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Abstract:
Our previous work has shown that replacing parts of the classical compartmentalization model
reduction approach for distillation columns by offline-trained artificial neural networks (ANNs)
improves computational performance. In real-life applications, the absence of a high-fidelity
model for data generation can, however, prevent the deployment of this approach. Therefore,
we propose a method that utilizes solely plant measurement data, starting from a small initial
data set and then continuously adapting to newly measured data. We demonstrate the approach
in closed-loop simulations and compare to benchmarks using either the high-fidelity model or
an offline trained reduced model for control.
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1. INTRODUCTION

Nonlinear model predictive control (NMPC) requires ac-
curate dynamic process models resulting in optimization
problems that are typically not solvable in real time. This
is particularly the case for distillation columns if applying
rigorous full-order stagewise models. Thus, several reduc-
tion methods for dynamic models have been developed.
A short review of these methods for distillation columns
is given in Schäfer et al. (2020). These methods are the
collocation approach (Cho and Joseph (1983), applied in
Cao et al. (2016)), the compartmentalization approach
(Benallou et al. (1986), applied in Schäfer et al. (2019a)),
and the wave propagation approach (Marquardt (1989),
applied in Caspari et al. (2020)). For a broader review of
model reduction methods we refer to Marquardt (2002).

The computational benefit introduced by the model re-
duction can be further extended by introducing machine
learning elements (cf. Schäfer et al. (2020)). In particular,
we have shown in previous work that compartmentalized
models can be substantially enhanced by substituting
stationary stage-to-stage calculations by artificial neural
networks (Schäfer et al. (2019a)). In a subsequent work, we
demonstrate that this method enables real-time capable
NMPC (Schäfer et al. (2019b)). Until now, these hybrid
mechanistic/data-driven modeling approaches, however,
rely on the availability of large data sets before operation.
These data sets are mostly generated offline, utilizing the
full-order stagewise model. However, the existence of a
full-order model is not guaranteed in real-life application.
Thus, recent work has focused on the on-line adaption
of the process model to account for an inaccurate initial
model for operational purposes (e.g., Tsay et al. (2020)).

In this work, we propose a procedure to continuously adapt
our published hybrid model (Schäfer et al. (2019a)) to
new measured data, thus, removing the requirement of the
existence of a full-order model. To this end, we reformulate
the hybrid compartmentalized model as a hybrid stage-
aggregation model (cf. Linhart and Skogestad (2010)),
which allows for a stricter separation into steady-state
blocks to be replaced by artificial neural networks (ANNs)
and dynamic single stages with measurable states. As the
data-driven model parts have to be continuously adapted
to new data, we utilize an on-line learning algorithm that
is repeatedly applied, as opposed to a batch learning al-
gorithm that is only applied before operation. We utilize
this idea in an in silico control case study from literature
and compare to a hybrid control scheme based on offline-
generated data and an ideal NMPC using the exact full-
order stagewise model.

The remainder of this work is structured as follows: first,
we describe the proposed hybrid stage-aggregation model
and the implemented adaptive learning algorithm. Next,
the case study is presented. Afterwards, we investigate
the control performance and real-time applicability of the
proposed approach. Finally, an outlook on further work is
given.

2. METHOD

2.1 Hybrid stage-aggregation model

The full-order model, which we consider as basis for this
work, is taken from Rehm and Allgöwer (1996), where
the model is formulated for a distillation column that
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Fig. 1. Replacement of a steady-state column section with
an ANN.

is described in Allgöwer and Raisch (1992). It assumes
constant molar holdup, ideal thermodynamics, no pressure
losses, and no hydrodynamic resistance. These assump-
tions reduce the model to one mass balance and one
thermodynamic equation for each stage (cf. Appendix A).

In a compartmentalization approach (cf. Benallou et al.
(1986)), the distillation column is split into multiple com-
partments. We then assume that the single-stage dynamic
behavior can be neglected compared to the overall dynamic
behavior of the entire compartment. The final system of
equations thus consists of the dynamic compartment bal-
ances and steady-state equations for each stage inside the
compartment. One stage per compartment does not have a
steady-state equation and is referred to as sensitivity stage.
Thereby, this type of model reduction does not change the
steady-state behavior of the column; however, it affects the
dynamic response as well as the stiffness of the differential-
algebraic system.

For our adaptive approach, we use the stage-aggregation
analogy presented by Linhart and Skogestad (2010), refor-
mulating the compartmentalized model in an exact way.
That is, the stages of the column are split into two groups,
aggregation stages and non-aggregation stages. Aggrega-
tion stages have increased holdup, whereas the holdup of
non-aggregation stages is set to zero, making them steady-
state. The advantage of this approach is that aggregation
stages correspond to actual stages of the column, allowing
to identify the states of the reduced model from real-
world measurements. Formally, this procedure corresponds
to multiplying the holdups of aggregation stages with a
holdup factor H and reducing the holdup of steady-state
trays to zero (cf. Appendix B). Feed stages, the condenser,
and the reboiler have to be aggregation stages.

Next, we reduce the total number of equations of the
reduced model by replacing sections of steady-state trays,
i.e., stationary column sections between two consecutive
aggregation stages, with ANNs (Fig. 1), adapting the
approach from our previous work considering compart-
mentalization (Schäfer et al. (2019a)) to stage-aggregation.
Note that in contrast to hybrid compartment models, the
differential states of hybrid stage-aggregation models are
not direct inputs of the surrogate model replacing the
stationary parts, leading to generally lower input dimen-
sionalities. Each column section maps the out-going liquid
stream of the upper aggregation stage and the out-going
vapor stream of the lower aggregation stage to the in-going
vapor stream of the upper aggregation stage and the in-
going liquid stream of the lower aggregation stage. Due to
the simplicity of the assumed full-order model, the liquid
and vapor flow, L and V , are constant over the column
section. Thus, the ANN does not need to consider the total

molar flows as outputs. From the remaining two output
concentrations (xout and yout), one can be computed by
a mass balance around the entire steady-state column
section. Since all trays to be replaced have no holdup, only
the ratio of flows, L

V , needs to be considered. Thus, the
ANNs replacing the column sections have three inputs and
one output. Logarithmic scaling is applied to the molar
fractions as proposed by Skogestad and Morari (1988).

2.2 Adaptive learning algorithm

There are different interpretations of the definition of on-
line learning in literature (cf. Pérez-Sánchez et al. (2018)).
In this work we focus on learning of a continuous data
stream. As opposed to batch learning, the complexity of
the data is not known beforehand. To ensure an adequate
model size at every time step, constructive algorithms are
proposed in literature (e.g., Ma and Khorasani (2003)).
Constructive algorithms start with a small model size and
continuously increase the model size whenever the current
model size shows to be incapable of representing the new
data.

We implement an adaptive learning algorithm based on the
work of Chen and Soo (1993). The overall objective of the
algorithm is to improve performance on newly presented
data while maintaining performance on previously seen
data. For this purpose, all seen data is stored. In each
training cycle, a sample of the old data is chosen and
mixed with the entire new data set. To select data from
the storage, latin hypercube sampling (LHS) is performed
in the data region of the data storage. For each sam-
pled point, the nearest neighbor in the data storage is
determined. These neighbors finally become part of the
training data. With this approach, we build a training
data set, which is as equally distributed as possible, out
of the unequally distributed data storage. Training of the
ANNs is performed with the Levenberg-Marquardt algo-
rithm. The current model is used as a starting point. The
balance between improving performance on new data and
maintaining performance on previously seen data is tuned
by adding a factor to the weights of new data points.

As described earlier, a constructive model building ap-
proach is applied to ensure adequate model size at all
times. That is, whenever a performance goal cannot be met
after the first training cycle, the model size is increased. To
this end, the model is restored to its state before the failed
training cycle. Then, a new node is added to the single
hidden layer. To initialize this new node, a training cycle is
performed in which only the weights corresponding to the
new node are changed. Considering the linear activation
function of the output layer, this is equivalent to fitting a
one-node ANN to the prediction error of the old model on
the training set. After the new node is initialized, another
training cycle is performed using the enlarged model as
an initial point, this time adjusting all weights. If the
performance goal is still not reached, the procedure is
repeated.

2.3 Implementation and case study

The described framework is applied to a distillation col-
umn commonly used in literature, first and in most detail
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Fig. 2. Implementation of the adaptive control scheme.

described in Allgöwer and Raisch (1992). The column
consists of 40 stages and separates a mixture of methanol
and propanol. The total molar holdup of the column is
assumed to be 10 mol. The control case study is taken from
Diehl et al. (2002), meaning that the feed concentration is
an unmeasured disturbance. We apply set-points for the
molar fractions of both column products. The control ob-
jective ϕ is the integrated sum of the set-point deviations:

ϕ =

∫ TP

0

(xB,SP − xB (t))
2

+ (xD,SP − xD (t))
2

dt . (1)

Table 1. MPC settings

Setting Symbol Value

Control horizon TC 600 s
Prediction horizon TP 1200 s
Control intervals N 10
Sampling time Ts 60 s

The MPC settings, summarized in Table 1, are also taken
from Diehl et al. (2002), except for the sampling time
which is increased from 10s to 60s to allow for a longer
solution time of the dynamic optimization problem but
still appears appropriate considering the inertia of the
column.

Concerning the measurements, Allgöwer and Raisch (1992)
specify temperature measurements on stages 14 and 28. As
the measurements allow to determine the state of these
stages, they are selected as aggregation stages. Addition-
ally, we assume a temperature measurement for the feed
stage. Due to the assumption of equilibrium, temperatures
in the liquid and gaseous phases of the stages are identical.
Finally, we assume concentration measurements for the
top and bottom product for the sake of simplicity. Thus,
the state of all aggregation stages can be directly derived
from the measurements. In a compartmentalization ap-
proach this direct identification of the differential variables
would not work as compartment states do not correspond
to actual column trays. In cases where temperatures are
measured only, suitable state estimation techniques can be
applied to determine the states of the reduced model.

Training data for the four ANNs can be calculated using

mass balances around the aggregation stages. An estimate
of the feed flow molar fraction xF can be determined by
a mass balance around the entire hybrid model of the
column. Note, that both of these procedures rely on the
underlying assumption that the hybrid model matches
the full-order model exactly. However, assuming sufficient
accuracy of the ANNs, this is only true in the steady-
state case. For non-steady-state operation, an error will be
made due to lower-order approximation of the dynamics..
To avoid learning wrong data, a weight is added to each
data point, which diminishes as the column moves away
from steady-state operation.

A closed-loop control framework (cf. Fig. 2) is set up
to assess the proposed method. For this, the controlled
system is simulated using the full-order stagewise model
as plant replacement. The NMPC employs the proposed
hybrid stage-aggregation model as controller model. Both
the plant replacement and the controller model are imple-
mented in Modelica and made accessible for our in-house
software-package DyOS (Caspari et al. (2019)) via export
as Functional Mockup Unit (FMU). DyOS enables access
to LIMEX (Schlegel et al. (2004)) for state and sensitivity
integration and SNOPT (Gill et al. (2005)) for solving
the dynamic optimization problems in a single-shooting
approach.

The adaptive learner reads the measurement data gener-
ated by the simulated column, derives the training data,
and adapts the ANNs of the hybrid model. For the sake
of simplicity, we assume noise-free measurements. The
algorithm is implemented in Python using the Tensorflow
library (cf. Abadi et al. (2015)). The interconnections of
the described components are also managed in Python.
All calculations are performed on an Intel© Xeon© Gold
5117 CPU. The Intel© Optimization for Tensorflow is
used.

The adaptive learning algorithm and the NMPC require an
initial model to function. For this, we generate open-loop
data by performing step tests on the plant replacement.
For the step tests, we combine individual step tests on the
manipulated variables L and V , and the disturbance xF .
The height of these steps and their time are determined



using latin hypercube sampling. Overall, 20 open-loop
trajectories are simulated to build the initial data set.
These trajectories are then transformed to training data
onto which the ANNs are trained.

The initial ANNs have one hidden layer with four nodes.
The tanh activation function is used in the hidden layer
while a linear activation function is used in the output
layer. All training data is logarithmically transformed as
described above and scaled to the range [−1, 1].

Overall, we compare four different approaches for closed-
loop control in this work:

(i) The adaptive approach proposed in this work utiliz-
ing one data point every 5 s.

(ii) A control scheme based only on the initial model used
in the adaptive approach.

(iii) An approach using an offline-trained model from
sampled data using the full-order stagewise model
as done in previous work. Here, a larger, broader,
and more equally distributed data set is used (2000
data points). Also, the data has higher quality, as it
is not influenced by the dynamic mismatch between
the full-order and the reduced model.

(iv) As a benchmark, we apply the ideal NMPC with full-
state feedback and without plant-model mismatch,
i.e., the controller model is exact.

3. RESULTS

3.1 Control performance

Fig. 3 presents the results of the four previously de-
scribed approaches. The non-adaptive approach based
only on open-loop data shows strongly oscillating behavior
throughout the entire horizon. Large deviations from the
set-points can be observed (e.g., the reboiler concentration
around t = 3500 s). The introduction of the adaptive
learning algorithm improves the control performance sub-
stantially. After t = 1000 s, almost no oscillating behavior
can be observed. Looking at the objective, the integrated
sum of squared errors of the set-point deviations, we see
a rapid flattening of the trajectory. At the end of the
case study, the adaptive approach reaches a control per-
formance comparable to the approach utilizing excessive
amounts of offline-generated data. Finally, we remark that
the ideal NMPC without plant/model-mismatch allows for
only slight improvements over the approach using offline-
trained models and thus also over the final performance of
the proposed adaptive control scheme.

3.2 Real-time applicability

Beside the control performance, the computational time
requirement is another important aspect when rating con-
trol schemes, as real-time applicability has to be main-
tained. For the adaptive approach, the time required to
solve the dynamic optimization problem and the time
required for adapting the ANNs have to be considered.
Note, that the training of the ANNs can be performed in
parallel which is not implemented at the moment.

Fig. 4 gives the computational times. The training time
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Fig. 3. Comparison of four different control schemes. The
upper plot shows the trajectory of the unmeasured
disturbance xF. The remaining plots show trajectories
of the plant replacement simulated in closed-loop and
trajectories of the manipulated variables. These are
the condenser molar fraction xD, the reboiler molar
fraction xB, the liquid flow rate L, the vapor flow rate
V , and the NMPC objective ϕ. The set-points on xD
and xB are 0.99995 and 0.00005 respectively.

shows two large peaks with tTrain > 40 s at t = 0 s
and t = 500 s. At these times large ANN size increases
take place. Besides these peaks, the training time stays
below 5 s. The dynamic optimization of the adaptive ap-
proach finishes in under 15 s throughout the entire case
study. The total computational time (sum of training and
optimization) only slightly exceeds the sampling time of
Ts = 60 s once (at t = 500 s), demonstrating the real-time
applicability of the approach in this setting. Concerning
the computational time for the dynamic optimization, we
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Fig. 4. Overview of computational requirements for the
adaptive learning approach and the ideal NMPC.
The top plot shows the required time to adapt all
ANNs of the adaptive hybrid model. Next, the times
required to solve the dynamic optimization problems
are presented. The box plot compares the solution
times of the dynamic optimizations for the adaptive
approach and the ideal NMPC. The minimum, the
25th percentile, the median, the 75th percentile, and
the maximum of the data is visualized.

also compare the adaptive approach to the ideal NMPC.
To this end, one has to distinguish between two different
control scenarios with the first being right after a step
in which the disturbance has occurred (cf. xF plot in
Fig. 3). Here, a high computational effort is required to
solve the dynamic optimization problem as the solution of
the previous time step is an inadequate initial guess. For
this scenario, we see a large computational benefit of the
hybrid model compared to the full-order model used in the
ideal NMPC (e.g., at 2000 s), as both approaches require
a large number of iterations to solve, thus, allowing the
hybrid approach to fully show its computational benefits.
In contrast, the second scenario considers times when there
is no change in the disturbance. In that case, the lack of
plant/model-mismatch of the ideal NMPC and, thus, the
existence of better initial guesses leads to a computational
advantage for the ideal NMPC during these times, as
it requires less iterations to improve the solution. This
results in the ideal NMPC having a broader distribution of
solution times than the adaptive approach (cf. box plot in
Fig. 4). Note however that the high computational times
after occurrence of disturbances are the more crucial ones
with regard to real-time applicability. Furthermore and
following our previous results (cf. Schäfer et al. (2019b)),
we suspect computational time savings when applying the
hybrid model in the adaptive approach to become even
more significant if the control task becomes more complex
(e.g., more complex model, more severe disturbances, or
economic objectives).

4. CONCLUSION

We develop an adaptive control scheme for distillation
columns that continuously trains the data-driven parts of
a reduced hybrid controller model based on measurement
data. For this purpose, we present a hybridized stage-
aggregation approach and implement an adaptive learning
algorithm. The approach manages to improve control per-
formance over time, compared to a non-adaptive approach,
while maintaining real-time applicability.

In this work, the method is demonstrated in a single-
column case study based on a simplified full-order model.
Introducing more complexity to the model would result
in larger ANNs (e.g., non-constant flows would require at
least one additional ANN output). As for the framework,
the robustness of the approach could be improved by
adding constraints that restrict the dynamic optimization
to previously explored data regions. Furthermore, different
approaches to deal with the unequally distributed closed-
loop data can be investigated. Also, the approach can be
applied to the use case of a drift in the underlying process.
By implementing a forgetting factor for stored data points,
the data set could be replaced over time to match the new
process, thus adapting to the changed process behavior.
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Appendix A. FULL-ORDER MODEL

Standard tray:

ni
dxi
dt

= L∗ (xi,in − xi) + V (yi,in − yi) (A.1)

with L∗ = L in the rectifying section and L∗ = L + F in
the stripping section.

Condenser (D):

nD
dxD
dt

= V (yin − xD) (A.2)

Feed tray (M):

nM
dxM
dt

= L (xin − xM ) + V (yin − yM ) + F (xF − xM )
(A.3)

Reboiler (B):

nB
dxB
dt

= (L+ F ) (xin − xB) + V (xB − yB) (A.4)

Thermodynamics:

yi =
α xi

1 + (α− 1)xi
(A.5)

Appendix B. REDUCED MODEL

Aggregation stage:

Hini
dxi
dt

= L∗ (xi,in − xi) + V (yi,in − yi) (B.1)

Non-aggregation stage:

0 = L∗ (xi,in − xi) + V (yi,in − yi) (B.2)

Condenser (D):

HDnD
dxD
dt

= V (yin − xD) (B.3)

Feed tray (M):

HMnM
dxM
dt

= L (xin − xM ) + V (yin − yM ) + F (xF − xM )
(B.4)

Reboiler (B):

HBnB
dxB
dt

= (L+ F ) (xin − xB) + V (xB − yB) (B.5)


