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Abstract: Autoencoders are becoming more representative in all fields of knowledge, due to their ability 

to classify, compress, and identify data patterns. This study objective was to propose entirely new objective 

functions using multivariable process control concepts as the gain matrix and Relative Gain Array to 

improve the quality of prediction and classification of an autoencoder. The advantages of the proposed 

approach are illustrated through a pulp-and-paper industry. The new function results show an improvement 

in the detection, leading to savings of up to 22 to 38 thousand dollars per month compared to a model using 

only MSE. 
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1. INTRODUCTION 

The trend of digitalization in the industry, caused by 

technological advances linked to Industry 4.0, generates large 

amounts of data in all devices and machines, containing 

valuable information about normal and abnormal behavior of 

the process, creating new opportunities for improvement in 

terms of costs, safety and quality (Sala et al., 2019; Suschnigg 

et al., 2020). Predictive models are becoming more 

representative in all fields of knowledge due to their ability to 

classify occurrences, predict future results, and quantify an 

output of interest (Ranzan et al., 2020). 

Artificial neural networks are mathematical models inspired 

by the basic structure of a brain. This model consists of several 

parallel processing units distributed in layers and sometimes 

called universal approximators, since it is theorized that 

models can approximate virtually any function to any degree 

of accuracy (Cybenko, 1989; Hornik et al., 1989). 

Autoencoders are a type of neural network, which learns in an 

unsupervised way. In other words, instead of relying on 

labeled data, we rely on the relationship between the input 

variables (Charte et al., 2018;). Due to their symmetrical 

structure, a characteristic of these models is the potential for 

detecting patterns and anomalies in data. Autoencoders' main 

applications are data classification and compression (Almotiri 

et al., 2017; Charte et al., 2018; Martinez-Murcia et al., 2019). 

Most industrial processes are multivariable, but with a proper 

pairing between output and input, there is no significant 

interaction between channels (Salgado & Conley, 2004). 

Recently, neural networks applied on multivariable nonlinear 

systems have shown many successful applications (Zhang et 

al., 2007; Cong and Liang, 2009). We can compare neural 

networks to multivariate systems and thus use control concepts 

to improve the models. Bristol (1966) presented significant 

results when developing the Relative Gain Array (RGA), 

quantifying the interaction between channels on the gain (K) 

of a Multi-Input Multi-Output (MIMO) process.  

Autoencoders can be applied to industrial process data to 

classify, compress, and identify patterns in data, reproducing 

their inputs with the knowledge acquired by training. Thus 

combining the knowledge of multivariable control systems 

with autoencoder models, the objective of this study was to 

build new objective functions using concepts of the gain 

matrix (K) and Relative Gain Array (RGA), applying these 

functions to a case study of a pulp-and-paper industry for 

classification of sheet-break, seeking to reduce the interaction 

between the system channels, making the problem more 

convex and decreasing the chance of stopping at local minima, 

improve the quality of prediction and classification of 

autoencoders. 

2. CASE STUDY 

For the present paper, a real-world dataset obtained from a 

pulp-and-paper manufacturing industry was used. The dataset 

was made available by Ranjan et al. (2018) and consists of a 

multivariate time series, which contains a rare break event that 

occurs in the industry. The data consists of sensor readings 

(x's) at regular time intervals of 2 minutes and event labels (y). 

The main objective of the data is the development of classifier 

models to predict these break events. 

2.1  Problem Description 

The multivariate time series is obtained from continuous data 

streams recorded over time. This kind of data is standard in 

industrial processes that have several sensors collecting 

information. The data contains rare unwanted events in the 

pulp-and-paper process (paper breaks) that should be 



prevented. Sensors are placed in different parts of the machine, 

measuring both raw materials and process variables. 

The industrial process described operates in continuous mode. 

If a break in the paper happens, the process stops, and the 

resumption may take more than an hour. These sheet-break 

events cause significant costs for the industry, and even a 5% 

reduction will give essential cost savings, so we want to predict 

these events in advance. 

The provided data has: 

• 18,274 records were collected over 15 days, 

containing the following 63 columns: 

• time: Timestamp of the row (date and time) 

• y: Response variable - binary (124 rows (~0.6%) 

with y = 1 denoting a sheet-break and the rest are 

y = 0) 

• x1-x61: Process variables. All the variables are 

continuous, except x28 and x61. x61 is a binary 

variable, and x28 is a categorical variable (Their 

descriptions are omitted for data anonymity). 

 

3. METHODOLOGY  

3.1  Dataset and Preprocessing 

The case study objective is to predict sheet-break before it 

occurs, so, here in this paper, we will try to predict the events 

4 minutes in advance, shifting the labels 2 rows up as made by 

Ranjan (2019) .  

Before running our algorithm, the dataset needed to be 

pretreated. Using the binary response variable (y) that had 

values 1 or 0 correspondings to the sheet-break occurrence (1) 

or normal process (0), we intended to identify the sheet-breaks 

minutes before they occur. Therefore, the normal data points 

corresponding to times up to 4 minutes before a sheet-break 

was changed from 0 to 1, and the sheet-break point was 

discarded. The categorical columns (x28 and x61) and the date 

and time (time) were also removed from the dataset, 

maintaining a total of 59 variables. 

Data were divided randomly into training, validation, and test 

sets containing 11541, 2924, and 3655 records, respectively. A 

standardization method was used, transforming to Gaussian 

data with 0 to 1 variance, and only the subset of data with 0s 

are used to train the autoencoder model.  

3.2  Neural Network 

All implementations in this work were performed in Python 

v.3.6 with Pytorch and Tensorflow to fit the neural networks. 

The code was implemented through Google Colaboratory. For 

reproducibility of the results, random seeds were set to (1, 13, 

25) in Pytorch and (1) in Numpy. 

 

 

 3.2.1 Autoencoder  

The autoencoder model (Fig. 1) selected for the objective 

function tests is detailed in Table 1 and was obtained through 

several hyperparameter tests, basing the tests on the model 

applied by Ranjan (2019). For the present study a simple 

autoencoder is used to show the applicability of the developed 

functions, with a future improvement of the model being 

considered. 

 

Fig. 1. Autoencoder structure. 

Table 1.  Model Layers. 

Layer Neurons Activation 

Input 59 ReLU 

H1 45 ReLU 

H2 32 ReLU 

H3 16 ReLU 

H4 16 ReLU 

H5 32 ReLU 

H6 45 ReLU 

Output 59 Linear 

 

The model was adjusted using the hyperparameters in Table 2. 

Table 2.  Model Hyperparameters. 

Hyperparameters Top 

Bias False 

Epochs 100 

Batch Size 128 

Learning Rate 0.001 

Optimizer Adam 

Lambda ( λ ) 0.01 

 

 3.2.2 Objective Function 

The mean square error (MSE) (1) was used as a base equation 

for the new objective functions.  

𝑀𝑆𝐸 =
1

2
∑ (𝑥𝑖 − �̂�𝑖)

2𝑛
𝑖=1                       (1) 

 3.2.2.1 Gain Matrix (K) 

The gain matrix incorporates the input to output variation, 

composing a matrix between the neural network channels. This 

matrix comprises the partial derivatives between the channels 



following the equivalent definition used in multivariable 

control systems. It can be calculated by the Jacobian matrix for 

the variation of all outputs concerning the variation of all 

inputs, according to equation 2. 
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The matrix K is obtained by the autograd Pytorch function, 

which allows an automatic differentiation between the neural 

network channel and calculates a derivatives matrix according 

to equation 2. 

Based on the gain matrix, it is proposed the following goal 

function: 

𝑓𝑔𝑎𝑖𝑛 = 𝑀𝑆𝐸 +  𝜆(‖𝐾‖2 − 1)                   (3) 

In this goal function, we perform the sum between MSE and 

the term referring to the model gain, using a lambda(λ) value 

to define the relative importance of the gain matrix and 

reducing 1 to correct an ideal system (if the system had 

identical layers, we would have an identity matrix of norm 1, 

this being the ideal system or completely linear input to output 

data). Lambda (λ) is a measure of the relative importance of 

each function. By increasing the term, we are increasing the 

penalty for the second term and consequently increasing the 

loss to bring the system to a more linear state (bringing the 

weights closer to an identity matrix). The value of 0.01 was 

chosen based on the work of Hoffman et al. (2019). 

 3.2.2.2  Relative Gain Array (RGA) 

Since we are working with square matrices due to the 

autoencoder having inputs and outputs of similar formats, we 

can calculate the relative gain array (RGA) that requires 

inversion and transposition of the gain matrix according to (4), 

𝑅𝐺𝐴 = 𝐾 ⊙ (𝐾−1)𝑇                          (4) 

where  is the elementwise Hadamard product of the two 

matrices. 

In order to reduce the coupling between channels, we created 

the objective function with the RGA (equation 5), resembling 

equation 3, using a lambda value(λ) and the norm 2 to define 

the numerical value of the matrix, decreasing the value of 1 

that would correspond to the norm of a completely decoupled 

model. 

𝑓𝑅𝐺𝐴 = 𝑀𝑆𝐸 +  𝜆(‖𝑅𝐺𝐴‖2 − 1)                 (5) 

 3.2.2.2  Jacobian Regularization 

Proposed by Hoffman et al. (2019), the function using 

Jacobian regularization aims to increase the model's 

robustness, ensuring better results. The model was 

implemented considering the authors' code, which consists of 

the grad function available in the Pytorch automatic 

differentiation package (autograd). This function accounts for 

the sum of the variation between channels presenting a vector 

as an output according to (6) and (7). 

𝑓𝑟𝑒𝑔𝐽𝑎𝑐𝑜𝑏 = 𝑀𝑆𝐸 +  𝜆‖𝐽(𝑥)‖𝐹
2                  (6) 

‖𝐽(𝑥)‖𝐹
2 = ∑ [

𝜕𝑓𝑐

𝜕𝑥𝑖
]
2

 𝑖,𝑐                        (7) 

The equation is different from what we use in gain and RGA 

equations. This model considers the accumulation in each 

output channel squared using the Frobenius norm. 

3.3  Model evaluation metrics 

 3.3.1 Predictions and class definition  

The predictions were verified based on Ranjan (2019), using 

the model predictions values (x̂) for the validation data, 

compared to the validation input data (x) through mean square 

error (MSE), evaluating the class with relation to the threshold 

as class separation parameter, where the error larger than the 

threshold is equivalent to a sheet-break (1) and error lower 

than the threshold, normal process (0). 

 3.3.2 Precision &Recall 

Curves of Precision & Recall are helpful metrics in applied 

machine learning for evaluating binary classification models 

of unbalanced datasets. The recall represents the ratio of true 

positives divides by the sum of true positives and the false 

negatives (8), which can be interpreted as model sensitivity. 

Precision is a ratio of true positives divided by the sum of true 

positives and false positives (9), and describes how good a 

model is at predicting the positive class (Davis and Goadrich, 

2006; Koehrsen, 2018). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                             (8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                         (9) 

The thresholds represent the values that separate the classes 

(positive and negative). Koehrsen (2018) brings that if we have 

a model with two classes, the output score will be between 0 

and 1, and we can set a threshold in this range for labeling 

positive and negative classifications. By altering the threshold, 

we alter the precision versus recall balance. 

 3.3.3 Receiver Operating Characteristic (ROC) curve 

The Receiver Operating Characteristic (ROC) curve is a metric 

to evaluate performance for classification problems. ROC is a 

probability curve, and Area Under the Curve (AUC) represents 

the degree of class separability. The higher the AUC, the better 

the model predicts the classes. 

 3.3.4 Reconstruction error and Confusion matrix 

Reconstruction error shows the classes True Positive and False 

Positive above the threshold and the True Negative and False 

Negative bellow, thus allowing the visualization of error 

between samples of the dataset and the separation of classes. 

Confusion matrices have the same end, showing the True 



Positive (TP), False Positive (FP), True Negative (TN), and 

False Negative (FN) in the same representation, allowing to 

verify the values of the predictions numerically. The TP, FP, 

FN, and TN allow us to calculate accuracy, as shown by 

Baratloo et al. (2015), defined by: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 +
𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
               (10) 

4. RESULTS 

The present study compared the different objective functions 

under the model developed with the dataset provided by 

Ranjan et al. (2018). Four objective functions were 

implemented, MSE, gain matrix function (K), RGA function, 

and the one developed by Hoffman et al. (2019), which 

consists of a Jacobian regularization to improve the robustness 

and stability of the models. 

The functions were evaluated for 100 epochs in batches of 128 

records. After training, validation data were used to construct 

Fig. 2, which consists of precision & recall curves for different 

thresholds and the ROC curves in Fig. 3. 

 

Fig.2. Precision & Recall curve for the four objective 

functions. 

 

Precision & Recall curves allow us to evaluate the model's 

quality, with the graphic showing the trade-off between 

sensitivity (recall) and precision for a model using different 

thresholds. Relating the thresholds in a binary classification 

allows us to identify the best threshold point, or the point of 

best separation between classes, with the highest precision and 

recall. In this case, the value of 0.4 is used for creating the 

reconstruction error plot and the confusion matrix. This value 

corresponds to the intersection point between the recall curve 

and the precision curve, indicating the highest precision value 

with the best recall, presenting low values due to unbalanced 

classes, with the class of interest (TP) presenting a lower 

number of samples.  

 

Fig. 3. ROC curves for the different functions. 

 

Evaluating the ROC curves, we can verify an increase in AUC 

from 0.7 to 0.719 when using the developed functions, 

indicating a better classification quality of the model.  

The reconstruction error representations can be demonstrated 

in numerical form through confusion matrices (cf. Fig. 4) using 

pytorch seed 13 to evaluate the function accuracy. 

 

Fig. 4. Confusion Matrix for the different objective functions. 

 

The models trained using the functions developed in the 

present work have shown a better quality of classification 

corroborated by the confusion matrices that presented a 

decrease in the number of false positives and an increase of 

true positives. Through these data, we can see the potential that 

the functions presented on an industrial database and its 



applicability, and the possible economic gains generated by the 

work developed. The detection and diagnosis of many of these 

sheet-breaks root causes would bring substantial value to the 

industry.  

According to Foelkel (2007) and Imtiaz et al. (2007) the sheet-

break in pulp-and-paper production is associated with product 

loss and equipment downtime, which can cause 20 to 96 

minutes per day of production stoppage, leading to costs in the 

range of 11 to 19 thousand dollars per hour stopped, and an 

annual loss of 6 to 8 million dollars. 

The machine learning model allows us to identify rare events 

4 minutes before they happen, making it possible to avoid 

these losses by taking the appropriate actions.  

Table 3.  Average increment in predictions with different 

initial weights. 

Objective function True Positive  False positive  

Gain (K) 11,1% -20,97% 

RGA 22,22% -14,51% 

Jacobian 

Regularization 
11,1% 1,6% 

 

Using the MSE function, we would have an accuracy of 

97.05%, making it possible to avoid 4 out of 41 cases of 

breakage. Table 3 shows the average increment of the 

functions detailed in the article for different initial weights in 

relation to the MSE. Through this table, it is noticed that the 

functions detailed in the article show an increase of true 

positives and a reduction of false positives, which generates an 

improvement in the model classification, with the exception of 

Jacobian regularization, which increased the number of false 

positives and the true positive ones, which is reinforced by the 

reduction of AUC in the ROC curve. The increase in model 

classification quality leads to savings of 22 to 38 thousand 

dollars a month using the functions developed. 

For the present study, we used random weights according to 

the Pytorch seeds (1, 13 ,25), to evaluate the Gain/Jacobian 

matrix behavior, making it possible to visualize, according to 

Fig. 5, that the matrix tends to a behavior of an identity matrix, 

thus aiming at reducing the pathways between neurons. 

 

Fig. 5. Post-training gain matrix (K). 

 

The proposed objective functions (Gain and RGA) lead to a 

more extended training, but an equal prediction time as the 

MSE, showing an increased recall and precision, indicating an 

improvement in the predictions of the model. 

5. CONCLUSIONS 

The present study used multivariable gain concepts and the 

relative gain array (RGA) to propose two new objective 

functions for autoencoders' problems. The functions were 

evaluated by applying the models and functions on a case 

study of industrial data from a pulp and paper industry to 

classify leaf breakage problems in the production process. 

Comparing the results obtained, we improved the detection of 

2 true-positive cases and a decrease of 18 false-positive cases. 

This combined effect is equivalent to a theoretical profit 

margin of 22 to 38 thousand dollars per month. The functions 

(Gain and RGA) showed great potential for application, 

increasing the classification quality for the case study, with 

better values for precision, recall, and AUC, indicating an 

improvement in convexity and consequently moving the loss 

closer to the global minima. 
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