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Abstract: The operational management of wastewater treatment plants (WWTP) is a complex activity due 
to the biological phenomena’ intricate nature. This complexity hinders the adoption of first principles 

approaches, which lack the necessary accuracy to be adopted in practice. Data-driven methodologies also 

face significant challenges in processing the different information sources available. In this work, we 

present a data-driven and model-agnostic data-fusion framework to estimate the concentration level of a 

toxin in the effluent, using heterogeneous data (sensor data, images, laboratory measurements) collected at 

different locations in the process. Single- and multi-source modeling approaches are applied and compared. 

Among the methodologies tested, Bayesian fusion stands out as presenting a good balance in terms of 

accuracy, stability, and flexibility. 
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1. INTRODUCTION 

The operational management of wastewater treatment plants 

(WWTP) presents many challenges due to the complex nature 

of the biological processes, namely their non-stationarity, 

intrinsic variability, and possible non-linear behavior. 

Furthermore, data collected from such systems also present 

several challenges of their own. For example, the target quality 

parameter(s) are often only available at low frequencies. Also, 

inferential sensors, Process Analytical Technology (PAT) and 

imaging instrumentation do not sample frequently enough, are 

often not synchronized, and present limitations on reliability 
and accuracy. On the other hand, first principles models are 

not available to describe the system with enough accuracy or 

have too many unknown or unreliably estimated parameters. 

In this context, data collected from different sources, at 

different frequencies, and with distinct structures, even though 

difficult to handle, provide the only viable source of 

information to address WWTP management and optimization.  

In this work, we report a novel solution to estimate a regulatory 

controlled toxin in processed wastewater, from multiple data 

sources with different structures and collected at different 

acquisition rates. One of the goals of the WWTP is to treat the 
wastewater so that the toxin level does not exceed the 

Environmental Protection Agency (EPA) compliance for 

disposal. The main processing stages of the WWTP are 

presented in Figure 1. They consist of a settling unit, a flotation 

unit, and finally, a filtering unit, after which the effluent is 

transferred to the environment. The key step for toxin removal 

happens at the flotation unit where additives are mixed with 

the water streams to form flocculates containing the toxin, 

which are then separated from the clean liquid. Wastewater 

samples taken from the bulk below the flocculates are sent for 

laboratory analysis for toxin level quantification 

approximately 1-3 times per week (sampling points shown in 

Figure 1). To effectively control the toxin concentration and 

secure it does not exceed the compliance limit, it is highly 

desirable to have information on a more frequent basis, and to 

know how it relates with the additives used in the process. 

However, more frequent testing is not possible due to the high 

cost and intensive labor involved. Therefore, a data-driven 

framework is proposed in this work to estimate the toxin level 

in the effluent, using data from multiple sources, including the 

flotation process and features extracted from images collected 

in two positions (after the flotation and settling units). 

At the beginning of the analysis, very little was known about 
the structure of the available data sets and their relationship 

with the toxin. Furthermore, there was a lack of understanding 

about the biological processes taking place mainly at the 

settling unit, due to the complexity of the bioreactor media. In 

addition, the different data sources available present structural 

heterogeneity, different time resolutions (granularity ranges 

from several hours to one day) and their collection is not 

synchronized. All these challenges to data analysis were 

addressed in the framework proposed in this article. 

 

Figure 1 - Schematic representation of the Wastewater 

Treatment Plant. 

In order to handle the aforementioned challenges and to 

achieve a robust and accurate estimation of the toxin level, an 

information fusion methodology was conceived. 

Data/information fusion methods offer flexible solutions for 



 

 

     

 

 

handling the integration of different data sources 

(Alyannezhadi et al., 2017; Azimirad & Haddadnia, 2015; 

Castanedo, 2013; Diez-Olivan et al., 2019; Sansana et al., 

2020; Wang & Chiang, 2019). The success of the fusion 

platform depends on the careful design of its components, 

including the development of inferential models for the 
different data sources (Mitchell, 2012; Sidek & Quadri, 2012). 

Important to the development of these models is the quality of 

data and the information generated by integrating data with 

analytics for achieving a given goal, i.e., the InfoQ (Kenett & 

Shmueli, 2014). The InfoQ concept was adapted to the 

development of solutions for the Chemical Processing 

Industry (CPI) (Reis & Kenett, 2018), and its principles will 

guide the development of the fusion platform proposed here. 

This paper is organized as follows. In Section 2 we present the 

data sets analyzed and the workflow followed. In Section 3, 

the modelling results obtained are presented in detail. A 
discussion of the results is made in Section 4, where the main 

conclusions are also summarized, and ideas for future work are 

shared. Due to confidentiality issues, all numerical data used 

were normalized and variables renamed. 

2. DATA SETS AND METHODS 

In this section we briefly introduce the data sets used and the 

proposed methodology.  

2.1 Data sets description 

Three data sets from different locations in the WWTP were 

collected and used to predict the toxin level at the effluent of 

the filtering unit: (i) process measurements at the flotation unit, 

(ii) particle images taken at the settling and flotation units, and 

(iii) laboratory measurement of toxin level collected after the 

settling and flotation units. Process data (i) are available as 

daily averages. Toxin and image data are collected 2-4 times 
per week (irregular sampling). The process data set consists of 

115 variables (e.g., temperatures, turbidities, flowrates, etc.) 

and 659 observations. Image data (ii) are obtained using 

equipment that capture images of individual particles 

(microbiological media) in the waste water samples. Images 

are collected in two positions, namely after the flotation 

process and after the settling unit; the corresponding data sets 

contain 156 and 106 observations, respectively. Additionally, 

the toxin level (iii) is also measured during the process (153 

and 106 samples collected after the settling and flotation units, 

respectively; the target response is the toxin level after the 

flotation unit). Data collection covers 2 years of operation. 

Images are used for image-based solid particle quantification: 

several images are collected for each sample and processed for 

feature extraction (features consist of summary statistics of 

geometrical properties of objects identified in the images). A 

total of 1302 image features are extracted per sample. 

2.2 Exploratory data analysis 

The structure of data acquired influences the performance of 

the inferential models derived from them. Therefore, the 

correlation structure of all data sets was first visualized using 

heat maps of the absolute Pearson’s correlation coefficient and 

Principal Component Analysis (PCA) (Jackson, 1991; Jolliffe, 

2002). Furthermore, the capability of each feature to predict 

the toxin level was also analyzed, in order to detect potential 

strong predictors as well as assess the existence of sparsity in 

the regressors and infer the need to apply filters for predictors 

screening. This exploratory step is also useful for detecting 

outliers and eliminate segments of bad data. 

2.3 Model development 

In the absence of prior information about the best modelling 

approach, the source-dependent models were developed 

following a model-agnostic approach. No modelling 
methodology was assumed a priori to be superior, and their 

merits were assessed and compared using real data, under a 

robust and systematic training/testing scheme. Here, we have 

considered six modelling methods arising from different 

corners of the analytics landscape that have the potential to 

cope with the characteristics of our data sets (i.e. high 

dimensional feature space): Partial Least Squares (PLS) (Wold 

et al., 2001), LASSO (Tibshirani, 1996), Elastic Net (EN) 

(Zou & Hastie, 2005), Random Forests (Breiman, 2001), 

Boosting, and Multi-Layer Perceptron (MLP) (Koskela et al., 

1996). 

 

Figure 2 - Training and testing procedure carried out for each 

modelling methodology. 

To assess the performance of the single-source models, each 

data set was split into two subsets (a training set with the initial 

80% of the observations and a test set with the remaining 20%, 

located at the end; this splitting is more appropriate for 

assessing the performance of the methods in the future). The 

training set was used to estimate the model, where the 
Repeated Prequential (RP) method (Cerqueira et al., 2019) 

was applied to tune the hyper-parameters (number of 

components, regularization constant, etc.), before estimating 

the remaining model parameters.  

The RP method is a cross-validation approach designed for 

time series data. In this work, we implemented this method 

several times, by removing 10% of the training data (aligned 

by the response). At each time, the new estimated model was 

applied to the same test set (the 20% left out test set), obtaining 

the corresponding performance estimation. The procedure is 

summarized in Figure 2. 

Given this nested cross-validation procedure, in this work we 

distinguish two performance indicators expressed in terms of 



 

 

     

 

 

Root Mean Squared Error (RMSE, Equation 1): the Cross-

Validation RMSE (RMSECV) using the RP methodology 

(inner cycle); and the Prediction RMSE (RMSEP) obtained in 

the test set (outer cycle).  

𝑹𝑴𝑺𝑬 = √
∑ (�̂�𝒊 −𝒚𝒊)𝟐
𝒏
𝒊=𝟏

𝒏
(1) 

2.4 Variable selection 

The objective of variable selection is to narrow down the 

candidate set of predictors, selecting those with the highest 

potential to generate high quality quality information, i.e. for 

maximizing InfoQ (Reis & Kenett, 2018). Variable selection 
(VS) plays a critical role during model development and can 

significantly affect the predictive performance by mitigating 

the effects of over-fitting.  

 

Figure 3 – Model development procedure.  

In the present work, features were selected based on variable 

importance metrics directly linked to each regression 

methodology under analysis: 

 Variables Importance in Projection (VIP): PLS 

 Regression Coefficients: LASSO and EN 

 Features Importance (FI): RF and Boosting 

 Permutation Importance (PI): MLP 

 

According to the appropriate variable importance measure for 
each type of model, variables were selected prior to the 

modeling stage (Figure 3; an exhaustive search of the best 

feature selection methodology is beyond the scope of the 

present work). 

2.5 Data Fusion  

Two methodologies were tested for fusing multi-source data: 

a multiblock methodology represented by the concatenated 

method (Figure 4) (Campos et al., 2017) and Bayesian fusion 
(Figure 5).  

The concatenated method combines all data sets into an 

extended feature matrix and then trains a model with the entire 

concatenated set. In the present work, a preliminary stage of 

variable selection was made in each data set, so that only 

variables with potential predictive value are integrated in the 

concatenated method to estimate the toxin level. 

On the other hand, Bayesian fusion combines information 

from different sources while explicitly considering their 

uncertainty. The predictions from each source are then 

combined to generate the final toxin level estimate. The 

uncertainty of each source determines the weights used for 

combining the predictions obtained from their respective 
models. The weights are updated dynamically, using the 

residuals from the last five observations (RMSEP). 

 

Figure 4 - Scheme for the concatenated method. 

 

Figure 5 – Scheme of the Bayesian fusion method. 

3. RESULTS 

We now present the results obtained from implementing each 

stage of the proposed workflow described in the previous 

section. 

3.1 Exploratory data analysis 

In this stage, special focus was given to the analysis of the 

correlation structure of the data sources, as well as the 

relationship between individual features and toxin level. These 

aspects are related to the predictors’ multicollinearity and 

sparsity issues, and therefore it is desirable to extract insights 

about them before constructing the models. 

The Pearson’s pair-wise correlation coefficient was computed 

for all data sets. The absolute value of the coefficients for the 

process variables from the flotation unit are presented in the 

heatmap shown in Figure 6, where it is possible to verify the 

existence of some blocks of highly correlated variables (e.g., 
flows and pump speeds in the flotation unit data). Collections 

of highly correlated variables were also found analyzing cross-

correlation heatmaps for fluid imaging data (e.g., average 

geometrical features of the objects in the images, such as those 

related to area and diameter).  

Predictor’s sparsity, i.e., the existence of a few strong 

predictors in the middle of many weak or noisy ones, was also 



 

 

     

 

 

explored. In Figure 7, we present the p-value from the 

statistical test for the significance of the correlation coefficient 

between each process variable and the toxin level. Considering 

a significance level of 0.05, a p-value below this threshold 

indicates a significant correlation with the toxin. On the other 

hand, variables with p-values above 0.05 are weakly 
associated with the target response. A similar analysis was 

carried out for the image-based features from both the flotation 

and settling units. 

 

Figure 6 - Heatmap of absolute value of Pearson’s correlation 

coefficient between predictors, process data from flotation unit. 

 

Figure 7 – P-values of the Pearson's correlation of process data 

from the flotation unit and the toxin level.  

Then, PCA was applied to each data set separately. Results for 

two data sets are presented in Figure 8. The first two PCs 

capture between 25% to 35% of the overall variability, in each 

data set. Even though these values may seem low, they are 

common in industrial data, especially from biological systems 

where a large amount of variability is unique to each predictor 

and uncorrelated with other sources of variability. Even so, 

visual analysis of the first two principal components, PC 1 and 
PC 2, still conveys valuable information about the main 

patterns of variation in the data sets and the possible existence 

of clustered observations, trends, outliers, etc. Figure 8a 

presents the scatter plot between the scores of the first two PCs 

for the process data set, revealing the existence of two clusters, 

which are likely related to different operational conditions 

during the analysis period. Indeed, these two clusters 

correspond to a change of one piece of equipment in the 

process. However, the quality of the models built for each 

period did not show significant differences when compared to 

the model built on the entire period.  

Figure 8b presents the scatter plot of the scores from the first 

two PCs of the image data from the settling unit (representing 

33% of the original variation). As no obvious clusters are 
observed, the two operational periods are not considered 

separately in the subsequent analysis. 

  

Figure 8 - Scatter plot of the scores for PC 1 and PC 2: a – process 

data from flotation unit, b – fluid imaging data from settling unit. 

3.2 Model Development 

The WWTP biological processes may present relevant 

dynamic modes. Thus, the use of past data may improve the 

model’s predictive accuracy. In order to explore this 
possibility, lagged variables were included in the analysis as 

additional features (for process data from the flotation unit).  

Models were trained using EN and RF methods and compared 

with those obtained without the inclusion of lagged variables. 

Here, EN and RF were selected due to the embedded variables 

selection capabilities of the methodologies so that they could 

provide a good indication of the potential value of introducing 

lagged-variables in the analysis. (This does not imply however 

that EN and RF will be the selected models in the end.) 

Table 1 - Median RMSECV for the considered lags (process data 

set from the flotation unit). Best results are highlighted.  

Meth. k k-1 k-2 k-3 k-10 k-25 k-30 

EN 1.954 1.036 1.056 1.047 1.093 0.995 0.957 

RF 1.843 1.025 1.023 1.043 1.068 1.019 0.963 

 

In the study conducted, lags of up to 30 days were considered 

based on the known dynamics of the biological system. Table 

1 summarizes the results of model performance from cross-

validation (RMSECV) using process data with lags for the EN 
and RF model, respectively. Here, k-n indicates that variables 

with lags from 0 up to n days back in the past, were also 

included for model development. Results revealed that an 

improvement was achieved after introducing just a one-day lag 

in the predictor; however, the best performance was obtained 

when lags up until 30 days were used. Thus, they included in 

the variable set for estimation of the toxin with the process data 

from the flotation unit (note that the final variable/lag selection 

will be done later on; this is just to define the past horizon to 

be included for variable selection and model training). In this 

way, the number of variables was increased from 115 to 3565 
(115 × 31, from day k until day k-30). 



 

 

     

 

 

Adding lagged variables to the image data sets from flotation 

and settling units raises implementation issues, because they 

are collected at irregular sampling rates. Therefore, 

information from the past were incorporated using a time 

windowed aggregation approach, where features were 

averaged over moving windows of 7, 14, 21, and 28 days. The 
cross-validated RMSE of models with different averaging 

windows are shown in Table 2.  

Table 2 - Median RMSECV for aggregated data (imaging data 

from the flotation and settling units). Best results are highlighted. 

Source Meth. D 
7D   

av. 

14D 

av. 

21D 

av. 

28D 

av. 

Flotation 

unit 

EN 1.092 0.973 1.044 1.038 1.046 

RF 1.017 0.991 1.033 0.972 0.974 

Settling 

unit 

EN 1.014 0.981 0.998 1.038 1.043 

RF 0.988 0.945 1.036 1.088 1.005 

 

For image data from the flotation unit, EN model has the best 

performance with a 7 days average included in the predictors 

(see Table 2). In the case of RF, the optimal choice was 21 

days. Thus, for this data set, the 7 and 21 days averaged data 

will be considered for toxin estimation. This implies doubling 

the number of variables (from 1302 to 2604), because features 

replicates in two aggregation windows are now considered. 

Table 3 - Median RMSECV for the methods developed from a 

single source of data (models with “VS” prefix are built on 

selected variables subsets). Best results are highlighted. 

 

Process data 

flotation 

Fluid imaging 

flotation 

Fluid imaging 

settling 

PLS * * 1.088 

VS PLS 0.808 0.889 0.779 

LASSO 1.024 1.033 1.061 

VS LASSO 0.762 0.81 0.761 

EN 1.021 0.937 0.981 

VS EN 0.767 0.812 0.673 

RF 0.956 0.896 0.948 

VS RF 0.681 0.756 0.635 

Boosting 0.957 0.893 0.952 

VS Boosting 0.774 0.816 0.673 

MLP * * 1.083 

VS MLP 0.875 0.873 0.682 

* Unreliable predictions were obtained in some cross-validation runs. 

As for the image data from the settling unit (Table 2), EN and 

RF results are relatively consistent. The best results are 

obtained using a 7 days average and therefore these variables 

are included as additional predictors for building single-source 

models. Here, the original variables were transformed into the 

aggregated ones, so the number of variables remains the same 

(1302). 

With the lagged structure defined, we now present the results 

obtained from all six estimation methods considered in this 

work for predicting toxin level using each data source: PLS, 
LASSO, EN, RF, Boosting, and MLP.  

The results for model development without/with a variable 

selection step can be found in Table 3, where Random Forests 

with Variable Selection (VS RF) presents the best performance 

for all data sources. 

The next step is to integrate/fuse all data sources together.  

Recall there are two approaches, concatenated and Bayesian 

fusion.  VS RF was also used to build the concatenated model. 

 

Figure 9 - Test results for the single-source (RF Pro Flotation - 

RF using the Process data from Flotation unit; RF FI flotation - 

RF derived from imaging data from the Flotation unit; RF FI 

settling – RF using data from settling unit) and multi-source (RF 

Concatenated and Bayesian Fusion). 

 

Figure 10 - Time series plot of observed and predicted toxin levels 

for various methods using fluid image data from settling unit (RF 

FI settling), concatenated RF, and Bayesian fusion. 

Figure 9 presents the performance of the test data using three 

single-source and two multi-source methods. Multi-source 
methods perform better than single-source methods. 

Comparing the results from the two fusion strategies, the 

concatenated RF fusion method gives quite similar 

performance to the Bayesian fusion methodology. However, 

Bayesian fusion performance is apparently more stable, 

presenting less variability. 

From Figure 9, it is also possible to verify that Bayesian fusion 

and the concatenated RF methods offer the best solution 

among those studied in this work. The Bayesian approach is 

also able to provide estimates as long as one source is 

available, without requiring any extra processing step of 

missing data imputation. 

Figure 10 shows the observed and predicted values for the test 

set of the toxin as time series. There are 5 observations in test 

domain that neither the concatenated method nor the best 

single source models were able to predict, due to lack of 

imaging data from the settling unit. 

4.  DISCUSSION AND CONCLUSIONS 

Accurate and timely estimation of the target effluent propery 

are important factors for the operation management of a 

WWTP. In this work, several data-driven methodologies were 

used to estimate the toxin level, based on data collected from 

different sources, with distinct structures (image/sensor data, 
regular/irregular sampling). Model performance was enhanced 



 

 

     

 

 

through variable selection and machine learning techniques 

together with fusion schemes. As shown in the results section, 

the multi-source solutions generally show better performance 

than single-source models, due to their ability to integrate 

information from different sources and explore their 

complementary synergies.  

While the concatenated and Bayesian fusion methods were 

found to perform similarly, the latter one does present some 

advantages. Its performance is more consistent and stable, and 

it considers the accuracy of each source (updated over time), 

in contrast to the concatenated approach. Even if the variables 

and blocks are scaled, this will not make any effect on the RF 

model. Another positive aspect of the Bayesian approach is 

that it does not require data from all sources to be 

simultaneously available. The last issue is important in 

practice, as process data is acquired on a daily basis whereas 

image data is only acquired 2-3 times per week.  

The multi-rate structure, mentioned above, affects single 

source models (namely those based on image data from both 

flotation and settling units), as well as the concatenated fusion 

strategy. This issue is clearly visible in Figure 10, where the 

frequency of predicted values is higher for the Bayesian Fusion 

strategy. On the other hand, the single-source model based on 

process data from the flotation unit can provide predictions at 

the required frequency (daily), but its performance is 

comparatively worse (Figure 9). 

In future work, alternative fusion methods will be explored. 

Also, approaches that simultaneously perform feature 

engineering and selection, such as Network-Induced 
Supervised Learning (Reis, 2013b; Reis, 2013a), will be 

explored. Finally, the problem of adjusting the additive dosing 

in the flotation unit will be considered.  
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