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Abstract: A new back-off methodology is presented in this work as an approach for solving MIDO 

formulations arising for the optimal scheduling and control of flow-shop batch plants under stochastic 

parametric uncertainty. The proposed algorithm decomposes the MIDO problem into a scheduling 

problem, a dynamic optimization problem and a unit time operation minimization problem. These problems 

are solved iteratively using back-off terms. Parametric uncertainty is modeled using statistical distribution 

functions and are embedded in the algorithm to ensure dynamic feasibility of the optimal control actions 

under stochastic realizations in those parameters. The proposed algorithm identifies scheduling and control 

decisions offline. To exemplify this methodology, the integration of scheduling and control of a flow-shop 

batch plant is considered. The results show that unit operation times chosen from optimization are better 

suited to accommodate stochastic parametric uncertainty while the control actions enforce process 

operational and product quality constraints at reasonable costs. 
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1. INTRODUCTION 

Traditionally, chemical processes are modeled and optimized 

as non-interactive problems for each of the decision layers, 

which often assume perfect (ideal) conditions of operation. 

While yielding economically attractive solutions for each 

decision layer, these solutions face multiple complications 

when implemented in real systems due to information 

mismatch, thus leading to suboptimal or infeasible solutions. 

To address this issue, methodologies for the integration of 

different decision layers have been reported (Dias and 

Ierapetritou, 2017; Pistikopoulos and Diangelakis, 2016; 

Rafiei and Ricardez-Sandoval, 2020). Those methods have 

shown to improve the performance of the studied systems with 

varying levels of success (Baldea and Harjunkoski, 2014; 

Engell and Harjunkoski, 2012; Koller and Ricardez-Sandoval, 

2017). However, simultaneous approaches are often set to 

solve complex Mixed-Integer Dynamic Optimization (MIDO) 

problems, which, after discretization, become large-scale 

Mixed-Integer Non-Linear Programming (MINLP) problems 

that may become computationally intractable due to model 

inflation and complexity. 

While scheduling aims to determine product sequences and 

production parameters for profit maximization, process 

control strategies aim to ensure the achievement of production 

goals during operation. A few approaches for integration of 

scheduling and control had already been proposed (Beal et al., 

2018; Koller et al., 2018; Zhuge and Ierapetritou, 2012). 

Typically, uncertainty in optimal scheduling and control is 

omitted or simplified by deterministic assumptions made in the 

modelling part to ease the computational efforts. Studies 

implementing stochastic parametric uncertainty has been 

conducted using a two-stage stochastic programming approach 

(Chu and You, 2013) and, within our research group, an earlier 

version of a back-off methodology (Valdez-Navarro and 

Ricardez-Sandoval, 2019). In the back-off approach, the key 

idea is to move away from a highly attractive economic 

(though infeasible) solution to another point that is still 

economically competitive but has the capacity to remain 

dynamically feasible under stochastic realizations in the 

uncertain parameters. The back-off methodology has been 

successfully implemented for the integration of design, 

scheduling and control under uncertainty for multi-product 

units (Koller et al., 2018) and for the integration of scheduling 

and control of a batch process (Valdez-Navarro and Ricardez-

Sandoval, 2019). In those previous back-off studies, 

processing times for each unit remained fixed, which may limit 

plant performance under uncertainty. 

In the present work a novel implementation for back-off terms 

is presented. The key novelty is the consideration of varying 

unit operation times directly affected by the back-off terms. 

Additionally, to better reflect the effect of the varying unit 

operations times in the scheduling problem, a continuous-time 

formulation is considered. Hence, a more economically 

attractive operation regime can be found by the formulation 

presented in this work. A case study featuring a flow-shop 

batch plant will be used to exemplify the benefits of the 

proposed decomposition framework. 

2. PROBLEM STATEMENT 

Consider a chemical flow-shop multi-unit multi-product batch 

plant composed of 𝑁𝑃𝑟 set of processes, 𝑁𝐸 set of equipment, 

and 𝑁𝑅 set of recipes. A chemical process is described by 𝑁𝑝 

mechanistic dynamic models (𝑓𝑝), 𝑁𝑞 inequality constraints 

(ℎ𝑞) and 𝑁𝑟 equality constraints (𝑘𝑟), which may include 



 

     

safety and operational constraints, affected by a set of 

parameters Ψ composed by deterministic parameters (𝜓𝑁𝑜𝑚) 

and random parameters (𝜓𝑈𝑛𝑐) characterized by probability 

distribution functions. The set 𝐶 has size 𝑁𝐶  and holds the cost 

information of raw materials, waste by-products and the price 

information of the products.  

The chemical batch plant operates under a finite timespan (𝐻), 

from an initial time 𝑡𝑠 to a final time 𝑡𝑓, and a finite optimal 

number of event points (𝐸). There is set of unit operation times 

(Τ), totaling 𝑁𝜏 elements, comprised of a subset for stationary 

processes (𝜏𝐹𝑖𝑥) and a subset for dynamic processes (𝜏𝐷𝑦𝑛).  

It is desired to optimize an economic function (𝑍𝑀𝐼𝐷𝑂) by 

finding an optimal scheduling plan (𝑆𝐶), optimal control 

profiles (𝑢) and unit operation times (𝜏𝐷𝑦𝑛), which under a set 

of uncertain (stochastic) parameters (𝜓𝑈𝑛𝑐), will hold dynamic 

feasibility of the flow-shop batch system. All these 

considerations result in the following MIDO problem: 

min
𝑢𝑗(𝑡),𝜏𝐷𝑦𝑛𝑗

,𝑠𝐶𝑒,𝑗

𝑍𝑀𝐼𝐷𝑂(𝑥(𝑡), 𝑢(𝑡), 𝜓, 𝑡, 𝑠𝐶(𝑒, 𝜏), 𝑐)    (1) 

𝑠. 𝑡.  

𝑓𝑝,𝑗(𝑥(𝑡), �̇�(𝑡), 𝑢(𝑡), 𝜓, 𝑡, 𝜏, 𝑠𝐶(𝑒, 𝜏)) = 0,   

∀ 𝑡, 𝑒 ∈ 𝐸, 𝑝 ∈ 𝑁𝑝, 𝑗 ∈ 𝑁𝐸  

ℎ𝑞,𝑗(𝑥(𝑡), �̇�(𝑡), 𝑢(𝑡), 𝜓, 𝑡, 𝜏, 𝑠𝐶(𝑒, 𝜏)) ≤ 0,   

∀ 𝑡, 𝑒 ∈ 𝐸, 𝑞 ∈ 𝑁𝑞 , 𝑗 ∈ 𝑁𝐸 

𝑘𝑟,𝑗(𝑥(𝑡), �̇�(𝑡), 𝑢(𝑡), 𝜓, 𝑡, 𝜏, 𝑠𝐶(𝑒, 𝜏)) = 0,   

∀ 𝑡, 𝑒 ∈ 𝐸, 𝑟 ∈ 𝑁𝑟 , 𝑗 ∈ 𝑁𝐸 

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑗(𝑡) ≤ 𝑢𝑚𝑎𝑥 , ∀ 𝑡, 𝑗 ∈ 𝑁𝐸𝑘
, 𝑘 ∈ 𝑁𝑃𝑟   

𝜏𝑚𝑖𝑛 ≤ 𝜏𝐷𝑦𝑛𝑗
≤ 𝜏𝑚𝑎𝑥 , ∀ 𝑒,   𝑗 ∈ 𝑁𝐸𝑘

, 𝑘 ∈ 𝑁𝑃𝑟    

𝑥 ∈ 𝑋 ⊆ ℝ1×𝑁𝑥×𝑁𝐸 , 𝑢 ∈ 𝑈 ⊆ ℝ1×𝑁𝑢×𝑁𝐸 , 𝑐 ∈ 𝐶 ⊆ ℝ1×𝑁𝐶   

𝜓𝑁𝑜𝑚 , 𝜓𝑈𝑛𝑐 ∈ 𝛹 ⊆ ℝ1×𝑁𝜓 , 𝜏𝐹𝑖𝑥 , 𝜏𝐷𝑦𝑛 ∈ 𝛵 ⊆ ℝ1×𝑁𝜏  

𝑠𝐶 𝑒,𝑗
∈ {0,1}, ∀ 𝑒 ∈ 𝐸, 𝑗 ∈ 𝑁𝐸𝑘

, 𝑘 ∈ 𝑁𝑃𝑟  

𝑡 ∈ [𝑡𝑠, 𝑡𝑓], 𝐻 = 𝑡𝑓 − 𝑡𝑠  

In problem (1), 𝑓𝑝 usually represents the differential-algebraic 

equations (DAEs) that describe the model of a process 𝑝, 𝑥(𝑡) 

represents the states of the system, 𝑢𝑗(𝑡) represents the control 

variables required for unit 𝑗, 𝜏𝐷𝑦𝑛,𝑗  represents the unit 

operation time of unit 𝑗, 𝑠𝐶(𝑒, 𝜏) represents the set of integer 

and continuous decisions that specify the production schedule 

for the batch plant at event 𝑒. 𝑁𝑥, 𝑁𝑢 & 𝑁𝜓, are the set of 

system states, the set of control variables and the set of system 

parameters, respectively. 

Problem (1) can be casted as an infinite-dimensional stochastic 

MIDO problem, which is quite difficult to solve explicitly. 

Often, Problem (1) is reformulated as an MINLP by 

discretizing the differential equations. Due to the complex 

nature of such problems and the need of vast computational 

resources for their resolution, a decomposition method is 

proposed in this work. Thus, Problem (1) is reformulated as an 

scheduling problem, a dynamic optimization problem, Monte 

Carlo simulations and a dynamic unit time operation 

optimization problem. The resulting set of problems are solved 

iteratively using a back-off approach that was previously 

introduced by Koller and Ricardez-Sandoval (2017) and 

Valdez-Navarro and Ricardez-Sandoval (2019). The back-off 

approach introduces back-off terms that represent the 

variability of the system under the effect of random 

(stochastic) realizations in the uncertain parameters. The 

method makes use of the back-off terms to drive the system to 

a new feasible and attractive economic solution that can 

accommodate uncertainty. One limitation in previous back-off 

implementations is that unit operation times remained fixed 

during the calculations, which may lead to sub-optimal 

solutions since the back-off effect due to parameter uncertainty 

was not considered in allocation of the unit processing times.  

3. METHODOLOGY 

The key novelty of the present algorithm consists in the 

propagation of the variability observed in the controlled 

variables due to parametric uncertainty to the unit processing 

times, thus yielding scheduling and control decisions that will 

be less sensitive to stochastic parametric uncertainty. Hence, 

this approach will specify scheduling and control decisions, 

that combined with optimal unit operation times, results in 

dynamically feasible and economically attractive viable 

solutions (𝑍𝑀𝐼𝐷𝑂
∗ ). An illustration of the algorithm is shown in 

Figure 1. Each step of the algorithm is explained next.  

 
Figure 1. Proposed decomposition back-off algorithm. 

3.1 Initialization 

The sets Τ and Ψ must be initialized; also, initial values are 

needed for the specification of the State-Task Network (STN) 

for the scheduling problem (i.e. 𝐸, 𝐻, 𝜌0, 𝑃, 𝐶0). Moreover, it 

is necessary to define the probabilistic distribution function 

(PDF) and their corresponding parameters (𝜂) that will 

describe each parameter conforming 𝜓𝑈𝑛𝑐 (i.e. for an element 

𝑤: 𝜓𝑈𝑛𝑐𝑤
= 𝑃𝐷𝐹𝑤(𝜂𝑤). These data can be obtained from 

Dynamic Cost Optimization Problem 

(Problem (3)) 

Scheduling Problem (Problem (2)) 

Initialization 

Stochastic Simulations (Problem (4)) 

Back-off Term Calculation  

(Equation (6)) 

(Criterion (5))? 

 

(Criterion (8))? 

Unit Time Operation Optimization 

(Problem (7)) 

Optimal Solution 

Τ, Ψ, 𝜆, 𝑆𝑇𝑁, 𝑇𝑜𝑙′𝑠  

𝜆, 𝜏𝑖 , 𝜓𝑆𝑐ℎ𝑖
, 𝜓𝑁𝑜𝑚 , 𝑏𝑖,𝑗,𝑞,𝑡  

 𝜏𝑖 , 𝜓𝑆𝑐ℎ𝑖
, 𝜓𝑈𝑛𝑐 , 𝑢𝐷𝑦𝑛,𝑖,𝑗  

 𝑏𝑖,𝑗,𝑞,𝑡 , 𝑏𝑖+1,𝑗,𝑞,𝑡  

𝜁𝑖,𝑗,𝑞,𝑡,𝑛, 𝑚  

 𝑚+= 1,  
𝑏𝑖,𝑗,𝑞,𝑡  

 𝑖+= 1,  
𝜏𝑖+1,  
𝑏𝑖+1,𝑗,𝑞,𝑡  

 𝜆, 𝜏𝑖 , 𝜓𝑆𝑐ℎ𝑖
, 𝜓𝑁𝑜𝑚 , 𝑏𝑖+1,𝑗,𝑞,𝑡  

 𝜏𝑖 , 𝜏𝑖+1  

𝜏𝑖+1, 𝜓𝑆𝑐ℎ𝑖
, 𝑢𝐷𝑦𝑛,𝑖,𝑗, 𝑏𝑖+1,𝑗,𝑞,𝑡  
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process heuristics or from historical data. Tolerance criteria 

(𝑇𝑜𝑙𝑆𝑆 & 𝑇𝑜𝑙𝐵𝑂) are also required for initialization. The 

iteration index for the algorithm is also set, i.e. 𝑖 = 0. 

3.2 Scheduling Problem 

A continuous-time formulation and a State-Task Network 

(STN) are used in this work for the reformulation of the 

scheduling problem shown in Problem (1). A continuous-time 

formulation allows for a variable partition of time and the 

allocation of processes of varying time lengths while, in 

general, lowering computational costs compared to a uniform 

discrete-time approach (Floudas and Lin, 2004). STN 

representations are preferred because of their ability to 

describe multiproduct-multipurpose chemical batch chemical 

plants and their lack of ambiguity (Floudas and Lin, 2004). 

The continuous-time scheduling formulation is represented by 

the following MILP problem: 

max
𝑊𝑖,𝑘,𝑒,𝑌𝑖,𝑗,𝑒

𝑍𝑆𝑐ℎ(𝑐𝑖,𝑘,𝑗, 𝑝𝑠, 𝜌𝑖,𝑘,𝑠
𝑖𝑛 , 𝜌𝑖,𝑘,𝑠

𝑜𝑢𝑡 , 𝑑𝑖,𝑠,𝑒 , 𝐸𝑖 , 𝐻)    (2) 

𝑠. 𝑡.   

∑ 𝑊𝑖,𝑘,𝑒 ≤ 𝑌𝑖,𝑗,𝑒
 
𝑘∈𝑁𝑃𝑟𝑗

, ∀ 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (2a) 

𝑊𝑖,𝑘,𝑒𝐵𝑀𝑖𝑛𝑘,𝑗
≤ 𝐵𝑖,𝑘,𝑗,𝑒 ≤ 𝑊𝑖,𝑘,𝑒𝐵𝑀𝑎𝑥 𝑘,𝑗

  (2b) 

∀ 𝑘 ∈ 𝑁𝑃𝑟 , 𝑗 ∈ 𝑁𝐸𝑘
, 𝑒 ∈ 𝐸  

𝑆𝑇𝑖,𝑠,𝑒 = 𝑆𝑇𝑖,𝑠,𝑒−1 − 𝑑𝑖,𝑠,𝑒  

                + ∑ 𝜌𝑖,𝑘,𝑠
𝑂𝑢𝑡 ∑ 𝐵𝑖,𝑘,𝑗,𝑒−1

 
𝑗∈𝑁𝐸𝑘

 
𝑘∈𝑁𝑃𝑟𝑠

        

                − ∑ 𝜌𝑖,𝑘,𝑠
𝐼𝑛 ∑ 𝐵𝑖,𝑘,𝑗,𝑒

 
𝑗∈𝑁𝐸𝑘

 
𝑘∈𝑁𝑃𝑟𝑠

,  

(2c) 

∀ 𝑠 ∈ 𝑆, 𝑒 ∈ 𝐸  

𝑆𝑇𝑖,𝑠,𝑒 ≤ 𝑂𝑠, ∀ 𝑠 ∈ 𝑆, 𝑒 ∈ 𝐸 (2d) 

𝑄𝑖,𝑗,𝑒 = 𝑄𝑖,𝑗,𝑒−1 + ∑ 𝐵𝑖,𝑘,𝑗,𝑒
 
𝑘∈𝑁𝑃𝑟𝑗

  

                − ∑ ∑ 𝜌𝑖,𝑘,𝑠
𝑜𝑢𝑡 𝐵𝑖,𝑘,𝑗,𝑒−1

 
𝑠∈𝑆𝑘

𝑜𝑢𝑡
 
𝑘∈𝑁𝑃𝑟𝑗

,  

𝑄𝑖,𝑗,𝑒𝑓
= 0, ∀ 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  

(2e) 

∑ 𝑑𝑖,𝑠,𝑒
 
𝑒∈𝐸 ≥ 𝑟𝑠   ∀ 𝑠 ∈ 𝑆  (2f) 

𝑇𝑖,𝑘,𝑗,𝑒
𝐹 = 𝑇𝑖,𝑘,𝑗,𝑒

𝑆 + 𝜏𝑖,𝑘𝑊𝑖,𝑘,𝑒 , ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸 ,

𝑒 ∈ 𝐸  

(2g) 

𝑇𝑖,𝑘,𝑗,𝑒
𝐹 ≥ 𝑇𝑖,𝑘,𝑗,𝑒

𝑆 , ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (2h) 

𝑇𝑖,𝑘,𝑗,𝑒+1
𝑆 ≥ 𝑇𝑖,𝑘,𝑗,𝑒

𝐹 , ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (2i) 

𝑇𝑖,𝑘,𝑗,𝑒+1
𝐹 ≥ 𝑇𝑖,𝑘,𝑗,𝑒

𝐹 , ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (2j) 

𝑇𝑖,𝑘,𝑗,𝑒+1
𝑆 ≥ 𝑇𝑖,𝑘,𝑗,𝑒

𝑆 , ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (2k) 

𝑇𝑖,𝑘,𝑗,𝑒
𝐹 ≤ 𝐻, ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗

, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (2l) 

𝑇𝑖,𝑘,𝑗,𝑒
𝑆 ≤ 𝐻, ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗

, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (2m) 

𝑇𝑖,𝑘,𝑗,𝑒𝑓

𝐹 = 𝐻, ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸 , 𝑒 ∈ 𝐸  (2n) 

𝑇𝑖,𝑘,𝑗,𝑒+1
𝑆 ≥ 𝑇𝑖,𝑙,𝑗,𝑒

𝐹 − 𝐻(1 − 𝑊𝑖,𝑙,𝑒)  (2o) 

∀ 𝑗 ∈ 𝑁𝐸 , 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑙 ∈ 𝑁𝑃𝑟𝑗

, 𝑘 ≠ 𝑙, 𝑒 ∈ 𝐸, 𝑒 ≠ 𝑒𝑓  

𝑤ℎ𝑒𝑟𝑒   

𝑐𝑖,𝑘,𝑗 ∈ 𝐶𝑖, ∀ 𝑘 ∈ 𝑁𝑃𝑟𝑗
, 𝑗 ∈ 𝑁𝐸  

𝑝𝑠 ∈ 𝑃, 𝑟𝑠 ∈ 𝑅, ∀ 𝑠 ∈ 𝑆  
𝜌𝑖,𝑘,𝑠 ∈ 𝜌𝑖 , ∀ 𝑘 ∈ 𝑁𝑃𝑟 , 𝑠 ∈ 𝑆  

 

In Problem (2) the objective is to maximize the profit from 

producing a variety of products by implementing their recipes. 

Note that other objective functions can be implemented. 𝑐𝑖,𝑘,𝑗 

represents the cost of task 𝑘 in unit 𝑗 at the 𝑖𝑡ℎ iteration, 𝑃𝑠 is 

the sale price of state 𝑠, 𝐸 is the number of event points. Eq. 

(2a) represents the allocation constraints where 𝑊𝑖,𝑘,𝑒 is set to 

zero unless task 𝑘 at event 𝑒 is taking place in unit 𝑗 at the 𝑖𝑡ℎ 

iteration, also, this constraint  depends on the value of 𝑌𝑖,𝑗,𝑒, 

which represents the assignment of unit 𝑗 at event 𝑒 at the 𝑖𝑡ℎ 

iteration (with a value of 1). Eq. (2b) represents the capacity 

constraint, where 𝐵𝑖,𝑘,𝑗,𝑒  is the material holdup of unit 𝑗 while 

processing task 𝑘 at event 𝑒.. Eq. (2c) represents the state 

material balances. 𝑆𝑇𝑖,𝑠,𝑒 is the total quantity of state 𝑠 at event 

𝑒 whereas 𝜌𝑖,𝑘,𝑠
𝐼𝑛  and 𝜌𝑖,𝑘,𝑠

𝑂𝑢𝑡  represent the proportion of state 𝑠 

that is consumed or produced by task 𝑘, respectively. Eq. (2d) 

ensures that the quantity produced by each state is not greater 

than its capacity 𝑂𝑠. Eq. (2e) is the material balance inside each 

unit 𝑗 with the condition that at the end of the last event 𝑒𝑓, 

must be equal to zero as all units must be emptied (no 

remaining material inside the processing units is allowed). Eq. 

(2f) represents the market demand constraints, where 𝑟𝑠 is the 

total demand of state 𝑠 and 𝑑𝑖,𝑠,𝑒 is the demand satisfied of such 

state at event 𝑒. Eq. (2g) to Eq. (2n) are time logic constraints, 

i.e. they represent the time at which a task 𝑘 starts to take place 

at unit 𝑗 and in which event 𝑒 takes place; they also enforce 

that no unit can be operated beyond the time horizon 𝐻. Eq. 

(2o) ensures the consecutiveness in the occurrence of two tasks 

sharing the same unit. Note that in problem (2), the parameters 

in the sets 𝐶𝑖 and 𝜌𝑖 change at each iteration 𝑖 in accordance 

with the information gathered from the previous iteration(s).  

3.3 Dynamic Cost Optimization Problem 

The set of scheduling decisions 𝛽𝑆𝑐ℎ𝑖
 (𝑊𝑖,𝑘,𝑒 and 𝑌𝑖,𝑗,𝑒) can be 

obtained from the solution of Problem (2) (𝑍𝑆𝑐ℎ
∗

𝑖
). This 

represents the key inputs required for the formulation of a 

dynamic cost optimization problem. In particular, the 

nonlinear dynamic optimization Problem (3) aims to find the 

control actions 𝑢𝑖,𝑗,𝑡 for each unit 𝑗 at time 𝑡 in the 𝑖𝑡ℎ iteration 

that maximize the profit and is subjected to the scheduling 

decisions 𝛽𝑆𝑐ℎ𝑖
 found from Problem (2), i.e. 

max
𝑢𝑖,𝑗,𝑡

𝑍𝐷𝑦𝑛(𝑥(𝑡), �̇�(𝑡), 𝑢(𝑡), Ψ, 𝑡, 𝜏𝑖 , 𝐶𝑖)    (3) 

𝑠. 𝑡.   

𝑓𝑝,𝑗(𝑥(𝑡), �̇�(𝑡), 𝑢(𝑡), 𝛽𝑆𝑐ℎ𝑖
, 𝜓𝑁𝑜𝑚 , 𝑡, 𝜏𝑖,) = 0,    

∀ 𝑡, 𝑝 ∈ 𝑁𝑝, 𝑗 ∈ 𝑁𝐸 

(3a) 

ℎ𝑞,𝑗(𝑥(𝑡), �̇�(𝑡), 𝑢(𝑡), 𝛽𝑆𝑐ℎ𝑖
, 𝜓𝑁𝑜𝑚 , 𝑡, 𝜏𝑖)  

±𝜆𝑏𝑖−1,𝑗,𝑞,𝑡 ≤ 0, ∀ 𝑡, 𝑞 ∈ 𝑁𝑞 , 𝑗 ∈ 𝑁𝐸  

(3b) 

where  

𝜓𝑁𝑜𝑚 ∈ Ψ, τi ∈ Τ   

In Problem (3), the back-off terms 𝑏𝑖,𝑗,𝑞,𝑡 represent the 

deviation of system from the nominal point under  realizations 

in uncertain model parameters at the inequality constraint 𝑞 of 

unit 𝑗 at time 𝑡 at the 𝑖𝑡ℎ iteration. More details about the back-

off terms is provided in subsection 3.5. Consideration of the 

back-off terms in Eq. (3b) forces the system to find control 

decisions that will account for this back-off while ensuring 

dynamic feasibility. Note that back-off terms at the initial 

iteration (𝑖 = 0) have a value equal to zero. As shown in Eq. 

(3b), the back-off terms are preceded by a multiplier-factor 𝜆, 

which can be thought as the level confidence given to each of 

the back-off terms. Note that Valdez-Navarro and Ricardez-

Sandoval (2019) studied in a previous work the effects of 

choosing the value of the 𝜆 multiplier. 



 

     

3.4 Stochastic Simulations 

Let 𝑍𝐷𝑦𝑚
∗

𝑖
 be the solution obtained from Problem (3) and 

𝑢𝐷𝑦𝑛𝑖,𝑗
  the corresponding optimal control profiles obtained 

under the effect of back-off terms identified from the previous 

iteration. Hence, such control actions are not guaranteed to 

remain feasible under uncertainty.  

In this step, the resilience of 𝑢𝐷𝑦𝑛𝑖,𝑗
 to drive the system to 

feasible solutions is evaluated under a set of 𝑛 stochastic 

realizations in the uncertain parameters (𝜓𝑈𝑛𝑐 𝑖,𝑛
), i.e. the value 

of 𝜓𝑈𝑛𝑐 changes at each realization 𝑛. The realization in 𝜓𝑈𝑛𝑐 

are taken from their corresponding probability function (PDF) 

for each uncertain parameter and specified in the initialization 

step. This step is needed to generate statistical data that will 

allow for the recalculation of back-off terms at the current 

iteration. The problem under consideration is as follows: 

𝑚𝑎𝑥  𝜁𝑖,𝑗,𝑞,𝑡,𝑛 = ℎ𝑞,𝑗,𝑛 (𝑥(𝑡), �̇�(𝑡), 𝑢𝐷𝑦𝑛𝑖
, 𝜓𝑈𝑛𝑐𝑖,𝑛

, 𝑡, 𝜏𝑖,)  (4) 

𝑠. 𝑡.   

𝑓𝑝,𝑗,𝑛 (𝑥(𝑡), �̇�(𝑡), 𝑢𝐷𝑦𝑛𝑖
, 𝜓𝑈𝑛𝑐 𝑖,𝑛

, 𝑡, 𝜏𝑖,) = 0,   

∀ 𝑡, 𝑝 ∈ 𝑁𝑝, 𝑗 ∈ 𝑁𝐸 

(4a) 

where  

𝜓𝑈𝑛𝑐𝑖,𝑛
∈ Ψ, τi ∈ Τ   

The considerations required for Problem (4) are as follows: i) 

only the mechanistic models (𝑓𝑝,𝑗,𝑛) are enforced; ii) control 

variables (𝑢𝐷𝑦𝑛𝑖,𝑗
) remain fixated; iii) only the feasibility of 

the system is assessed under different realizations in the 

uncertain parameters; iv) each uncertain parameter in 𝜓𝑈𝑛𝑐𝑖,𝑛
 

is described by a PDF, thus, the values used while solving 

Problem (4) are selected from Monte Carlo (MC) sampling 

techniques. Problem (4) is solved 𝑁𝑀𝐶  times, which is the total 

of stochastic realizations considered. 𝑁𝑀𝐶  is unknown a priori 

as problem (4) has to be solved in batches of 𝑛 realizations of 

𝜓𝑈𝑛𝑐𝑖,𝑛
 until a user-defined criterion is met. 

Criterion (5) quantifies the deviations in the back-off term 

between the 𝑚𝑡ℎ and 𝑚 − 1𝑡ℎ data populations. Note that each 

population 𝑚 is composed of 𝑛 ∗ 𝑚 realizations in the 

uncertain parameters. This criterion makes this step repeat 

until the errors between the back-off terms in the actual data 

set (i.e. population 𝑚) and the previous data collected (i.e. 

population 𝑚 − 1) is below a user defined tolerance. Note that 

population 𝑚 includes the information of previous populations 

and that 𝑁𝑀𝐶  is equal to the number of data points in the last 

𝑚𝑡ℎ population. Also, note that Criterion (5) can only be 

enforced when 𝑚 ≥ 2 and that such criterion must be satisfied 

by all 𝑞 constraints. The specific procedure to estimate the 

back-off terms shown in Criterion (5) is presented in 

subsection 3.5.  

|1 − 𝑏𝑖,𝑗,𝑞,𝑡,𝑚−1/𝑏𝑖,𝑗,𝑞,𝑡,𝑚| ≤ 𝑇𝑜𝑙𝑆𝑆    (5) 

∀ t, j ∈ 𝑁𝐸 , q ∈ 𝑁𝑞  

3.5 Back-Off Term Calculation 

A back-off term (𝑏𝑖,𝑗,𝑞,𝑡) is the representation of the deviation 

in the 𝑞𝑡ℎ constraint function (𝜁𝑖,𝑗,𝑞,𝑡,𝑛) at a time 𝑡 for a unit 𝑗 

at the 𝑖𝑡ℎ iteration for each stochastic simulation 𝑛 in the 

uncertain parameters. The introduction of 𝑏𝑖,𝑗,𝑞,𝑡 into 

constraints ℎ𝑞 is to search for a solution capable of 

accommodating uncertainty, backed off from the optimal 

solution at nominal model parameters (Koller et al., 2018). 

Note that there is back-off term for each inequality 𝑞 at each 

time point 𝑡, i.e.  

𝑏𝑖+1,𝑗,𝑞,𝑡

= √
1

𝑁𝑀𝐶

∑ [𝜁𝑖,𝑗,𝑞,𝑡,𝑛 −
1

𝑁𝑀𝐶

∑ 𝜁𝑖,𝑗,𝑞,𝑡,𝑛

𝑁𝑀𝐶

𝑛=1

 ]

2𝑁𝑀𝐶

𝑛=1

 

(6) 

∀  j ∈ NE𝑖,𝑞
,   q ∈ 𝑁𝑞𝑖

,   𝑡 ∈ [0,1]  

Eq (6) represents the calculation of the normal standard 

deviation for discrete random variables, which is used for the 

calculation of the back-off terms in this work. Eq (6) may vary 

correspondingly to the statistical distribution of  𝜁𝑖,𝑗,𝑞,𝑡,𝑛. Note 

that it is Eq. (6) that is used to calculate the back-off terms at 

each 𝑚 population in the procedure described in subsection 

3.4. Also, note that the iteration index 𝑖 has been updated in 

Eq. (6) to indicate that these back-off terms have been updated 

and may be used in subsequent calculations. In this work, it is 

assumed that the data used for the back-off terms calculation, 

𝜁𝑖,𝑗,𝑞,𝑡,𝑛, follows a statistical distribution that can be 

approximated to a normal distribution. 

3.6 Unit Operation Times Optimization Problem 

Since the back-off terms represent the degree of variability that 

the constraints need to accommodate using an optimal control 

profile, in this step, such variability is used to determine the 

optimal operation times for each unit 𝑗. Problem (7) is set to 

determine the minimum time required for each unit to achieve 

their corresponding production goals under parameter 

uncertainty, which is expressed through the back-off terms. 

min
𝜏𝐷𝑦𝑛𝑖+1,𝑗

𝑍𝑈𝑂𝑇(𝑥(𝑡), �̇�(𝑡), 𝑢(𝑡), Ψ, 𝑡, 𝜏𝑖+1, 𝐶𝑖)  (7) 

𝑠. 𝑡.   

𝑓𝑝 (𝑥(𝑡), �̇�(𝑡), 𝑢(𝑡), 𝛽𝑆𝑐ℎ𝑖
, 𝜓𝑁𝑜𝑚 , 𝑡, 𝜏𝐷𝑦𝑛𝑖+1,𝑗

) = 0,   (7a) 

∀ 𝑡, 𝑝 ∈ 𝑁𝑝𝑖
  

ℎ𝑞 (𝑥(𝑡), �̇�(𝑡), 𝑢(𝑡), 𝛽𝑆𝑐ℎ𝑖
, 𝜓𝑁𝑜𝑚 , 𝑡, 𝜏𝐷𝑦𝑛𝑖+1,𝑗

)  

±𝜆𝑏𝑖+1,𝑗,𝑞,𝑡 ≤ 0, ∀ 𝑡,   𝑗 ∈ 𝑁𝐸𝑖
,   𝑞 ∈ 𝑁𝑞𝑖

 

(7b) 

𝜏𝑀𝑖𝑛𝑗
≤ 𝜏𝐷𝑦𝑛𝑖+1,𝑗

≤ 𝜏𝑀𝑎𝑥𝑗
, 𝜏𝐷𝑦𝑛𝑖+1,𝑗

∈ 𝜏𝑖+1,

∀  𝑗 ∈ 𝑁𝐸𝑖
  

 

𝑤ℎ𝑒𝑟𝑒   

 𝜓𝑁𝑜𝑚 ∈ Ψ, 𝜏𝑖+1 ∈ Τ   

Let 𝑍𝑈𝑂𝑇
∗

𝑖
 be the solution for problem (7), then 𝜏𝑖+1 =

{𝜏𝐷𝑦𝑛𝑖+1
, 𝜏𝑁𝑜𝑚} is the set of all the unit operation times 

(𝜏𝑖+1 ∈ 𝑍𝑈𝑂𝑇
∗

𝑖
) under model parameter uncertainty. Once the 

optimization of the unit operation time has been performed, the 

variation between the back of terms used in the 𝑖𝑡ℎ iteration 

(𝑏𝑖,𝑗,𝑞,𝑡), and those calculated in the current iteration (𝑏𝑖+1,𝑗,𝑞,𝑡) 

is set as the criterion that will terminate the algorithm if such 

deviation is lesser than a user-defined tolerance (𝑇𝑜𝑙𝐵𝑂); 



 

     

otherwise, the algorithm proceeds with the next iteration, as 

shown in Figure 1. This criterion is defined as follows: 

|1 − 𝑏𝑖−1,𝑗,𝑞,𝑡/𝑏𝑖,j,q,t| ≤ 𝑇𝑜𝑙𝐵𝑂 ,  

∀ t, j ∈ 𝑁𝐸 , q ∈ 𝑁𝑞 

(8) 

If Criterion (8) is met, a solution 𝑍∗ that is composed by the 

control decisions 𝑢𝐷𝑦𝑛, unit operation times 𝜏𝐷𝑦𝑛 and process 

scheduling decisions 𝛽𝑆𝑐ℎ, that accommodates the variability 

in the uncertain model parameters (𝜓𝑈𝑛𝑐), has been found. 

4. CASE STUDY 

 
Figure 2. Case Study Process Scheme. 

A modified version of the chemical batch plant presented by 

Chu and You (2013) has been used to test the performance of 

the proposed back-off algorithm. As shown in Figure 2, the 

chemical batch plant consists of 4 batch processes: a set of 

chemical reactions I (𝑅𝐼), a filtration process (𝐹𝐼), a set of 

chemical reactions II (𝑅𝐼𝐼) and a separation process (𝑆𝐼), i.e. 

𝑁𝑃𝑟 = {𝑅𝐼, 𝑅𝐼𝐼, 𝐹𝐼, 𝑆𝐼}. The time horizon (𝐻) of operation for 

this plant has been set to 13 h. To simplify the analysis, one 

unit for each process has been considered, though multiple 

units for each process could be considered. The general 

process consists on substance A being transformed into 

product B in process 𝑅𝐼, while the temperature of the reactor 

is controlled. Then, the mixture containing substance B is 

purified in process 𝐹𝐼. Substance B is then stored in the reactor 

where process 𝑅𝐼𝐼 and D is fed in a controlled fashion to obtain 

product E. In 𝑆𝐼, the mix containing species B and E (desired 

product) is separated from the mix of D and F. Process 𝐹𝐼 and 

𝑆𝐼 are stationary and assumed to achieve perfect separation 

whereas 𝑅𝐼 and 𝑅𝐼𝐼 are time dependent processes; thus, their 

corresponding unit operation times (𝜏𝐷𝑦𝑛
𝑅𝐼  & 𝜏𝐷𝑦𝑛

𝑅𝐼𝐼 ) will be 

obtained from optimization. The following set of equations 

describe the dynamic process RI: 

𝐴
𝑟1
→ 𝐵

𝑟2
→ 𝐶  (9) 

𝑑𝐶𝐴

𝑑𝑡
= −𝑟1,

𝑑𝐶𝐵

𝑑𝑡
= 𝑟1 − 𝑟2   

𝑑𝑇𝑅

𝑑𝑡
= −

∆𝐻1𝑟1+∆𝐻2𝑟2

𝜌𝑅𝑐𝑅
+

𝑈𝐴𝑗(𝑇𝐽−𝑇𝑅)

𝑉𝑅𝜌𝑅𝑐𝑅
   

𝑑𝑇𝐽

𝑑𝑡
=

𝐹𝐻𝑜𝑡(𝑇𝐻𝑜𝑡−𝑇𝐽)

𝑉𝐽
+

𝐹𝐶𝑜𝑙𝑑(𝑇𝐶𝑜𝑙𝑑−𝑇𝐽)

𝑉𝐽
 +

𝑈𝐴𝑗(𝑇𝑅−𝑇𝐽)

𝑉𝑅𝜌𝑅𝑐𝑅
  

 

𝑟1 = 𝑘1𝑒−𝐸1/𝑇𝑅𝐶𝐴, 𝑟2 = 𝑘2𝑒−𝐸2/𝑇𝑅𝐶𝐵   

𝐶𝐴(0) = 𝐶𝐴0
, 𝐶𝐵(0) = 𝐶𝐵0

,   

𝑇𝑅(0) = 𝑇𝑅0
, 𝑇𝐽(0) = 𝑇𝐽0

  

 

𝐶𝐵(𝑡𝑓) ≥ 𝐶𝐵𝐹𝑖𝑥
, 𝑇𝑅(𝑡𝑓) ≤ 𝑇𝑅 𝐹𝑖𝑥

   

𝑢(𝑡) = [𝐹𝐻𝑜𝑡  𝐹𝐶𝑜𝑙𝑑]   

Similarly, for process 𝑅𝐼𝐼: 

𝐵 + 𝐷
𝑟3
→ 𝐸, 2𝐷

𝑟4
→ 𝐹  (10) 

𝑑𝑉𝑅

𝑑𝑡
= 𝐹𝐹𝑒𝑒𝑑    

𝑑𝐶𝐵

𝑑𝑡
= −𝑟3 −

𝐹𝐹𝑒𝑒𝑑

𝑉𝑅
𝐶𝐵   

𝑑𝐶𝐷

𝑑𝑡
= −𝑟3 − 2𝑟4 +

𝐹𝐹𝑒𝑒𝑑

𝑉𝑅
(𝐶𝐷𝐹𝑒𝑒𝑑

− 𝐶𝐷)   

𝑑𝐶𝐸

𝑑𝑡
= 𝑟3 −

𝐹𝐹𝑒𝑒𝑑

𝑉𝑅
𝐶𝐸   

𝑑𝐶𝐹

𝑑𝑡
= 𝑟3 −

𝐹𝐹𝑒𝑒𝑑

𝑉𝑅
𝐶𝐹   

𝑟3 = 𝑘3𝐶𝐵𝐶𝐷, 𝑟4 = 𝑘4𝐶𝐷
2   

𝑉𝑅(0) = 𝑉𝑅0
, 𝐶𝐴(0) = 𝐶𝐴0

,   

𝐶𝐵(0) = 𝐶𝐵𝑅𝐼
, 𝐶𝐶(0) = 𝐶𝐶0

,  

 

𝑉𝑅(𝑡𝑓)𝐶𝐸(𝑡𝑓) ≥ 𝑉𝐹𝑖𝑥𝐶𝐸𝐹𝑖𝑥
, 𝑉𝑅(𝑡𝑓) ≤ 𝑉𝑅𝐹𝑖𝑥

  

𝑉𝑅(𝑡𝑓)𝐶𝐹(𝑡𝑓) ≤ 𝑉𝐹𝑖𝑥𝐶𝐹𝐹𝑖𝑥
  

 

𝑢(𝑡) = [𝐹𝐹𝑒𝑒𝑑]   

Table 1 list key parameters and variables used for this case 

study; the rest of the parameters can be found in Chu and You 

(2013). This work assumes that 𝑘𝐴𝐵 and 𝑘𝐵𝐶  follow a normal 

distribution with expected value as shown in Table 1 and with 

a standard deviation equivalent to 5% of their expected values. 

Table 1. Process Parameters and Variables. 

Variable Name Value Description 

𝐸𝐴→𝐵  [𝐾] 4500 Activation Energy 

𝐸𝐵→𝐶  [𝐾] 8250 Activation Energy 

𝑝𝐹 𝐶𝑜𝑜𝑙
 [𝑚. 𝑢/𝑚3] 0.5 Aux. Serv. Price 

𝑝𝐹 𝐻𝑜𝑡
 [𝑚. 𝑢/𝑚3] 0.5 Aux. Serv. Price 

𝑝𝐹𝐹𝑒𝑒𝑑
[𝑚. 𝑢./𝑘𝑚𝑜𝑙] 50 Raw Feed Price 

𝑝𝐴[𝑚. 𝑢./𝑘𝑚𝑜𝑙] 100 Raw Material Price 

𝑝𝑊𝑎𝑠𝑡𝑒[𝑚. 𝑢./𝑘𝑚𝑜𝑙] 1000 Waste Cost 

𝑝𝑃𝑢𝑟𝑒[𝑚. 𝑢./𝑘𝑚𝑜𝑙] 10000 Product Price 

𝑝𝐼𝑚𝑝𝑢𝑟𝑒[𝑚. 𝑢./𝑘𝑚𝑜𝑙] 1000 Sub-product Cost 

𝐶𝐷𝐹𝑒𝑒𝑑
 [𝑘𝑚𝑜𝑙/𝑚3] 10 Feed Concentration 

𝐶𝐹𝐹𝑖𝑥
 [𝑘𝑚𝑜𝑙/𝑚3] 0.15 Final Concentration 

𝑘𝐴𝐵  [ℎ−1] 1E7 Kinetic Velocity 

𝑘𝐵𝐶  [ℎ−1] 1E10 Kinetic Velocity 

𝜆 2 Confidence 

The profit function for problem (3), i.e. the dynamic 

optimization problem, is as follows: 𝑍𝐷𝑦𝑛 =  ∑ ∑ 𝑐𝑘,𝑗
𝑁𝐸𝑘
𝑗

𝑁𝑃𝑟 
𝑘 . 

This function involves the cost of auxiliary services for 𝑅𝐼 

(−𝑐𝑅𝐼 = 𝑝𝐹 𝐻𝑜𝑡 ∫ 𝐹𝐻𝑜𝑡(𝑡)𝑑𝑡
𝜏𝐷𝑦𝑛

𝑅𝐼

0
+ 𝑝𝐹 𝐶𝑜𝑜𝑙 ∫ 𝐹𝐶𝑜𝑜𝑙(𝑡)𝑑𝑡

𝜏𝐷𝑦𝑛
𝑅𝐼

0
), 

the cost for raw species A at the beginning of process 𝑅𝐼 

(−𝑐𝐴𝑅𝐼
= 𝑝𝐴𝐶𝐴(𝑡)|𝑡=0), the cost for the waste generated in 𝐹𝐼 

(−𝑐𝐹𝐼 = 𝑝𝑊𝑎𝑠𝑡𝑒(𝐶𝐴(𝑡) + 𝐶𝐶(𝑡))|
𝑡=𝜏𝐷𝑦𝑛

𝑅𝐼 ), the cost for species 

D fed into process 𝑅𝐼𝐼 (−𝑐𝑅𝐼𝐼 = 𝑝𝐹 𝐹𝑒𝑒𝑑
𝑉𝑅(𝑡)𝐶𝐹(𝑡)|

𝑡=𝜏𝐷𝑦𝑛
𝑅𝐼𝐼 ), 

the revenues for the mixture of D and F (𝑐𝑆𝐼1
= 𝑝𝑃𝑢𝑟𝑒(𝐶𝐷(𝑡) +

𝐶𝐹(𝑡))|
𝑡=𝜏𝐷𝑦𝑛

𝑅𝐼𝐼 ), and the cost for the mixture of B and E in 

process 𝑆𝐼 (−𝑠𝑆𝐼2
= 𝑝𝐼𝑚𝑝𝑢𝑟𝑒(𝐶𝐵(𝑡) + 𝐶𝐸(𝑡))|

𝑡=𝜏𝐷𝑦𝑛
𝑅𝐼𝐼 ). The 

profit function used in the scheduling problem (2) (𝑍𝑆𝑐ℎ =
𝑐𝑆𝑇 + 𝑐𝑂𝑝) involves the costs associated with the operation 

(𝑐𝑘,𝑗) of unit 𝑗 to realize task 𝑘 at event 𝑒 (𝑐𝑂𝑝 =

− ∑ ∑ ∑ 𝑊𝑘,𝑒𝜏𝑗𝑐𝑘,𝑗
𝑁𝐸𝑘
𝑗

𝑁𝑃𝑟
𝑘

𝐸
𝑒 ) and the cost/revenue of the 

material generated/consumed (𝑐𝑆𝑇 = ∑ ∑ 𝑑𝑠,𝑒
𝑆
𝑠

𝐸
𝑒 𝑐𝑠, where 

𝑐𝑠 < 0 for costs and 𝑐𝑠 > 0 for revenues). Additional details 

can be found in Chu and You (2013). 

5. RESULTS 



 

     

The case study was implemented using Pyomo optimization 

suite within Python 3.7. The Interior Point algorithm IPOPT™ 

was used to solve Problems (3), (4) and (7). CPLEX was used 

to solve Problem (2). The model was solved in a PC with an 

Intel® Core™ i7-8700 CPU @ 3.2 GHz and 16 GB of RAM. 

For comparison purposes, the present case study was solved 

using the algorithm presented in this work and that proposed 

by Valdez-Navarro and Ricardez-Sandoval (2019) where unit 

operations times remain fixed during the calculations. 

 

 
Figure 3. Scheduling Plan: a) Proposed algorithm, b) 

Valdez-Navarro’s algorithm. 

As shown in Figure 3, the proposed algorithm can 

accommodate another batch sequence by finding new unit 

operations times that increase plant production (material 

processing batch size is shown inside each unit assignment in 

the figure). While all the unit operation times were set to 2h 

for Valdez-Navarro’s algorithm (Fig. 3b), it can be observed 

that the values 𝜏𝐷𝑦𝑛
𝑅𝐼   and 𝜏𝐷𝑦𝑛

𝑅𝐼𝐼  for the present approach are 

0.436h and 2.017h, respectively (Fig. 3a). The operation 

regimes found by the present algorithm are more economically 

expensive, as more control actions are required to maintain the 

dynamic feasibility (the control profiles are not shown for 

brevity). Nevertheless, there is an increase in production for 

the case in Fig. 3a) which increases the profits by a 42% 

(90,386 m.u. for the proposed algorithm compared to 63,369 

m.u. obtained from Valdez-Navarro’s algorithm). Regarding 

CPU times, each iteration of the present algorithm requires on 

average 8 h, with 3 iterations required to solve the present case 

study. On the other hand, 2 iterations and 4 h per iteration were 

required by Valdez-Navarro’s algorithm. Note that the 

selection of the tolerance parameters (𝑇𝑜𝑙𝑆𝑆 & 𝑇𝑜𝑙𝐵𝑂) is 

problem-specific and will impact the algorithm’s 

computational costs. In this work, both 𝑇𝑜𝑙𝑆𝑆 & 𝑇𝑜𝑙𝐵𝑂 were 

set to 0.0025, which were adequate as they returned acceptable 

results in reasonable CPU times. 

6. CONCLUSION 

A new back-off algorithm for the integration of scheduling and 

control of multi-unit, multi-product chemical batch plants 

under stochastic uncertainty was presented. The key idea is to 

introduce a formulation that searches for the optimal unit 

processing times using back-off terms, which reflect process 

variability under uncertainty. The results show that the present 

algorithm can improve profits by choosing optimal unit 

operation times. Future work will explore the implementation 

of the present algorithm for the simultaneous scheduling, 

design and control of batch systems under uncertainty. Also, 

an approach that simultaneously computes unit operation 

times and optimal control profiles will be explored. 
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