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Abstract: Dynamic simulation of first-principles distillation models is a very time-consuming task, yet it 

is necessary for monitoring, control and optimization of such processes. In this sense, this work proposes 

a discretized Adomian decomposition method coupled with the Local Thermodynamic Model technique 

in order to speed up the integration of dynamic responses for distillation columns with acceptable 

accuracy loss. Results show that the combination of both approximation methods can lead to at least 150x 

faster simulations with respect to a reference solution with equivalent model characteristics. 
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1. INTRODUCTION 

Distillation columns are very important equipment in the 

process industries because they are responsible for the 

separation and specification of final products and for the 

intermediate recovery of raw materials, among other 

functions. Therefore, distillation columns are essential for the 

operation, profit, efficiency and environmental compliance of 

chemical processes. Nevertheless, distillation columns are 

complex systems, due to the high number of internal states 

(hundreds, in most cases), low number of measurements, 

slow dynamics, and their multivariable and nonlinear 

characteristics. One important issue regarding distillation 

columns is the estimation of product composition, since in 

most cases these are not analyzed on-line, and even in 

favourable situations measurements are only available with 

sampling times and/or delays that can reach several hours. In 

this sense, any techniques destined to the monitoring, control 

and optimization of units involving distillation columns are 

valuable, especially those model-based, as, for example, 

predictive control, sensor fusion/Kalman filtering, data 

reconciliation, etc. However, the computational cost and 

reliability of obtaining numerical solutions from dynamic 

first principles distillation models, which can be constituted 

by systems of hundreds (even thousands) of differential or 

differential-algebraic equations, can be prohibitive for on-line 

applications (Ito et al., 2018). 

In the literature, there have been several proposals to reduce 

the complexity and, as a result, the computational burden in 

integrating the dynamic equations of distillation models as 

well as applications thereof. Examples in this regard are 

alternative model formulations like the nonlinear wave 

propagation theory (Fu and Liu, 2017; Hankins, 2007; 

Hwang, 1995), stage aggregation, also called 

compartmentalization (Kamath et al., 2010; Linhart and 

Skogestad, 2009, 2010; Schäfer et al., 2019), or specialized 

simulation algorithms, as orthogonal polynomial collocation 

(Cao et al., 2016; Valleriote et al., 2012), among others 

(Abrol et al., 2010; Dones and Preisig, 2010). Particularly, 

Schäfer et al. (2019) report approximately 95% time savings 

relative to conventional models in optimal control 

applications. Another approach is related to the great extent 

of the computational time associated to solving the 

thermodynamic equilibrium equations that determine phase 

compositions in this type of model. In this sense, an 

interesting alternative is to use simplified property models, 

which can reduce significantly the time cost (Fernandes and 

Trierweiler, 2009; Ledent and Heyen, 1994), or by 

approximating phase equilibrium properties with, for 

example, artificial neural networks (Nentwich and Engell, 

2016). This is particularly beneficial for conventional 

property models that are themselves implicit functions of the 

state variables (like volumetric equations of state or 

Helmholtz energy models, for example). 

1.1 Adomian decomposition method 

The Adomian series expansion, or decomposition (Adomian, 

1984, 1988, 1991), is an analytical method that can solve a 

wide class of mathematical problems, either linear or non-

linear. The key idea of the method is to obtain recursively the 

terms of an expansion of the solution by reverting its Taylor 

series in the independent variable. Considering an equation in 

operator form 

ℒ𝑣 = 𝑔 + ℛ𝑣 + 𝒩𝑣 (1) 

where ℒ is a general linear operator, ℛ a linear function or 

operator and 𝒩 a nonlinear one, 𝑔 an inhomogeneous term 

and 𝑣 the dependent variable. The formal solution of this 

problem is, obviously, 

𝑣 = ℒ−1𝑔 + ℒ−1ℛ𝑣 + ℒ−1𝒩𝑣 (2) 

The proposed solution involves the infinite series of the form 

𝑣 = ∑ 𝑣𝑛
∞
𝑛=0  (3) 

where the 𝑣𝑛 are partial solutions, with 𝑣0 the solution of  

ℒ𝑣 = 𝑔 (4) 

and the following terms obtained by the recurrence relation 



 

 

     

 

𝑣𝑖 = ℒ−1ℛ𝑣𝑖−1 + ℒ−1𝒜𝑖−1, for 𝑖 = 1, . . , ∞ (5) 

where 𝒜𝑖 are particular functions of 𝑣𝑗, 𝑗 = 0, . . , 𝑖, called the 

Adomian polynomials, which can be found on the basis of 

derivatives of 𝒩 with respect to a dummy argument 

(Adomian, 1984; Elsaid, 2012). The Adomian decomposition 

has been employed to solve a number of different problems, 

as partial differential equations (Adomian, 1986; Arabia, 

2015), boundary value problems (Kumar and Singh, 2010) 

and ordinary differential equations (Younker, 2011). 

Although the method has been applied for nonlinear root 

finding with separation processes, for example in flash 

solving and steady-state distillation (Fatoorehchi et al., 2015; 

Fatoorehchi and Abolghasemi, 2014), no work has been 

found concerning dynamic simulation of such processes. 

This paper proposes the combination of the Adomian 

decomposition method, using a discretization scheme 

(Younker, 2011), and the local thermodynamic model 

approach (Fernandes and Trierweiler, 2009) to accelerate the 

dynamic simulation of distillation columns. The next section 

describes the phenomenological dynamic model considered 

in the paper. The thermodynamic approximation method is 

shown in Section 3, and the application of the Adomian 

technique to the distillation equations is explained in Section 

4. Simulation results comparing the original problem with the 

approximations are in Section 5.  

2. DYNAMIC MODEL 

The considered dynamic model for the distillation column 

consists of a set of coupled ordinary differential equations 

(ODE’s) representing the liquid mole fractions in each stage 

of the column. The main hypotheses of this model are the 

homogeneity of properties in the control volume, constant 

internal flows in each section, 100% efficient stages in 

thermodynamic equilibrium, and constant stage holdup. The 

column is depicted in Figure 1, where 𝐹 and 𝑧 are 

respectively feed rate and molar composition, 𝐿 is the reflux 

rate, 𝑊 is the reboiler boilup, 𝐷 is the distillate flow and 𝑥𝐷 

its molar composition, 𝐵 is the bottoms rate and 𝑥𝐵 its 

composition.  

 

Fig. 1. Scheme of the distillation column (one feed and two 

products, total condenser). 

For the condenser, the equations are (𝑖 = 1, . . , 𝑁𝑐): 

𝑀1
𝑑𝑥𝑖,1

𝑑𝑡
= 𝑉2(𝑦𝑖,2 − 𝑥𝑖,1) (6) 

For the internal stages, except the feed stage, the equations 

are (𝑖 = 1, . . , 𝑁𝑐 𝑗 = 2, . . , 𝑁𝑠 − 1, 𝑗 ≠ 𝑁𝑓): 

𝑀𝑗

𝑑𝑥𝑖,𝑗

𝑑𝑡
= 𝐿𝑗−1𝑥𝑖,𝑗−1 − 𝐿𝑗𝑥𝑖,𝑗 + 𝑉𝑗+1𝑦𝑖,𝑗+1 − 𝑉𝑗𝑦𝑖,𝑗 (7) 

On-stage feed (𝑖 = 1, . . , 𝑁𝑐): 

𝑀𝑁𝑓

𝑑𝑥𝑖,𝑁𝑓

𝑑𝑡
=  𝐹𝑧𝑖 + 𝐿𝑁𝑓−1𝑥𝑖,𝑁𝑓−1 − 𝐿𝑁𝑓𝑥𝑖,𝑁𝑓 +

𝑉𝑁𝑓+1𝑦𝑖,𝑁𝑓+1 − 𝑉𝑁𝑓𝑦𝑖,𝑁𝑓 (8) 

For the reboiler, the equations are of the form (𝑖 = 1, . . , 𝑁𝑐): 

𝑀𝑁𝑠
𝑑𝑥𝑖,𝑁𝑠

𝑑𝑡
=  𝐿𝑁𝑠−1𝑥𝑖,𝑁−1 − (𝐿𝑁𝑠 − 𝑊)𝑥𝑖,𝑁𝑠 − 𝑊𝑦𝑖,𝑁𝑠 (9) 

In each stage, the molar holdup is 𝑀𝑗. The internal flows are 

given by: 

𝐿𝑗 = {
𝑅,  if  𝑗 < 𝑁𝑓           

𝑅 + 𝑞𝐹, if 𝑗 ≥ 𝑁𝑓 
 (10) 

𝑉𝑗 = {
𝑊 + (1 − 𝑞)𝐹,  if 𝑗 ≤ 𝑁𝑓  

𝑊, if 𝑗 > 𝑁𝑓                         
 (11) 

 

where 𝑞 is the feed quality. Therefore, the model contains 

𝑁𝑠𝑁𝑐 differential states (the liquid compositions in each 

stage, 𝑥𝑖,𝑗). 

2.1  Thermodynamic equilibrium 

In an equilibrium stage 𝑗, vapour composition can be related 

to the liquid composition by a generally implicit relation of 

the form: 

𝑦𝑖,𝑗 = 𝐾𝑖(𝑇𝑗 , 𝑃𝑗 , 𝑥, 𝑦) ⋅ 𝑥𝑖,𝑗  , 𝑖 = 1, . . , 𝑁𝑐 (12) 

with 𝐾𝑖, called the K-values, obtained by means of 

thermodynamic relationships for the properties (fugacities) of 

each phase. Vapor compositions 𝑦𝑖  and stage temperatures 𝑇𝑗 

must be obtained by solving the so-called bubble-point 

problem involving (12) and the constraint on mole fractions 

∑ 𝑦𝑖,𝑗𝑖=𝑁𝑐
= 1, ∀𝑗 (13) 

for given 𝑥𝑖,𝑗 and stage pressure 𝑃𝑗. 

3. THERMODYNAMIC APPROXIMATIONS 

As shown in (Fernandes and Trierweiler, 2009), 

thermodynamic approximation methods can improve the 

computational time for the solution of separation problems, 

especially the dynamic simulation of distillation columns. In 

this paper, an alternative method called Simplified 

Thermodynamic Model (STM) is employed, which has the 

form: 

ln(𝐾𝑖𝑃) = 𝜃1,𝑖 +
𝜃2,𝑖

𝜃3,𝑖+𝑇
+ ∑ 𝜃𝑟[𝑘],𝑖 ⋅ 𝑥𝑗

2𝑁𝑐
𝑘=1,𝑘≠𝑖  (14) 

where 𝜃𝑝,𝑖 are model parameters (𝑟 = 4, 5, … , 𝑁𝑐 + 2), fitted 

previously on the basis of data generated with an adequate 

conventional thermodynamic model covering the operating 

space both in terms of composition and pressure. The 

simplified model (14) employed in this work consists in a 

single equation for each component and not in a network of 

such models, as in Fernandes and Trierweiler (2009), in order 
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to improve simulation speed. Moreover, there is no model 

update during the simulation, as in (Ledent and Heyen, 1994) 

3.1  Bubble Point Problem Acceleration (BPPA) 

By exploiting the structure of (14), it has been shown 

(Fernandes and Trierweiler, 2009) that the bubble point 

problem can be solved explicitly, at least in an approximate 

fashion, avoiding iterative solutions of the equilibrium 

problem for each stage at every time step. With this method, 

the bubble point temperature can be directly determined for 

stage 𝑗 by means of the following relations: 

𝑇𝑗 =
−𝐶2,𝑗+√𝐶2,𝑗

2 −4𝐶1,𝑗𝐶3,𝑗

2𝐶1,𝑗
 (15) 

𝐶𝑝,𝑗 = ϕ𝑝,𝑗 + ∑ β𝑝,𝑖𝑅𝑖,𝑗
𝑁𝑐
𝑖=1 , 𝑝 = 0, … , 3 (16) 

𝑅𝑖,𝑗 = 𝑥𝑖,𝑗 exp(𝜃1,𝑖 + ∑ 𝜃𝑟[𝑘],𝑖 ⋅ 𝑥𝑘,𝑗
2𝑁𝑐

𝑘=1,𝑘≠𝑖 ) (17) 

where ϕ0,𝑗 = −𝑃𝑗 and ϕ1,𝑗 = ϕ2,𝑗 = 0. The coefficients β𝑝,𝑖, 

𝑝 = 1, … , 3 are specific of the method and determined solely 

on the basis of 𝜃𝑝,𝑖, and thus are not additional approximation 

parameters. The vapor compositions can be finally calculated 

by 

𝑦𝑖,𝑗 =
𝑥𝑖,𝑗

𝑃𝑗
𝑒𝑥𝑝 (

𝜃2,𝑖

𝜃3,𝑖+𝑇𝑗
) 𝑅𝑖,𝑗 (18) 

 

4. ADOMIAN COLUMN APPROXIMATION 

Casting the equations describing the composition dynamics 

of a distillation column in the matrix form 

ℒ{𝑋} = 𝐠(𝑡) + ℛ{𝑋} + 𝒩{𝑋} (19) 

where ℒ is the differential operator 𝑑 𝑑𝑡⁄ , 𝑋 is a vector 

representation of 𝑥𝑖,𝑗 (𝑖 = 1, . . , 𝑁𝑐, 𝑗 = 1, . . , 𝑁𝑠), ℛ is a linear 

operator and 𝒩 a nonlinear operator. Then, by following 

Adomian method, and considering the discretization of the 

integration interval suggested by Younker (2011), in order to 

avoid polynomial divergence, the solution at each time sub-

interval 𝑘 up to approximation order 𝑁𝑎 is given by  

𝑋𝑁𝑎

(𝑘)
= ∑ 𝑋𝑟

(𝑘)
𝑟=𝑁𝑎

 (20) 

where the partial solutions are  

𝑋0
(𝑘)

= 𝑆0
(𝑘)

+ ℒ−1{𝐠} (21) 

𝑋𝑟
(𝑘)

= ℒ−1 {ℛ{𝑋𝑟−1}} + ℒ−1 {𝒜𝑟−1{𝑋𝑟−1}} (22) 

for 𝑟 = 1, . . 𝑁𝑎, where 𝑆0
(𝑘)

 is the vector of initial conditions 

in each sub-interval, equal to 𝑋𝑁𝑎

(𝑘−1)
 for the discretized 

implementation to ensure solution continuity, ℒ−1 is the 

definite integration from 𝑡𝑘−1 to 𝑡𝑘, and 𝒜𝑟−1 is the 

Adomian polynomial of order 𝑟 − 1. For the column 

equations, the linear part ℛ corresponds to the component 

liquid flows of the form 𝐿𝑗𝑥𝑖,𝑗, and the non-linear term 𝒩 

corresponds to vapor component flows 𝑉𝑗𝑦𝑖,𝑗 = 𝑉𝑗𝐾𝑖,𝑗𝑥𝑖,𝑗. 

The non-homogeneous term 𝐠 has elements 𝑔𝑖,𝑗 given by 

𝐹𝑧𝑖 𝑀𝑁𝑓
⁄  if 𝑗 = 𝑁𝑓 (feed stage) and 0 otherwise, and is 

considered constant for simplicity in this work. 

Although the original method is exact (analytic), for practical 

purposes the solution is truncated after a number of terms 𝑁𝑎. 

Such discretization renders the integration method explicit 

and of finite order. Moreover, since the main objective of this 

work is to achieve a low computational time with satisfactory 

precision, and in order to avoid the integration of the 

nonlinear Adomian terms, the K-values are considered 

constant at each time step. Although the Adomian solution is 

general, the direct application of the method for more 

rigorous column model formulations can be prohibitive in 

terms of computational time, due the arising integrals of 

Adomian polynomials, which can be cumbersome (Younker, 

2011). Tailored schemes must be devised in this case. 

With these considerations, (19) can be rewritten as  

ℒ{𝑋} = 𝐠 + Φ(𝑘)𝑋 (23) 

where Φ(𝑘) is the permutation of a block tridiagonal matrix 

with the following elements 

 lower diagonal: 𝐿𝑗 𝑀𝑗  ⁄ , 𝑗 = 1, . . , 𝑁𝑠 − 1 

 main diagonal: Φ𝑖,1
(𝑘)

= − (𝑅 + 𝐷) 𝑀𝑖⁄ ; Φ𝑖,𝑗
(𝑘)

=

− (𝐿𝑗 + 𝑉𝑗𝐾𝑖,𝑗
(𝑘)

) 𝑀𝑗⁄ , 𝑗 = 2, . . , 𝑁𝑠 − 1; and Φ𝑖,𝑁𝑠
(𝑘)

=

− (𝐵 + 𝑊𝐾𝑖,𝑁𝑠
(𝑘)

) 𝑀𝑁𝑠
⁄  

 upper diagonal: 𝑉𝑗+1𝐾𝑖,𝑗+1
(𝑘)

𝑀𝑗+1⁄ , 𝑗 = 1, . . , 𝑁𝑠 − 1 

Therefore, by applying the Adomian method in the column 

equations (19), it is possible to obtain the following series 

solution with 𝑁𝑎 terms:  

𝑋𝑁𝑎

(𝑘)
= ∑

1

𝑛!

𝑁𝑎

𝑛=0

(Φ(𝑘))
𝑛

𝑆0
(𝑘)

𝛿𝑘
𝑛 + 

                                                 ∑
1

𝑛+1!

𝑁𝑎
𝑛=0 (Φ(𝑘))

𝑛
g 𝛿𝑘

𝑛+1
 (24) 

where 𝛿𝑘 = 𝑡𝑘−1 − 𝑡𝑘 is the time step. Note that, for 

computational efficiency, the matrix power (Φ(𝑘))
𝑛

 can be 

calculated by accumulating the matrix product between Φ(𝑘) 

and the previous term. This solution can be also implemented 

in Horner-type form: 

𝑋𝑁𝑎

(𝑘)
= (𝐈 +

Φ(𝑘)𝛿𝑘

1
(𝐈 +

Φ(𝑘)𝛿𝑘

2
(⋯ ))) 𝑆0

(𝑘)
+ (𝐈 +

Φ(𝑘)𝛿𝑘

2
(𝐈 +

Φ(𝑘)𝛿𝑘

3
(⋯ ))) g 𝛿𝑘 (25) 

In this way, the solution in each subinterval is the exponential 

matrix function updated with state values reached at the end 

of the previous interval. Therefore, the proposed simulation 

algorithm using the Adomian technique can be stated as 

follows: 

1. Calculate the K-values at the step 𝑘 with the 

STM/BPPA technique using liquid composition given in 

the initial condition vector 𝑆0
(𝑘)

 and stage pressure 𝑃𝑗; 

2. Determine the system matrix for the k-th interval, Φ(𝑘); 

3. Determine recursively the solution 𝑋𝑁𝑎

(𝑘)
 for a specified 

approximation order, 𝑁𝑎; 



 

 

     

 

4. Make 𝑆0
(𝑘+1)

= 𝑋𝑁𝑎

(𝑘)
 and advance one time step 𝛿𝑘; 

5. Return to 1 until the endpoint is reached. 

In this paper, three different possible algorithms with the 

Adomian technique were also tested: 

I. Fixed order 𝑁𝑎 and fixed time step 𝛿 (ADM-I);  

II. Fixed order 𝑁𝑎 and adaptation of variable time step 

𝛿𝑘 to achieve a specified tolerance 𝜀 (ADM-II);  

III. Fixed time step 𝛿 and adaptation of variable order 

𝑁𝑎,𝑘 to achieve a specified tolerance 𝜀 (ADM-III).  

In cases II and III, error control is done based on the 

improvement of the solution after a new term is added in the 

solution, that is,  

Δ𝑋 = ‖𝑋𝑟
(𝑘)

− 𝑋𝑟−1
(𝑘)

‖
2
 (26) 

For case II, if the method fails to achieve the specified 

tolerance in a given sub-interval, the step is then reduced by a 

factor 𝜀 Δ𝑋⁄ , and it is increased by a maximum of 25% if the 

step is successful. 

5. RESULTS AND DISCUSSION 

In order to compare the methods, the original model (6)-(11) 

and the Adomian algorithms were implemented in Python (v. 

3.8.5, numpy v. 1.19.2). Conventional integration was done 

with scipy (v.1.5.0) odeint function (algorithm lsoda).  

5.1  Case Study 

The case study was a 34-stage (including condenser and 

reboiler) distillation column separating the mixture benzene, 

toluene and m-xylene, which shows a moderate departure 

from ideality. Feed stage was the 16th from top, and the feed 

is a saturated liquid mixture (𝑞 = 1) with composition 0.625 

(benzene), 0.250 (toluene) and 0.125 (m-xylene) and molar 

flow of 7.330 kmol/min. Molar holdups were 100 kmol for 

each internal stage and 1000 kmol for condenser and reboiler. 

Specified flows were 𝐷 = 4.794 and 𝐵 = 2.899  kmol/min. 

For the base case (initial steady state), reflux flow was 

𝐿 = 12.41 kmol/min. Pressure (1.4 atm) was considered 

constant in all stages for simplicity. The conventional 

thermodynamic model was constituted by the Peng-Robinson 

equation of state for the vapor phase and by the UNIQUAC 

activity coefficient model for the liquid phase. The STM was 

obtained by means of 364 equilibrium points around a 

nominal steady-state composition profile by solving a least-

squares regression to determine the parameters 𝜃𝑝,𝑖. Figure 2 

displays a diagonal plot of the resulting approximated K-

values. 

5.2  Test setup 

Several simulation types were compared in this paper with 

regard to computational time and simulation error: 

 Type 𝐴 (reference): conventional thermodynamic 

model, iterative bubble problem solution and integration 

with odeint, default tolerance (1.4910-8); 

 

Fig. 2. Diagonal plot of the K-values from the STM 

(predicted) and the conventional model (real). 

 Type 𝐵: the same as Type A, but with precision reduced 

to a specified tolerance 𝜀; 

 Type 𝐶: STM, iterative bubble problem solution and 

integration with odeint, default tolerance; 

 Type 𝐷: STM/BPPA and integration with odeint, 

default tolerance; 

 Type 𝐸: STM/BPPA and integration with Adomian-I of 

order 𝑁𝑎 (referred to as ADMNa-I); 

 Type 𝐹: STM/BPPA and integration with Adomian-I of 

order 𝑁𝑎 with the Horner scheme (referred to as 

ADMNa-IH). 

In each case, step perturbations from a fixed steady state were 

simulated. Ten runs were performed with simultaneous 

multiplicative step disturbances in 𝐿 and 𝑉 in the range [0.5, 

1.5], plus ten runs with additive disturbances in 𝑧1 in the 

range [-0.125, 0.125] (with opposite perturbations in 𝑧2 and 

𝑧3). The dynamic responses were simulated up to 100 min, 

with time steps of 0.1 min (note that for odeint this value is 

only used to interpolate intermediate solutions at variable 

intervals). Three different values of 𝜀 (510-2, 110-2, 510-3) 

were also tested, although this has effect solely on type B. 

Therefore, 60 simulations were done with each method. 

Errors at the endpoint were calculated as the 2-norm of the 

distance of a given solution and that of the reference solution, 

that is, for  𝑙 = 𝐵, … , 𝐹: 

𝑒𝑙 = ‖𝑋𝐴 (𝑡 = 100 min) − 𝑋𝑙 (𝑡 = 100 min)‖
2
 (27) 

Observe that (27) is related to the global error of each 

integration scheme, and that the individual component/stage 

composition error is of the order of 10-2𝑒𝑙. The 

computational time 𝑇 for each simulation was measured with 

the function timer of the timeit package and then averaged. 

An “acceleration factor” with respect to the reference 

solution was calculated in each case by 

Γ𝑙 = 𝑇𝐴 𝑇𝑙⁄ , 𝑙 = 𝐵, … , 𝐹 (28) 

A qualitative comparison of the average computational times 

for all simulations is shown in Fig. 3. For reference, the 

vertical grid represents 100s in an Intel i5 3.2GHz PC with 

4Gb RAM. As it can be seen, there are at least 2 orders of 



 

 

     

 

magnitude between the conventional solution (A) and the 

Adomian schemes (E and F). 

 

Fig. 3. Overall comparison of the simulation types with 

regard to computational time. 

Figure 4 illustrates the transient responses of benzene liquid 

mole fractions in all stages for a step increase of 50% in the 

benzene feed composition. In this plots, tolerance 𝜀 was 110-

2 for simulation type B and Adomian order was 3 for types E 

and F. Clearly, all responses are very close. 

 

 

Fig. 4. Integrated dynamic responses of the distillation 

column for a 50% step in 𝑧1. Top: simulation types A (full 

lines), B (dotted), C (dashed), D (dashed-dotted); Bottom: 

simulation types A (full lines), E (dotted), F (dashed). 

Table 1 exhibits the average simulation errors 𝑒𝑙 (27) and 

acceleration factors Γ𝑙 (28) for each simulation type. As one 

could expect, type B has the smallest error with respect to the 

reference simulation, since it has the same model structure of 

the original problem, although it is only approximately 3x 

faster. Types C and D have very similar errors, showing that 

the BPPA causes a very small precision loss, but with a time 

burden 20x smaller than the iterative solution with STM (and 

150x faster than the original solution). The additional gain 

with the Adomian approximation is further 25%, and the 

approximations of order 3 (ADM3-I and ADM3-IH) show 

already a similar precision to the conventional integration 

with the STM. Simulation types E and F have the same 

errors, since the only difference is the implementation form. 

ADM-I is slightly more efficient then ADM-IH, probably due 

to the fact that, although it is Horner form, (25) has two terms 

which have to be calculated separately. Moreover, the 

approximated methods show fairly less variations in 

computational time, what is very desirable for on-line 

applications. 

Table 1. Average simulation results  

Simulation 
Acceleration 

factor, Γ𝒍 
Final error, 𝑒𝑙 

Type B   

𝜀 =510-2 2.97 0.0321 

𝜀 =110-2 2.66 0.0096 

𝜀 =510-3 2.24 0.0028 

Type C* 7.86 0.0274 

Type D* 155.8 0.0275 

Type E   

ADM2-I 184.7 0.0355 

ADM3-I 185.3 0.0283 

ADM4-I 181.7 0.0281 

Type F   

ADM2-IH 180.6 0.0355 

ADM3-IH 176.8 0.0283 

ADM4-IH 167.7 0.0281 

* these simulations do not depend on 𝜀. 

5.2  Variable Step Implementations 

Tests were also conducted with the variable step 

implementations described in section 4 (ADM-II and ADM-

III) as shown in Table 2 for 𝜀 =510-2 and order 3. 

Table 2. Average simulation results for the variable step 

implementations 

Simulation 
Acceleration 

factor, Γ𝒍 
Final error, 𝑒𝑙 

ADM3-I 185.4 0.0283 

ADM3-II 396.0 0.1888 

ADM3-III 171.9 0.0610 

 

The results are highly dependent on fine-tuning the algorithm 

(step increase factor). Nevertheless, simulations with ADM-II 

can be 2x faster in comparison to ADM-I at crude tolerances 

(with 40% less steps at the cost of 50% larger final error), 

specially for steps in L and V. This is 400x faster than the 

original simulation.  

 

 



 

 

     

 

6. CONCLUSIONS 

The combined use of thermodynamic model simplification 

(STM), an algorithm to avoid implicit solutions of the bubble 

point problem (BPPA), plus the Adomian decomposition 

technique led in this paper to a speeding factor of 2 orders of 

magnitude in the dynamic simulation of distillation columns 

(that is, time savings above 99,5%). This improvement can 

make possible the on-line implementation of several model-

based techniques when accuracy is not of paramount 

importance. This is particularly true for composition 

estimation, due to the fact that the saved time can allow for 

model correction with plant data. Moreover, since the 

proposed method does not depend on internal iterations, 

which may fail to converge, it is also more reliable for real 

time applications. Although the integration with the Adomian 

decomposition in original form (type F, ADM-I) contributes 

to a lesser extent in this time reduction, optimized variable-

step implementations can further boost the time savings. 

Moreover, the ADM analytic structure has the potential to 

allow for the efficient implementation of optimal control 

problems, for example. 
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