upper bound percentages
relative to its nameplate capacity when it is operating in
the corresponding mode, o ∈ O(q).

ytq,o ≥ ζ−q,o · vq · ȳtq,o ∀ t ∈ T , p ∈ P ∪ S, o ∈ O(q) (8)

ytq,o ≤ ζ+
q,o · vq · ȳtq,o ∀ t ∈ T , q ∈ P ∪ S, o ∈ O(q) (9)

It should be noted that Eq. (8) and Eq. (9) are linearized
via standard reformulations, see Williams (2013).

Capacity Bound Constraints Equations (10) – (11) are
utilized to ensure that the physical limits are not violated.

gtm,l,l̄ ≤ γm,l,l̄ ∀ t ∈ T , m ∈M, (l, l̄) ∈ E(m) (10)

ptm,l ≤ ρtm,l ∀ t ∈ T , m ∈M, l ∈ L (11)

Objective Functions Piecewise linear functions are uti-
lized to the capture non-convex cost functions in the prob-
lem and are given by Eqs. (12) – (16): Eq. (12) captures

the transportation costs; Eq. (13) captures the mode based
costs; Eq. (14) captures the cost to construct processes and
storage units; Eq. (15) captures the cost to purchase ma-
terial; and Eq. (16) captures the cost to operate processes
and storage units. For the sake of compactness and brevity
we do not incorporate the associated binary variables that
we utilize in the linearization process.

J1 ,
∑
t∈T

∑
m∈M

∑
(l,l̄)∈E(m)

ωt · Γ
(
m, l, l̄, gtm,l,l̄

)
(12)

J2 ,
∑
t∈T

∑
q∈P∪S

∑
(o,ō)∈E(q)

ωt · Z
(
q, o, ō, ztp,o,ō

)
(13)

J3 ,
∑

q∈P∪S
N
(
q, vq

)
(14)

J4 ,
∑
t∈T

∑
m∈M

∑
l∈L

ωt · P
(
m, l, ptm,l

)
(15)

J5 ,
∑
t∈T

∑
q∈P∪S

∑
o∈O

ωt · Y
(
m, l, ytq,o

)
(16)

3.2 GRASP

The GRASP for generating feasible solutions to the MILP
is given by Alg. 3.1 Feo and Resende (1995). Initially the
GRASP creates an empty set, solutionPool, to store
feasible solutions. The GRASP then repeats the following
procedures: (i) first it generates a solution to a subset of
the binary variables in the MILP via a greedy randomized
construction heuristic, Construction(·, ·); (ii) then it
ensures that the remaining binary variables in the MILP
are feasible via a repairing function, RepairSolution(·);
(iii) then it improves upon the feasible solution via a
local search function, LocalSearch(·); and (iv) finally it
appends the feasible solution to the solution pool and
indexes the seed by one. The GRASP repeats these
procedures until it has reached the maximum number of
iterations, maxIterations, and then determines its best
solution, via GetBestSolution(·), and returns it.

Algorithm 3.1: GRASP

input : maxIterations – maximum iterations
seed – initial seed for the psuedo-random
number generator
LPsolution – solution to the LP relaxation

output: bestSolution – best solution found
Function GRASP(maxIterations, seed, LPsolution):

solutionPool ← ∅
repeat

solution ← Construction(seed,LPsolution)
solution ← RepairSolution(solution)
solution ← LocalSearch(solution)

solutionPool← solutionPool ∪ {solution}
seed← seed + 1

until maxIterations reached
bestSolution← GetBestSolution(solutionPool)
return bestSolution

End Function

Greedy Randomized Construction The greedy random-
ized construction heuristic, given by Alg. 3.2, builds a

solution to a subset of the binary variables in the MILP,
{ȳtq,o}t∈Tq∈P∪S, o∈O(q), by exploiting the LP relaxation of

the problem. Initially, the heuristic creates an empty set,
solution. Then the heuristic repeats the following pro-
cedures until a solution is constructed: (i) first it builds
a restricted candidate list, RCL , of operating modes, via
BuildRCL(·, ·); and (ii) then it selects an operating mode
at random based upon the seed from the restricted can-
didate list and constructs its corresponding solution, via
BuildRandomSolution(·, ·); and (iii) finally it appends
the new partial solution from the restricted candidate list
to the set of solutions, solution.

Algorithm 3.2: Greedy Randomized Construction

input : seed – seed for the psuedo-random number
generator
LPsolution – solution to the LP relaxation

output: solution – feasible solution
Function Construction(seed,LPsolution):

solution ← ∅
repeat

RCL ← BuildRCL(solution,LPsolution)
s ← BuildRandomSolution(seed,RCL)
solution← solution ∪ {s}

until solution is constructed
return solution

End Function

The function, BuildRCL(·, ·), builds a set of operat-
ing modes for the restricted candidate list via a three-
stage process. In the first stage, a set covering prob-
lem is solved to find a minimum quasi-feasible operating
mode, SetCover(t, q) , arg min{

∑
ō∈O(q) y

t∗
q,ō − δ−q,o · v∗q |∑

ō∈O(q) y
t∗
q,ō − δ−q,o · v∗q ≥ 0, v∗q > 0, o ∈ O(q)} – where v∗q

and yt∗q,ō indicate the solution of the linear programming

relaxation to vq and ytq,ō respectively. On the off chance,
SetCover(t, q), is infeasible, the function returns the low-
est operating mode of the component, q ∈ P ∪ S. In the
second stage, the function creates an order set, O (t, q) ,
{SetCover(t, q), · · · , arg max{δ+

q,o | o ∈ O(q)}} ⊆ O(q),
for the components, q ∈ P ∪S, ranging from the lowest to
the highest operating modes. In the final stage, the func-
tion returns the first dα·|O (t, q)|e elements of the order set,
where α ∈ (0, 1]. The parameter, α, is utilized to control
the “greediness” and “randomness” of the procedure. For
instance if the parameter, α, is equal to one the procedure
returns a random solution, while on the other hand if the
parameter, α, is equal to |O (t, q)|−1 the procedure returns
a greedy solution.

Solution Repair The function, RepairSolution(·), en-
sures that the remaining binary variables in the MILP,
{z̄tq,o,ō}t∈Tq∈P∪S, o∈O(q),ō∈O(o,q)+ , are feasible. Initially, this

function checks if Eqs. (3) – (5) are violated. If the con-
straints are not violated the solution is feasible. If one or
more constraints are violated the operating mode for the
corresponding component, q ∈ P ∪ S, and time period,
t ∈ T , is increased by one iteratively until feasibility is
achieved for the problem.

Local Search Once a feasible solution to the binary
variables in the MILP is found, the solution is passed to a
local search function, LocalSearch(·). In the local search

function, neighboring solutions are explored by solving a
integer program that is bounded by Eqs. (3) – (5) and the
operating modes, o ∈ O (t, q), found in the construction
heuristic. After the neighborhood is fully explored, the
MILP is resolved with all the binary variables fixed to their
locally optimal solutions to determine the locally optimal
values of the remaining variables.

3.3 Integration of the GRASP and the MILP Solver

The unification of the GRASP and MILP solver is ac-
complished by utilizing a three stage procedure. In the
first stage, the LP relaxation of the relevant variables are
accessed from the MILP solver. In the second stage, their
respective solutions are fed to the GRASP and the GRASP
is executed. In the final stage, the solution produced by the
GRASP is fed back to MILP solver and utilized to generate
a upper bound to the problem.

4. RESULTS AND DISCUSSION

The mathematical programming model, Eq. (1), was im-
plemented in Python and solved utilizing Gurobi V9.0
Gurobi Optimization, LLC (2020). The GRASP was writ-
ten in Python and conjoined with mathematical program-
ming model via Gurobi’s callback features. The computa-
tional experiments were performed on a machine with a
Intel Xeon W-10885M Processor and 64 GB of RAM.

4.1 Part I: Minimize the LCOE

The infrastructure required to minimize the levelized cost
of electricity (LCOE) for system given the nominal process
parameters, cost functions, material availabilities, material
demands, etc. is given in Table 1. As aforementioned,
DECs cannot be produced in New York; therefore, their
name plate capacities are given by “NaN”.

Table 1. Name plate capacities of the infras-
tructure in Texas and New York

Location

Process New York Texas

Solar Farm [MW] 1591.7 1301.6
Wind Farm [MW] 705.3 542.3
Electrolyzer [MW] NaN 873.8
Air Separation Unit [kg/hr] NaN 0.0
Haber-Bosch [kg/hr] NaN 0.0
Direct Air Capture [kg/hr] NaN 0.0
H2 Compression [kg/hr] 0.0 0.0
H2 Liquefaction [kg/hr] 0.0 14,840.4
Lithium-Ion Batteries [MW] 0.0 0.0
H2 Fuel Cell [MW] 1036.2 0.0
NH3 Gas Turbine [MW] 0.0 0.0

The unit commitments for the components in New York
during one of the representative weeks is given by Fig. 1.
It should be noted, that between 24-48 [hr] the storage
level of cryogenic H2 does not go to zero. This could be
attributed to the fact that the solution has a non-zero
mixed integer programming (MIP) gap and/or that the
solar and/or wind potentials subside in those correspond-
ing hours in Texas.

Fig. 1. Energy production and material storage schedule
in New York for a representative week

The sensitivity of the LCOE of the system and water
consumption in Texas with respect to the penetration of
DECs in New York’s green energy portfolio is illustrated
in an augmented pareto front, Fig. 2. From inspection of
Fig. 2, the optimal penetration of DECs in New York’s
green energy portfolio is approximately 28 [%].

Fig. 2. Relationship between the LCOE of the system and
water consumption in Texas given a fixed penetration
of DECs in New York

4.2 Part II: Computational Experiments

In this subsection, the proposed optimization framework
is pitted against Gurobi’s default solver through the use of
a set of computational experiments in which the number
of representative weeks are varied – in these experiments
α is set to |O (·, ·)|−1 and maxIterations is set to 1. The
size of the instances can be seen in Table 2.

Table 2. Size of the MILP

Number of

Representative
Weeks

Binary
Variables Constraints

Continuous
Variables

1 41,472 108,858 41,640
2 82,800 217,386 83,136
3 124,128 325,914 124,632
4 165,456 434,442 166,128
5 206,784 542,970 207,624
6 248,112 651,498 249,120
7 289,440 760,026 290,616

Fig. 3. Performance of Gurobi’s default solver

Fig. 4. Performance of the proposed optimization frame-
work utilizing Gurobi’s interior point method to solve
the root node of the branch-and-bound tree

Figure 3 and Fig. 4 illustrate the MIP gap as function
of time and number of representative weeks for Gurobi’s
default solver and the proposed optimization framework
respectively. In these two figures, the bar is colored “black”
when the LP relaxation is being computed. It should
be highlighted that the in framework: (i) Gurobi’s inte-
rior point method is utilized to solve the root node; (ii)
Gurobi’s internal heuristic is turned off; and (iii) Gurobi’s
MIP Gap tolerance is set to 2 [%]. From inspection, it is
apparent that the proposed optimization framework is ap-
proximately two orders of magnitude faster than Gurobi’s
default solver. This is primarily due to the strength of
the LP relaxation and the ability of the GRASP to gen-
erate feasible solutions explicitly for the binary variables
associated with operational decisions and implicitly for
the binary variables associated with design decisions. As a
result, the user has the capability to conduct a significant
more number of scenario and sensitivity analyses within
a much shorter period of time (approximately 100 times
faster) than they would utilizing Gurobi’s default solver.

5. CONCLUSION

We have presented a generalized optimization framework
that includes a problem specific GRASP for solving large-
scale supply chain problems with DECs. We utilize an in-
tegrated infrastructure planning and operational schedul-
ing approach for creating the mathematical programming

formulation of the framework. We have illustrated the
superiority of the optimization framework for solving in-
tegrated infrastructure planning and operational schedul-
ing problems with DECs, while simultaneously achieving
a substantial reduction in the LCOE for green energy
systems. The optimization framework can produce solu-
tions approximately two orders of magnitude faster than
Gurobi’s default solver; thereby, allowing the user to ex-
plore many more scenarios in the same amount of time.
The performance of the framework can be theoretically
improved by utilizing a Lagrangian decomposition method
by decreasing the amount of time required to solve the LP
relaxation of the problem.

6. ACKNOWLEDGEMENTS

The authors thank Royal Dutch Shell, the National Science
Foundation (Grant Numbered 1739977), and the Texas
A&M Energy Institute for their financial support.

REFERENCES

Allen, R.C., Nie, Y., Avraamidou, S., and Pistikopoulos,
E.N. (2019). Infrastructure planning and operational
scheduling for power generating systems: An energy-
water nexus approach. In Computer Aided Chemical
Engineering, volume 47, 233–238. Elsevier.

Demirhan, C.D., Tso, W.W., Powell, J.B., Heuberger,
C.F., and Pistikopoulos, E.N. (2020). A multiscale en-
ergy systems engineering approach for renewable power
generation and storage optimization. Industrial & En-
gineering Chemistry Research, 59(16), 7706–7721.

Demirhan, C.D., Tso, W.W., Powell, J.B., and Pistikopou-
los, E.N. (2021). A multi-scale energy systems engineer-
ing approach towards integrated multi-product network
optimization. Applied Energy, 281.

Feo, T.A. and Resende, M.G. (1995). Greedy randomized
adaptive search procedures. Journal of global optimiza-
tion, 6(2), 109–133.

IRENA, G.E.T. (2018). A roadmap to 2050. International
Renewable Energy Agency, Abu Dhabi.

Oliveira, C.A., Pardalos, P.M., and Resende, M.G. (2004).
Grasp with path-relinking for the quadratic assignment
problem. In International Workshop on Experimental
and Efficient Algorithms, 356–368. Springer.

Palys, M.J. and Daoutidis, P. (2020). Using hydrogen and
ammonia for renewable energy storage: A geographically
comprehensive techno-economic study. Computers &
Chemical Engineering, 106785.

Pochet, Y. and Wolsey, L.A. (2006). Production planning
by mixed integer programming. Springer Science &
Business Media.

Gurobi Optimization, LLC (2020). Gurobi optimizer ref-
erence manual. URL http://www.gurobi.com.

NREL (2020). 2020 annual technology baseline.
UN-Water and UNESCO (2020). United nations world

water development report 2020: Water and climate
change.

Williams, H.P. (2013). Model building in mathematical
programming. John Wiley & Sons.

