
Experimental application of individual
column state and parameter estimation in
SMB processes to an amino acid separation

Stefanie Gerlich ∗ Hind Arab ∗ Malte Buchholz ∗

Sebastian Engell ∗

∗ Process Dynamics and Operations Group, TU Dortmund University,
Emil-Figge-Str. 70, 44227 Dortmund, Germany (e-mail:

stefanie.gerlich@tu-dortmund.de).

Abstract The simulated moving bed (SMB) process is a highly efficient continuous chromato-
graphic separation process. Due to its hybrid process dynamics that lead to discontinuities and
sharp fronts on the state trajectories, optimal SMB process operation is challenging. Process
performance can be improved by applying model-based optimizing control methods. For this,
online information about states and individual column parameters are required. The strategy
for simultaneous state and parameter estimation used here exploits the switching nature of the
SMB process. The successful experimental application of the strategy is demonstrated for the
continuous separation of two amino acids on an SMB pilot plant where extra-column equipment
effects need to be considered.

Keywords: State estimation, parameter estimation, chromatography, simulated moving bed
process, experimental application

1. INTRODUCTION

Chromatography is gaining importance as a separation
technique as the production of fine chemicals, pharmaceu-
ticals and biotechnological products increases. For these
products, that are produced at small scale, chromatog-
raphy is the method of choice for separation due to its
high selectivity, comparatively low operating temperatures
and handling of aqueous solutions (Guiochon et al., 2006).
Usually, these chromatographic separations are performed
in batch mode. In this operation mode however, the sta-
tionary phase is poorly used and large amounts of desor-
bent (mobile phase) are consumed leading to low product
concentrations.

In order to improve the separation efficiency and to use
the stationary phase more efficiently, the continuously
operated simulated moving bed (SMB) process can be
used for the separation of binary mixtures (Rajendran
et al., 2009). This multicolumn chromatographic process
simulates a countercurrent flow of the stationary and
mobile phase by periodically switching the inlet and outlet
ports between the individual columns (Schmidt-Traub
et al., 2020). Figure 1 shows the widely used 4-zone SMB
process with 2 columns per zone. The inlet (desorbent and
feed) and outlet (extract and raffinate) ports define the
location of 4 characteristic zones. The stronger retained
component (B) is collected at the extract, while the less
retained component (A) is received at the raffinate.

The periodic switching of the ports in the SMB process
leads to a cyclic steady state (CSS) at which the concen-
tration profile at the outlet ports is repeated from period to
period. Due to these hybrid dynamics that lead to discon-
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products, that are produced at small scale, chromatog-
raphy is the method of choice for separation due to its
high selectivity, comparatively low operating temperatures
and handling of aqueous solutions (Guiochon et al., 2006).
Usually, these chromatographic separations are performed
in batch mode. In this operation mode however, the sta-
tionary phase is poorly utilized and large amounts of
desorbent (mobile phase) are consumed leading to low
product concentrations.

In order to improve the separation efficiency and to use
the stationary phase more efficiently, the continuously
operated simulated moving bed (SMB) process can be used
for the separation of binary mixtures (Rajendran et al.,
2009). This multi-column chromatographic process simu-
lates a counter-current flow of the stationary and mobile
phase by periodically switching the inlet and outlet ports
between the individual columns (Schmidt-Traub et al.,
2020). Figure 1 illustrates the widely used 4-zone SMB
process with 2 columns per zone. The inlet (desorbent and
feed) and outlet (extract and raffinate) ports define the
location of 4 characteristic zones. The stronger retained
component (B) is collected at the extract, while the less
retained component (A) is received at the raffinate.

The periodic switching of the ports in the SMB process
leads to a cyclic steady state (CSS) at which the concen-
tration profile at the outlet ports is repeated from period to
period. Due to these hybrid dynamics that lead to discon-
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Figure 1. Schematic representation of a 4-zone SMB pro-
cess with 2 columns per zone.

tinuities and sharp fronts in the state trajectories, optimal
operation of the SMB process is challenging. The efficiency
of SMB processes can be improved using model-based
optimizing control techniques such as linear or nonlinear
model predictive control ((N)MPC) that are based on a
detailed process model considering the hybrid dynamics
of the SMB process directly (Engell, 2007). The use of

Figure 1. Schematic representation of a 4-zone SMB pro-
cess with 2 columns per zone.

tinuities and sharp fronts in the state trajectories, optimal
operation of the SMB process is challenging. The efficiency
of SMB processes can be improved using model-based
optimizing control techniques such as linear or nonlinear
model predictive control ((N)MPC) that are based on a
detailed process model considering the hybrid dynamics
of the SMB process directly (Engell, 2007). The use of
such methods requires online information about states and
parameters of the system.



In the pioneering work of Toumi and Engell (2004), the
states of the SMB process were obtained by forward simu-
lation of a plant model. In Küpper et al. (2009) a moving
horizon state and parameter estimation scheme for SMB
processes was proposed. Both approaches assume uniform
properties of all columns in the SMB system which is
not realistic in practice as the columns are not identically
packed with adsorbent. Thus, individual column parame-
ter estimation can improve process operation and can help
to detect degrading columns during process operation.

The challenge regarding individual column parameter esti-
mation in SMB processes is that only scarce measurement
information is available. An extended-Kalman-filter-based
method for estimating individual column parameters using
concentrations measurements at the two outlet ports and
at one fixed location between the columns has been pre-
sented by Küpper and Engell (2006). Lemoine-Nava and
Engell (2014) developed an optimization-based scheme for
estimating the parameters of each column individually
from concentration measurements in the extract and raffi-
nate streams only. In Gerlich et al. (2020) this scheme was
applied to the continuous separation of two amino acids
in a simulation study. It was shown that the estimation
scheme can be used already during process start-up and
is capable of dealing with plant-model mismatch in the
column porosities.

When applying online process monitoring schemes to ex-
perimental SMB processes, the influence of extra-column
equipment such as pumps, pipes, valves and detectors
needs to be considered as it causes back-mixing and delay.
Approaches in the literature for handling extra-column
equipment effects include the extension of the ideal SMB
model by standard mass balance models for plug flows and
CSTs (Lee et al., 2020) or summarizing all extra-column
dead volumes in each zone (Grossmann et al., 2010).

In this contribution, estimating individual column param-
eters and handling extra-colum equipment effects simulta-
neously is addressed. The state and parameter estimation
concept introduced by Lemoine-Nava and Engell (2014)
is applied to a small-scale SMB process performed on
commercial equipment for the continuous separation of
two amino acids, methionine and phenylalanine. Concen-
trations measurements are only available at the extract
and raffinate ports. We show that it is sufficient to lump
all extra-column equipment effects into one plug flow re-
actor model at each outlet and that individual column
parameters can be estimated successfully.

The remainder of the paper is structured as follows. First,
the used first principle model is explained. Second, the
state and parameter estimation scheme is introduced and
the handling of extra-column equipment effects is dis-
cussed. Afterwards, the scheme is applied to the con-
tinuous separation of two amino acids, methionine and
phenylalanine, on a pilot plant SMB process. The paper
is concluded with a discussion of the outcomes and future
prospects are outlined.

2. MODELING OF THE SMB PROCESS

Approaches to modeling SMB processes either assume a
true counter-current flow of the mobile and stationary

phase, or they directly consider the switching dynamics
of the SMB process. The latter is employed in this paper
to achieve a higher accuracy of the model.

In order to consider its switching dynamics, the SMB
process is modeled via the interconnection of models for
each individual column via node balances:

0 = −QI +QIV +QDes (1)

0 = −QII +QI −QEx (2)

0 = −QIII +QII +QFe (3)

0 = −QIV +QIII −QRaf (4)

0 = −cj,in,IQI + cj,out,IVQIV (5)

0 = −cj,in,IIIQIII + cj,out,IIQII + cj,FeQFe, (6)

where Qa represents the flow rate in the respective zone
or at the respective port. cj refers to the concentration of
component j.

The dynamic modeling of the individual column behavior
is widely studied in literature. An overview of different
models can be found in Schmidt-Traub et al. (2020). In
this contribution, the transport dispersive model (TDM)
is chosen (Guiochon et al., 2006; Schmidt-Traub et al.,
2020) because of its simplicity and sufficient accuracy for
solutes with low molecular weights (Schmidt-Traub et al.,
2020) such as amino acids.

For each individual column, the dynamic mass balance
equations along the column length coordinate z for each
component in the liquid phase is given as:

∂cj
∂t

+ uint
∂cj
∂z

+
1− εb
εb

keff,j
3

rp
(cj − cp,j) = Dax

∂2cj
∂z2

(7)

where cj and cp,j represent the liquid and particle phase
concentrations of component j. The radius of the porous
particles is represented by rp. keff,j is the lumped film
transfer coefficient of component j, and the axial disper-
sion coefficient is denoted by Dax. The interstitial fluid
velocity uint depends on the volumetric flow rate Q in
the respective column, on the cross-sectional area of the
column Ac, and the column void fraction εb:

uint =
Q

Acεb
(8)

Here, the axial dispersion coefficient Dax is calculated
based on the empirical correlation by Chung and Wen
(1968):

Pep =
0.2

εb
+

0.011

εb
[Repεb]

0.48
(9)

where Pep and Rep are the particle Péclet number and the
particle Reynolds number,

Pep =
2uintrp
Dax

, Rep =
2uintrpρ

η
, (10)

and ρ and η are the liquid phase density and dynamic
viscosity. The mass balance equation of component i in
the particle phase for each individual column is given as:

εp
∂cp,j
∂t

+ (1− εp)
∂qj
∂t

= keff,j
3

rp
(cj − cp,j), (11)

where qj refers to the concentration of component j in the
adsorbed phase and εp describes the particle porosity. The
adsorption equilibrium between the concentration of the
adsorbed component and the concentration in the particle
phase is described by the Langmuir isotherm (Schmidt-
Traub et al., 2020):



qj =
Hjcp,j

1 +
∑Ncomp

n=1 bicp,i
(12)

Hj and bi are the Langmuir isotherm parameters of com-
ponents j and i. The number of components is represented
by Ncomp. For a binary system with components A and
B where A is the less retained component and B is the
stronger retained component, HB > HA. The set of PDEs
is completed with the following initial and boundary con-
ditions:

at t = 0 : cj(0, z) = cj,0, cp,j(0, z) = cp,j,0 (13)

at z = 0 : uintcj −Dax
∂cj
∂z

∣∣
z=0

= uintcj,in (14)

at z = Lc :
∂cj
∂z

∣∣
z=Lc

= 0, (15)

where Lc represents the column length.

The PDEs required for column modeling (equations (7)
and (11)) are spatially discretized using a finite volume
approach combined with the weighted essentially non-
oscillatory (WENO) scheme (von Lieres and Andersson,
2010). The method is suitable for handling systems with
sharp concentration fronts which appear in chromato-
graphic columns.

3. STATE AND PARAMETER ESTIMATION IN SMB
PROCESSES

A scheme for online process monitoring in SMB processes
that estimates states and individual column parameters
has been proposed by Lemoine-Nava and Engell (2014).
The scheme exploits the switching nature of the SMB
process that results in a movement of the measurement
locations in each period.

For estimating the process states, the process model de-
scribed in section 2 is simulated with the current inputs
and the current parameter estimates from the parameter
estimation routine. Inlet concentrations that are fed to
the columns behind the measurement locations are the
measured concentrations at the extract and raffinate ports.

The main idea regarding the parameter estimation routine
is to represent the process by two virtual batch exper-
iments for each column during each cycle of the SMB
process when the respective column is situated before and
after the extract and raffinate ports as illustrated in fig-
ure 2. During a period k, measurements are first collected
at the inlet of column i and in the next period k + 1, the
concentrations are measured at the outlet of the respective
column. Thus, each virtual batch experiment has a length
of two periods. For estimating the parameters of each
column, the following least-squares optimization problem
is solved periodically that seeks to minimize the deviations
between measured and simulated concentrations:

min
p̂k+1

i
, x̂i(T

k−1),

x̂i(T
k−Π−1)

1

σp

∣∣∣∣∣∣p̂k−Ncol+1

i
− p̂k+1

i

∣∣∣∣∣∣2 (16)

1

σx

∣∣∣∣∣∣∣∣ x̂i(T
k−Ncol−1)− x̂i(T k−1)

x̂i(T
k−Π−Ncol−1)− x̂i(T k−Π−1)

∣∣∣∣∣∣∣∣2
1

σm

∣∣∣∣∣
∣∣∣∣∣ yk+1,j

i
(t)− ŷk+1,j

i
(t)
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i
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Figure 2. Scheme for individual column parameter estima-
tion in SMB processes

s.t. x̂i(T
γ+1) = x̂i(T

γ−1)

+

∫ Tγ

Tγ�1

f
(
x̂i(t), u

γ−1
i (t), p̂k+1

i

)
dt

+

∫ Tγ+1

Tγ
f
(
x̂i(t), u

γ
i (t), p̂k+1

i

)
dt, (17)

x̂i =
[
Ĉ
b,j

i , Ĉ
p,j

i

]T
, j = {A,B}, (18)

uγ−1
i (t) =

[
Qγ−1
i , τ, yγ−1

i−1
(t)
]T
, (19)

uγi (t) =
[
Qγi , τ, Ĉ

γ

out,i−1(t)
]T
, (20)

x̂li ≤ x̂i ≤ x̂
u
i , (21)

p̂l
i
≤ p̂

i
≤ p̂u

i
, (22)

γ = {k −Π, k}, (23)

Π = Ncol,I +Ncol,IV , (24)

ŷ = xNz (25)

with the index k for period, the vector of estimated states
parameters of column i as x̂i and p̂

i
, the input vector

of column i as ui, the simulated outlet concentrations

of component j and column i as ŷj
i

and measured outlet

concentrations of component j and column i as yj
i
. Π is

the sum of the number of columns in zones I and IV.

During one full cycle of the SMB process, the parameters
of each column are updated once using data from four sets
of measurements which are obtained when the extract and
the raffinate port are at the inlet and outlet of the column
respectively. The parameter estimation is activated as soon
as enough measurement information is available for the
first column, in the case considered here after the sixth
port switching. Details regarding the implementation of
the scheme are given in Gerlich et al. (2020).

4. HANDLING OF EXTRA-COLUMN EQUIPMENT

In real SMB processes, the influence of extra-column
equipment such as pumps, valves, pipes, and detectors can-
not be neglected, especially for small scale plants. Pumps
and pipes connecting the different parts of the equipment
cause delay when molecules travel through the plant. Back-
mixing effects are introduced by measuring cells within the
detectors. Here, the volume of the measuring cells in the
detectors is only 2µL and thus, it can be neglected.

SMB experiments at the pilot plant revealed that the delay
that is observed between the switching of the valves and



the resulting jump in the concentration profile is the same
from period to period, independent of the of the current
connection of valves, pumps, and columns. Therefore, it
is sufficient to summarize all delays due to extra-column
equipment in one plug flow reactor at each outlet stream
before the detectors as shown in figure 3. The observed
delay is approximately 20% of the duration of one period
although the ratio between all dead volumes in the plant
and the volume of all columns is only 5%.

4
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Plug Flow

Detector

Extract

Plug Flow

Detector

Raffinate

Desorbent Feed

Figure 3. Modeling of extra-column equipment

This approach has several advantages over other described
strategies in the literature. First, it is much simpler.
Furthermore, the SMB process model that is used for
state and parameter estimation as well as for model-based
optimization does not need to be adapted for extra-column
equipment effects. The plant measurements that are used
for state and parameter estimation are those that occur
directly at the column outlet before the plug flow element
(see figure 3). This might not be the true concentration
at this location at a certain point in time but results in a
consistent model.

5. CASE STUDY: CONTINUOUS SEPARATION OF
AMINO ACIDS USING THE SMB PROCESS

The continuous separation of two amino acids, methionine
and phenylalanine, using a 4-zone SMB process with two
columns per zone is studied in this contribution. The des-
orbent consists if of de-ionized water and 5 vol% methanol
in addition to the buffer potassium dihydrogen phosphate
with a concentration of 0.1 M. The pH is regulated to 3
by adding orthophosphoric acid. Component and solvent
specific parameters are given in tables 1 and 2. As HMet <
HPhe (see table 1), phenylalanine represents the stronger
adsorbing component and is retrieved at the extract port
while methionine is collected at the raffinate port.

Table 1. Initial model parameters
(Met = methionine, Phe = phenylalanine)

Met Phe

Hi,initial [-] 1.3133 10.9281
bi [L/g] 0.008 0.002
keff,i [m/s] 8.03 · 10�6 1.01 · 10�4

The parameters HMet and HPhe are estimated by the
online process monitoring scheme introduced in section 3
as a simulation study revealed that various effects resulting
from an offset in a different parameter can be lumped
into the isotherm parameter Hi (Gerlich et al., 2020).
The initial estimates for Hi as well as the parameter
values for the isotherm parameter bi, the mass transfer
coefficient and column porosities were determined in batch
experiments on a single column of the system in which
either a sample of methionine and phenylalanine or a
tracer were injected.

Table 2. Column and solvent parameters

Parameter Description Value

Lc column length 0.125m
Ac column cross sectional area 5.03 · 10�5 m2

rp particle diameter 15 · 10�6 m
εb void fraction 0.80
εp particle porosity 0.26
ρ eluent density 1000 kg/m3

η dynamic viscosity 10�3 Pas

5.1 SMB equipment

The separation is realized on an SMB pilot plant with
eight columns that is manufactured by KNAUER Wis-
senschaftliche Geräte GmbH. The chromatography columns
used are based on silica gel containing nonpolar and
monomeric octadecyl. Thus, reversed-phase chromatogra-
phy is used, where the stationary phase is nonpolar and
the mobile phase is polar. The column and solvent spe-
cific parameters are summarized in table 2. Multiposition
valves are used to set up the connections corresponding
to each period. Multiwavelength UV-detectors that are
able to measure the absorbance at up to four different
wavelengths simultaneously are placed at the extract and
raffinate ports. For the case study in this contribution,
absorbance is measured at 200, 210, 220 and 225 nm.

5.2 Absorption measurements and data reconciliation

The absorption measured by the multi-wavelength UV-
detectors at a certain wavelength is related to the compo-
sition in a nonlinear fashion:

y = f(cM , cP ), (26)

where y ∈ R4×1 represents the four measured absorptions
at four different wavelengths. cM and cP are the concen-
tration of methionine and phenylalanine. The correlation
between the measured absorption at a given wavelength k
and the concentration has the following form:

yk = a1,kcM + a2,kc
2
P + a3,kcP + a4,kcMcP (27)

The coefficients aj,k were determined from calibration
experiments. As four measurements are available, but only
two concentrations need to be retrieved from that, there
are more measurements available than needed. Thus, the
following least squares optimization problem is solved for
every sampling point for both outlet streams to obtain the
estimate of the true concentrations:

min
cM ,cP

4∑
k=1

(yk,meas − yk,calc)2
(28)

s.t yk,calc = f(cM , cP ). (29)

6. RESULTS AND DISCUSSION

In this section, experimental results and the performance
of the state and parameter estimation scheme are dis-
cussed.

6.1 SMB process operation

In practical applications, the operating conditions of SMB
processes are usually determined using the triangle theory



(Mazzotti et al., 1997) and are applied to the process
via feedforward control. The triangle theory represents
a shortcut design method for SMB processes. Due to
the assumption of a true countercurrent flow between
the mobile phase and the stationary phase, the resulting
operating conditions are suboptimal for the real SMB
process. Off-spec production can result for SMB processes
with few columns where the deviations to a true counter-
current flow increase (Erdem et al., 2004).

Here, the operating conditions were determined based
on the triangle theory with the initial estimates of the
isotherm parameter Hi as given in table 1. The feed con-
tains 0.2 g/L of methionine and phenylalanine and the ports
are shifted every two minutes giving a period length of
τ = 2 min. The process is operated with QI =8.10 mL/min,
QDes =5.02 mL/min, QEx =3.55 mL/min, and QFe =2.36
mL/min. The resulting plant measurements are shown in
figure 4.

Figure 4. Concentration measurements at extracte (top)
and raffinate (bottom) for an SMB experiment over
180 periods.

Phenylalanine is the dominant component at the extract
port while the less adsorbing component methionine is
retrieved at the raffinate port. Both products, the extract
and raffinate, are contaminated while from the triangle
theory pure products would be expected. This observation
emphasizes that often only suboptimal operating points
or operating points that do not fulfill process constraints
are achieved when applying the triangle theory to a real
SMB process. Further observations from figure 4 are that
a cyclic steady state is reached after about 20 periods.The
profiles indicate slight variations between the columns.
Thus, it is important to estimate each parameters of
each column individually. Also, disturbances occur during
process operations such as around period 60 and period
100.

6.2 Performance of the state and parameter estimation
scheme

The performance of the estimation scheme for the states
and parameters of the indivdual columns introduced in
section 3 is analyzed for the experimental data. The
development of the values of the estimated parameters over
180 periods of operation is presented in figure 5.
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Figure 5. Convergence of estimated parametersHMet (top)
and HPhe (bottom) over 180 periods of operation

It can be seen that the changes of the parameter HMet

are much larger compared to those for the parameter
HPhe. The online process monitoring scheme is capable
of dealing with such large plant-model mismatches. Thus,
the preliminary experimental effort for determining model
parameters can be reduced significantly. It is sufficient to
perform preliminary batch-experiments on a single column
of the SMB system and assume identical parameters for
all columns initially. Afterwards, model parameters can be
adapted for each column individually during SMB process
operation. The parameters for all columns converge to a
constant value at around period 40 and show only slight
variations between periods 40 and 60. These variations are
caused by measurement noise.

When an unmodeled disturbance occurs in the measured
data, this is captured in the parameter estimation by
adapting the column parameters. For the parameter re-
lated to methionine, HMet, it can be seen that the param-
eter values converge back to the value before the distur-
bance. In contrast, the values for the parameter related
to phenylalanine, HPhe, converge to a different value indi-
cating a changing behavior of the columns regarding the
adsorption of phenylalanine.

In figure 6, measured and estimated states at the extract
and raffinate ports are compared as plant measurements
are available at that position. It can be observed that
the deviations between the measured and the estimated
states are initially quite large for methionine reflecting
again, that the initial estimate of the methionine isotherm
parameter HMet is not quite inaccurate.

Once the parameters have converged to a constant value,
the concentration profiles at the extract and raffinate
ports can be predicted well by the state estimation. Thus,
besides being useful for the adaptation of the initial guesses
of the process parameters and process monitoring, the
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Figure 6. Comparison of measured and estimated states at extract (top) and raffinate (bottom) over 180 periods of
operation

scheme can be used for model-based optimizing control
to improve the performance of the process.

7. CONCLUSION AND FUTURE WORK

In this work, an online process monitoring scheme includ-
ing the estimation of individual columns parameters that
has been successfully tested in simulation studies by Ger-
lich et al. (2020) is successfully applied to an experimental
pilot plant SMB process. For many SMB processes, extra-
column equipment effects cannot be ignored. It has been
shown that it is sufficient to lump all time delays caused
by extra-column dead volumes in one plug flow element at
each outlet. With this extension, the scheme can handle
large plant-model mismatches. The scheme will be com-
bined with model-based optimizing control to ensure fast
start-up and optimal SMB process operation also in the
case where the columns do not behave identically.
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