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Abstract: The material screening is a preliminary step while designing an adsorption process. This step is 

carried out with a limited view of what concerns the material used. It usually focuses only on the materials’ 

properties and not on their behavior while employed in the separation process. Furthermore, there is a lack 

of a systematic approach that uses an available materials database to identify the best material in a given 

process application. This leaves an open issue in the literature, which is getting attention with the advance 

of computer sciences. Hence, this work addresses this topic by proposing a systematic approach based on 

Deep Learning and a meta-heuristic optimization for simultaneous adsorbent screening and process 

optimization. This approach is developed with the main goal to make available a methodology for process 

optimization with material design that can be run at any time that the process needs to be reconfigured, 

without exhaustive simulations. As a case study, it is presented the carbon dioxide capture by Electric 

Swing Adsorption. The results show that the proposed methodology can identify the optimal material 

composition while providing the optimal process operating conditions. 

Keywords: Adsorbents screening; Deep Learning; CO2 capture; Electric Swing Adsorption; Multi-level 

Optimization.

1. INTRODUCTION 

It is possible to note a rising interest in the literature to apply 

Artificial Intelligence to address material science problems. As 

presented by Ongari, Talirz, and Smit (2020), the recent 

growth of computational power allows the use of the 

continually growing material properties database towards 

matching the ideal available material to the application. 

However, it is still necessary to reach further developments 

that allow this bridge between computer and material sciences.  

Another point of view of this problem is how the ideal material 

is the optimal option? In Rajagopalan, Avila, and Rajendran 

(2016), the authors raised a similar question, which is the title 

of their work “Do adsorbent screening metrics predict process 

performance?”. Usually, in the material science literature, a 

given adsorbent's performance is evaluated separately from its 

industrial application. Therefore, a material that presents right 

adsorption metrics in adsorbent screening might not be the 

option that will lead to the application scenario's optimal 

operation. However, the simultaneous processes optimization 

and adsorbent screening might be an exhaustive task, mainly 

due to the heavy computation cost associated with cyclic 

adsorption models. This effort can be overtaken using artificial 

intelligence techniques, especially the Deep Neural Networks 

(DNN). The application of DNN to address dynamic problems 

in chemical engineering is a recent field. In Oliveira et al. 

(2020), the authors propose for the first time the application of 

DNN models to address the cyclic adsorption modeling. In the 

referred work, the authors demonstrated that the DNN models 

can represent the process dynamics with more fidelity than 

other machine learning approaches, such as shallow recurrent 

neural networks and the feed-forward ones. Following those 

conclusions and extending the DNN’s field of application in 

chemical engineering, this work proposes identifying a DNN 

model to address the simultaneous process optimization and 

materials screening. The main benefit of using the DNN 

approach for this case is its low computation cost, when 

comparing to the usage of phenomenological models. For 

instance, the execution time for an Artificial Intelligence 

model can be some seconds while a cyclic adsorption first 

principle model might require several minutes up to hours to 

reach a cyclic steady state (Wang et al., 2003; Nogueira et al., 

2017, 2018; Oliveira et al., 2020).  

Therefore, this work proposes a systematic optimization 

procedure in order to simultaneously define a process optimal 

operating condition and the optimal option of adsorbent among 

a known and available set of materials.  The methodology is 

idealized for cases where it is necessary a process 

reconfiguration during an operating campaign. Therefore, 

requiring a solution that can be quickly available, which would 

not be possible using first-principles models.  As a study case, 

the optimization of an Electrical Swing Adsorption (ESA) unit 

operation for CO2 capture is presented. The ESA is a cyclic 

adsorption process in which the heat is generated by Joule 



 

 

     

 

effect. It is claimed that this process has the potential to 

promote CO2 capture efficiently. In Regufe et al. (2020) is 

reported an extensive study of hybrid materials composed of 

zeolite 13X (having good CO2 adsorption capacity properties) 

and activated carbon (having good electric properties) in 

different compositions: only activated carbon (100%AC), with 

70% of activated carbon and 30% of zeolite 13 X (70%AC-

30%13X) and 50%/50% of zeolite 13X/activated carbon, 

respectively. These materials were shaped into pellets by 

extrusion. Thus, the materials presented in the referred work 

will be here used as decision variables in the proposed 

optimization problem. Hence, it is possible to perform a 

systematic materials screen together with the unit operation 

optimization.  

The methodology here proposed can be schematically 

represented in three steps as: 

 Definition of decision variables and optimization goals; 

 Empirical model identification; 

 Optimization problem definition. 

2. DEFINITION OF DECISION VARIABLES AND 

OPTIMIZATION GOALS 

A rigorous mathematical model of the ESA process was used 

as a virtual plant to generate the database for the empirical 

model identification. The model was validated experimentally 

by Regufe et al. (2020). This model contains the mass, energy, 

and momentum balances to describe multicomponent 

adsorption dynamic behaviour in a fixed-bed. The following 

assumptions were considered: 

- ideal gas behaviour for the gas phase; 

- constant porosity along the bed; 

- no mass, heat or velocity gradients in the radial dimension; 

- internal mass transfer resistance described by the Linear 

Driving Force (LDF) model; 

- absence of temperature gradients within the solid particle, 

since the heat transfer in the solid is much faster than in the gas 

phase; 

- axially dispersed plug flow; 

- the Ergun equation is valid locally, i.e., in the momentum 

balance, only the terms of pressure drop and velocity change 

are considered. 

The model is composed by the following equations. 

Material balance in the gas phase: 

𝜕

𝜕𝑧
(𝜀𝑏𝐷𝑎𝑥𝐶𝑔𝑡

𝜕𝑦𝑖

𝜕𝑧
) −

𝜕

𝜕𝑧
(𝑢0𝐶𝑔𝑖) − 𝜀𝑏

𝜕𝐶𝑔𝑖

𝜕𝑡
− (1 − 𝜀𝑏)𝑎𝑝𝑘𝑓(𝐶𝑔𝑖 − 𝐶𝑠𝑖) = 0 

 
(1) 

 

where 𝑧 is the axial position, 𝑡 is the time, 𝜀𝑏 is the bed 

porosity, 𝑢0 is the superficial velocity, 𝐶𝑔𝑡 and 𝐶𝑔𝑖 are 

respectively the total and component 𝑖 gas-phase 

concentrations, 𝑦𝑖  is the molar fraction of component 𝑖, 𝐶𝑠𝑖 is 

the concentration of component 𝑖 at the gas-solid interface, 𝐷𝑎𝑥  

is the mass axial dispersion coefficient, 𝑘𝑓 is the film mass 

transfer coefficient, 𝑎𝑝 is the particle external specific area.  

Momentum balance (Ergun equation): 

−
𝝏𝑷

𝝏𝒛
=

𝟏𝟓𝟎𝝁𝒈(𝟏 − 𝜺𝒃)𝟐

𝜺𝒃
𝟑 𝒅𝒑

𝟐 𝒖𝟎 +
𝟏. 𝟕𝟓(𝟏 − 𝜺𝒃)𝝆𝒈

𝜺𝒃
𝟑𝒅𝒑

|𝒖𝟎|𝒖𝟎 (2) 
 

where 𝑃 is the total pressure, 𝜇𝑔 is the gas viscosity, 𝜌𝑔 is the 

gas density and 𝑑𝑝 is the particle diameter. 

The particles porosity was considered to be bidisperse, 

containing macropores and crystals, and the mass transfer 

resistance was modeled in each using the linear driving 

force models in series (bi-LDF): 

𝝏�̅�𝒊

𝝏𝒕
=

𝟏𝟓𝑫𝒑𝒊

𝑹𝒑
𝟐

(𝑪𝒔𝒊 − �̅�𝒊) −
𝝆𝒑

𝜺𝒑

𝝏�̅�𝒊

𝝏𝒕
 (3) 

where 𝐷𝑝𝑖 is the pore diffusivity of component 𝑖, 𝑅𝑝 is the 

particle radius, 𝜌𝑝 is the particle density, 𝜀𝑝 is the particle 

porosity, 𝐶�̅� is the average concentration in the 

mesopores/macropores of component 𝑖, and �̅�𝑖 is the average 

adsorbed phase concentration of component 𝑖. 
Mass balance in the micropores, also described by the 

Linear Driving Force model: 

𝜕𝑞̅̅ ̅
𝑖

𝜕𝑡
=

15𝐷𝑐𝑖

𝑅𝑐
2 (𝑞𝑖

∗ − �̅�𝑖) (4) 

where 𝐷𝑐𝑖 is the crystal diffusivity, 𝑅𝑐 is the crystal radius, 𝑞𝑖
∗ 

is the adsorbed phase concentration of component 𝑖 in 

equilibrium with 𝐶�̅� calculated with the multicomponent Dual-

Site Langmuir isotherm model. 

The fluxes equality at the particle surface: 
𝑎𝑝𝑘𝑓

𝜀𝑝

(𝐶𝑔𝑖 − 𝐶𝑠𝑖) =
15𝐷𝑝𝑖

𝑅𝑝
2 (𝐶𝑠𝑖 − 𝐶�̅�) (5) 

The gas phase energy balance: 

𝜕

𝜕𝑧
(𝜆

𝜕𝑇𝑔

𝜕𝑧
) − 𝑢0𝐶𝑡�̃�𝑝

𝜕𝑇𝑔

𝜕𝑧
+ 𝜀𝑏𝑅𝑔𝑇𝑔

𝜕𝐶𝑡

𝜕𝑡

− (1 − 𝜀𝑏)𝑎𝑝ℎ𝑓(𝑇𝑔 − 𝑇𝑝) −
4ℎ𝑤

𝐷𝑤

(𝑇𝑔 − 𝑇𝑤) − 𝜀𝑏𝐶𝑡�̃�𝑣

𝜕𝑇𝑔

𝜕𝑡
= 0 

(6) 

where �̃�𝑣 and �̃�𝑝 are the gas molar specific heats at constant 

volume and pressure, respectively, 𝑅𝑔 is the ideal gas 

constant, 𝐷𝑤 is the internal wall diameter, 𝜆 is the axial heat 

dispersion coefficient, ℎ𝑓 and ℎ𝑤 are the film heat transfer 

coefficients between the gas phase and the particle, and the 

gas phase and the wall. 𝑇𝑔, 𝑇𝑝 and 𝑇𝑤 are the gas, particle, and 

wall temperatures, respectively. 

The energy balance of heat transfer through the wall, 

neglecting the axial heat conduction on the column wall: 

𝜌𝑤�̃�𝑝𝑤

𝜕𝑇𝑤

𝜕𝑡
= 𝛼𝑤ℎ𝑤(𝑇𝑠 − 𝑇𝑤) − 𝛼𝑤𝑙𝑈(𝑇𝑤 − 𝑇∞) (7) 

where 𝑇∞ is the external temperature, 𝜌𝑤  is the wall density, 

�̂�𝑝,𝑤 is the wall specific heat per mass unit, 𝑈 is the overall heat 

transfer coefficient  𝜶𝒘 is the wall thickness.  

The energy balance to the solid phase: 

(1 − 𝜀𝑏)[𝜀𝑝 ∑ 𝐶𝑝𝑖
̅̅ ̅̅ �̃�𝑣𝑖

𝑛
𝑖=1 + 𝜌𝑝 ∑ 𝑞�̅��̃�𝑣,𝑎𝑑𝑠,𝑖 + 𝜌𝑝�̃�𝑝,𝑠

𝑛
𝑖=1 ]

𝜕𝑇𝑝

𝜕𝑡
−

(𝜆𝑠𝑜𝑙𝑖𝑑
𝜕2𝑇𝑝

𝜕𝑧2
) = (1 − 𝜀𝑏) (𝜀𝑝𝑅𝑔𝑇𝑝

𝜕𝐶�̅�

𝜕𝑡
)+ 

𝜌𝑏 [∑ (−∆𝐻𝑖
𝑛
𝑖=1 )

𝜕�̅�𝑖

𝜕𝑡
] + (1 − 𝜀𝑏)𝑎𝑝ℎ𝑓(𝑇𝑔 − 𝑇𝑝) −

4

𝑑𝑤
ℎ𝑤(𝑇𝑝 − 𝑇𝑤) +

𝐼2𝜌(𝑇)

[(1−𝜀𝑏)𝜋𝑅𝑤
2𝐿]

2 𝜃 

(8) 

where �̃�𝑣,𝑎𝑑𝑠,𝑖 is the molar specific heat of component 𝑖 in the 

adsorbed phase at constant volume, �̂�𝑝,𝑠 is the adsorbent 

specific heat per mass unit, 𝜆𝑠𝑜𝑙𝑖𝑑  is the axial heat conduction 



 

 

     

 

in the solid phase and (−∆𝐻𝑖) is the heat of adsorption of 

component 𝑖. 𝐼 is the electric current passing through the bed, 

𝜃 is the coefficient of the effective energy employed in the 

heating of the adsorbent (Ribeiro et al., 2012) and 𝜌 is the 

electric resistivity of the packed bed, which is temperature-

dependent. This temperature dependence was evaluated 

experimentally. 

The multicomponent extension of the Dual-Site Langmuir 

model: 

𝑞𝑖 = 𝑞𝑠𝑎𝑡,1,𝑖

𝑏1,𝑖𝑃𝑖

1 + ∑ 𝑏1,𝑗𝑃𝑗
𝑛
𝑗=1

+ 𝑞𝑠𝑎𝑡,2,𝑖

𝑏2,𝑖𝑃𝑖

1 + ∑ 𝑏2,𝑗𝑃𝑗
𝑛
𝑗=1

 (9) 

𝑏𝑘,𝑖 = 𝑏∞,𝑘,𝑖 𝑒𝑥𝑝 (
−∆𝐻𝑘,𝑖

𝑅𝑔𝑇
) (10) 

where 𝑞𝑠𝑎𝑡,1,𝑖 and 𝑞𝑠𝑎𝑡,2,𝑖 are the adsorption saturation 

capacities of each site for component 𝑖, 𝑏∞,𝑘,𝑖 is the adsorption 

constant at infinite temperature and (−∆𝐻𝑘,𝑖) is the heat of 

adsorption for each site 𝑘 (1 and 2) and each component 𝑖, and 

𝑇 is the system temperature. The isotherms parameters are 

given in Table 1. 

Table 1. Dual-Site Langmuir model parameters for CO2 

and N2 adsorption equilibrium on 100%AC, 70%AC-

30%13X and 50%AC-50%13X pellets 

 
𝒒𝐬𝐚𝐭,𝟏 

(mol/kg) 

𝒒𝐬𝐚𝐭,𝟐 

(mol/kg) 

𝒃𝟎,𝟏 

(bar-1) 

× 105 

𝒃𝟎,𝟐 

(bar-1) 

× 105 

(−∆𝑯)𝟏 

(kJ/mol) 

(−∆𝑯)𝟐 

(kJ/mol) 

100%AC 

CO2 13.463 2.322 4.14 1.37 19.7 27.1 

N2 0.581 1.406 1.74 20.9 7.9 18.5 

70%AC-30%13X 

CO2 6.489 0.742 2.64 0.176 24.2 40.8 

N2 2.379 1.239 34.8 5.02 13.1 20.2 

50%AC-50%13X 

CO2 2.026 4.535 2.95 0.642 34.1 28.4 

N2 3.617 0.866 18.6 353 14.5 8.9 

The ESA cycle considered contains four steps. The boundary 

conditions for the ESA steps employed in the simulations are 

given in Table 2. 

 

Table 2. Model boundary conditions 

Feed 

z = 0, INLET z = L, OUTLET 

𝑢0𝑖𝑛𝑙𝑒𝑡𝑦𝑖𝑛𝑙𝑒𝑡𝐶𝑖𝑛𝑙𝑒𝑡,𝑇

= 𝑢0𝑦0,𝑖𝐶𝑖 − 𝜀𝑏𝐷𝑎𝑥𝐶𝑇

𝜕𝑦𝑖

𝜕𝑧
 

𝜕𝐶𝑖

𝜕𝑧
= 0 

𝑢0𝑖𝑛𝑙𝑒𝑡𝐶𝑖𝑛𝑙𝑒𝑡,𝑇 = 𝑢0𝐶𝑇 𝑃 = 𝑃𝑜𝑢𝑡𝑙𝑒𝑡 

𝑢0𝑖𝑛𝑙𝑒𝑡𝑦𝑖𝑛𝑙𝑒𝑡𝐶𝑖𝑛𝑙𝑒𝑡,𝑇𝐶𝑝𝑇𝑖𝑛𝑙𝑒𝑡

= 𝑢0𝐶𝑇𝐶𝑝𝑇𝑔 − 𝜆
𝜕𝑇𝑔

𝜕𝑧
 

𝜕𝑇𝑔

𝜕𝑧
= 0 

Closed Column Electrification 

𝑧 = 0, INLET 𝑧 = 𝐿, OUTLET 
𝜕𝐶𝑖

𝜕𝑧
= 0 

𝜕𝐶𝑖

𝜕𝑧
= 0 

𝜕𝑇𝑔

𝜕𝑧
= 0 

𝜕𝑇𝑔

𝜕𝑧
= 0 

𝑢0 = 0 𝑢0 = 0 

Counter-current Depressurization 

𝑧 = 0, OUTLET 𝑧 = 𝐿 
𝜕𝐶𝑖

𝜕𝑧
= 0 

𝜕𝐶𝑔,𝑖

𝜕𝑧
= 0 

𝜕𝑇𝑔

𝜕𝑧
= 0 

𝜕𝑇𝑔

𝜕𝑧
= 0 

𝑃
= 𝑃ℎ𝑖𝑔ℎ

+ (𝑃𝑝𝑢𝑟𝑔𝑒 − 𝑃ℎ𝑖𝑔ℎ)(1

− 𝑒𝑥𝑝(−𝛽𝑡)) 

𝑢0 = 0 

Purge 

𝑧 = 0, OUTLET 𝑧 = 𝐿, INLET 

𝜕𝐶,𝑖

𝜕𝑧
= 0 

𝑢0𝑖𝑛𝑙𝑒𝑡𝑦𝑖𝑛𝑙𝑒𝑡𝐶𝑖𝑛𝑙𝑒𝑡,𝑇

= 𝑢0𝑦0,𝑖𝐶𝑖 − 𝜀𝑏𝐷𝑎𝑥𝐶𝑇

𝜕𝑦𝑖

𝜕𝑧
 

𝑃

= 𝑃𝑝𝑢𝑟𝑔𝑒 + (𝑃𝑓𝑒𝑒𝑑 − 𝑃𝑝𝑢𝑟𝑔𝑒)(1

− 𝑒𝑥𝑝(−𝛽𝑡)) 

𝑢0𝑖𝑛𝑙𝑒𝑡𝐶𝑖𝑛𝑙𝑒𝑡,𝑇 = 𝑢0𝐶𝑇 

𝜕𝑇𝑔

𝜕𝑧
= 0 

𝑢0𝑖𝑛𝑙𝑒𝑡𝑦𝑖𝑛𝑙𝑒𝑡𝐶𝑖𝑛𝑙𝑒𝑡,𝑇𝐶𝑝𝑇𝑖𝑛𝑙𝑒𝑡

= 𝑢0𝐶𝑇𝐶𝑝𝑇𝑔 − 𝜆
𝜕𝑇𝑔

𝜕𝑧
 

The pellets CO2/N2 selectivity was estimated, considering 

multicomponent adsorption of a 20%/80% CO2/N2 mixture at 

1.50 bar and 298 K, and the following order was obtained: 

50%AC-50%13X (41.9) > 70%AC-30%13X (24.6) > 

100%AC (12.2). Then, in terms of selectivity, 50%AC-

50%13X is the best option. The heat conductivity of the 

material is a crucial property for application in an ESA 

process. The main obstacle identified in this process for CO2 

capture is the lack of an adsorbent material that combines good 

adsorption properties and electric properties needed for the 

Joule effect. Considering these two properties in the three 

materials, according to Regufe et al. (2020), 50%AC-50%13X 

could be the most appropriate option. However, the referred 

work did not evaluate the material composition influence 

while considering the unit optimal conditions. Therefore, the 

present work will use  the material composition as a decision 

variable, concomitantly with the duration of each step of the 

ESA unit: Feed (𝑡𝑓𝑒𝑒𝑑), Closed Column Electrification (𝑡𝐶𝑒𝑙𝑒𝑐); 

Counter-current Depressurization (𝑡𝑂𝑒𝑙𝑒𝑐); Purge (𝑡𝑝𝑢𝑟𝑔𝑒). 

The optimization problem will have a focus on the 

maximization of the unit productivity while minimizing its 

energy consumption, considering the CO2 purity as a 

constraint. To represent the material composition in its explicit 

form as a decision variable, three phenomenological models 

were used, each containing different adsorption equilibrium 

isotherms. Thus, it was possible to build a database where the 

material composition represents each model that generated the 

dataset. Therefore, the deep learning model can use this feature 

directly as model input. 

3. DEEP LEARNING MODELS IDENTIFICATION 

The DNN model identification is an essential step of the 

method proposed here. Thus, a series of steps are proposed to 

be carefully followed to produce a reliable and precise model. 

The methodology here employed can be listed as: 

 Design of experiments and build of training database; 

 Definition of predictor and its hyperparameter; 

 DNN training tuning; 



 

 

     

 

 DNN structure optimization and final model 

validation. 

3.1 Design of experiments and build of the training database 

The Latin Hypercube Sampling (LHS) technique is a useful 

tool for the design of experiments, which is usually applied in 

the literature for AI models identification (Helton and Davis, 

2003; Sant Anna et al., 2017; Oliveira et al., 2020). The LHS 

is based on the near-random generation of the conditions using 

a cumulative probability density function and correlation 

analysis.  

Therefore, the LHS was used to design the experiments to be 

done in the virtual plant. A total of 200 sets of operating 

conditions were designed, which were applied in each of the 

three models. Each set of operating conditions was composed 

of the decision variables, which in the present case was the 

material composition, the amount of activated carbon in the 

material, and the duration of the steps (𝑡𝑓𝑒𝑒𝑑 , 𝑡𝐶𝑒𝑙𝑒𝑐 , 𝑡𝑂𝑒𝑙𝑒𝑐  and 

𝑡𝑝𝑢𝑟𝑔𝑒). These operating conditions were then applied in the 

virtual plant, which was executed for 30 cycles to lead the 

process to its new steady state. Therefore, a total of 18000 data 

points were generated, containing the process dynamics 

evaluation for the target performance parameters: CO2 purity, 

ESA productivity, and energy consumption. This data set was 

divided into two parts, one with 80% of the data for the training 

procedure and another with the remaining data for the 

validation procedure.  

3.2 Definition of the predictor structure and its 

hyperparameter 

The definition of the predictor is an essential preliminary step. 

This will impact how the data will be structured to be presented 

to the nonlinear function approximator. A proper selection of 

the predictor (data structure) will produce a concise and 

reliable model. As in the present study, the goal is to build a 

recurrent deep network; the most adequate choice is the 

Nonlinear Output Error (NOE) predictor (Oliveira et al., 

2020), as referred to in the literature. The NOE structure can 

be represented as: 

𝑝(𝑡)
= 𝐹[𝑝(𝑡 − 1), 𝑢(𝑡 − 𝑑), … , 𝑢(𝑡 − 𝑑 − 𝑛𝑏 + 1)] 
�̂�(𝑡) = 𝑝(𝑡) + 𝑣(𝑡) 

(11) 

where 𝑢 is the input, d is the input delay, 𝑣(𝑡) is the white 

noise, 𝑛𝑏 is the embedded dimension, the number of past 

values to represent the system dynamics, �̂� is the model 

prediction.  

As it is possible to see from equation 11, the NOE has two 

parameters that need to be defined. The delay 𝑑, for the present 

case, was considered equal to zero, as the first principle model 

here employed does not comprise the dynamic dead-times. On 

the other hand, the embedded dimension 𝑛𝑏  needs to be 

computed. In this case, the Lipschitz coefficients were used, as 

proposed in the literature (He and Asada, 1993; Wang et al., 

2003; Oliveira et al., 2020). After computing the Lipschitz 

coefficients, it was possible to verify that the optimal 

embedded dimension was equal to 3. 

3.3 Deep learning training tuning, optimization and final 

models validation 

With the generated database, it was possible to proceed with 

the training of the DNN models. As previously mentioned, it 

was chosen a MISO approach, as it is sought to produce 

models with reliable precision for each performance 

parameter. For each DNN model, the tuning of the training 

optimization method was done. Table 3 presents optimal 

tuning parameters for all models after performing a sensitivity 

analysis of each parameter. 

Table 3. Training optimization parameters 

OPTIMIZATION TECHNIQUE ADAM 

EPOCHS 300 

LEARNING RATE 0.001 

BATCH SIZE 128 

EARLY STOP, VALIDATION PATIENCE 30 

After tuning the optimization strategy, the training can proceed 

concomitantly with the definition of the optimal structure of 

the DNN models. Therefore, the following points were 

evaluated: units type [gated recurrent unit (GRU), long short-

term memory (LSTM)]; optimal number of hidden layers [1-

5]; optimal number of neurons in each hidden layer [1-120]; 

and the optimal activation functions [relu, tangh, linear]. The 

DNNs were trained within the ranges of each structural 

parameter. For each trained model, the validation performance 

was evaluated, and the optimal one corresponds to the smallest 

validation MAE (mean absolute error). Table 4 presents the 

optimal structures and MAE values for each structure. For all 

the DNNs, a GRU unit was identified as the optimal strategy. 

However, the LSTM performance was close to the GRU, and 

the difference between the methods should be deeper 

evaluated in the future.  

Table 4. Optimal DNN structures (optimal number of 

layers, type of layer, neurons and activation function). 

PURITY MODEL, MAE =1.29 

LAYER ACTIVATION NEURONS 

GRU RELU 100 

GRU RELU 80 

GRU RELU 80 

DENSE TANH 60 

DENSE LINEAR 1 

PRODUCTIVITY MODEL, MAE = 0.14 

LAYER ACTIVATION NEURONS 

GRU RELU 110 

GRU RELU 80 

DENSE TANH 60 

DENSE LINEAR 1 

ENERGY CONSUMPTION MODEL 

MAE = 4.87 

LAYER ACTIVATION NEURONS 

GRU RELU 80 

GRU RELU 100 

GRU RELU 80 

DENSE TANH 40 

DENSE LINEAR 1 



 

 

     

 

*RELU - RECTIFIED LINEAR FUNCTION  

*TANH – HYPERBOLIC TANGENT FUNCTION 

 

The predictions of the validated models are presented in Fig.1; 

few disturbances are presented in the figure for a clean 

visualization of the system dynamics. However, the validation 

set contained 3600 cycles. In the figure, it is possible to see 

that the models provide a good approximation of both the 

dynamic and cyclic state of the ESA unit.  

 

 

 

 

Fig.1. DNN models validation; dashed vertical lines represent 

disturbances moment. 

 

4. OPTIMIZATION PROBLEM 

Finally, making use of the identified models, it is possible to 

evaluate the optimal material composition while 

simultaneously considering the process optimization. It is 

necessary to design an objective function that comprises the 

desirable goals while embodying the material properties in its 

set of decision variables.  

 

𝒎𝒊𝒏 
𝑫 

𝑽𝒌, (12) 

𝑽𝒌 =
                 

𝜹𝑬 ∙ 𝑬𝑪𝒐𝒏𝒔 − 𝜹𝒑 ∙ 𝑷𝒓𝑪𝑶𝟐 

s.t: 
(12a) 

𝑷𝒖𝒓𝑪𝑶𝟐 > 𝟎. 𝟗𝟓 (12b) 

𝑫 ∈ [𝑫𝒎𝒊𝒏, 𝑫𝒎𝒂𝒙] (12c) 

where 𝛿𝐸 and 𝛿𝑝 are the weighting factors, and 𝑫 is the set of 

decision variables, which should obey a compact and convex 

set of constraints, corresponding to these variables bounds. 

Therefore, as it is performed a dynamic simulation these 

variables are computed along the time, forming a set of path 

constraints. Finally, the CO2 purity should follow an end-point 

constraint evaluated at the unit cyclic steady state.  

The optimization problem presented in equation (12) can be 

read as find the set of process operating conditions (𝑡𝑘) and the 

material composition (y𝐴𝐶) that will simultaneously minimize 

the energy consumption and maximize CO2 productivity while 

keeping the CO2 purity above 96% and respecting the decision 

variables bounds. 

The range of the material composition was defined by the 

synthesized materials in the experimental studies performed 

by Regufe et al. (2020), as described in section 2.1. The 

particle swarm optimization, a meta-heuristic approach, was 

employed to solve the optimization. A total of 200 particles 

and 200 iterations were used. 

Table 5 summarizes the optimization results obtained after 

following the proposed methodology. It is possible to note that 

the optimal set of decision variable was provided, in which the 

optimal material composition is 50% of activated carbon and 

50% of zeolite 13X. Furthermore, it is possible to see that the 

method was able to find an optimal condition for the process 

performance parameters while respecting the purity constraint. 

 



 

 

     

 

Table 5. Optimization results, decision variables and 

optimal performance parameters 

OPTIMAL SET OF DECISION VARIABLES 

𝑡𝑓𝑒𝑒𝑑  𝑡𝐶𝑒𝑙𝑒𝑐  𝑡𝑂𝑒𝑙𝑒𝑐  𝑡𝑝𝑢𝑟𝑔𝑒 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

245 277 3 14 50% AC 

PERFORMANCE INDICATORS 

PURITY 

(%) 

Productivity 

 (𝑚𝑜𝑙𝐶𝑂2 ∙ 𝑘𝑔𝑎𝑑𝑠
−1 ∙ ℎ−1) 

ENERGY 

CONSUMPTION 

(𝐺𝑗 ∙ 𝑡𝑜𝑛𝐶𝑂2
−1 ) 

99.6 9.6 0.18 

 

Fig.2 presents the evolution of the objective function along 

with the optimization procedure; it is possible to see in this 

figure that after 80 iterations, the algorithm is already very 

close to the minimum of the objective function. Each 

optimization iteration takes only a few seconds to be executed.  

 

Fig.2. Objective function evolution during the meta-heuristic 

optimization. 

5. CONCLUSIONS 

In this work, a novel methodology was presented to perform 

material screening and process optimization. The method is 

based on the Deep Neural Network model to identify reliable 

and computationally fast models. As an optimization strategy, 

it was employed a meta-heuristic algorithm. An objective 

function was proposed in order to accommodate the materials 

screening and process operating conditions as optimization 

variables to address a conflicting goal, optimize productivity 

and energy consumption. As a case study, it was presented the 

CO2 capture using an Electric Swing Adsorption process at 

bench-scale. The results demonstrated that the methodology 

could efficiently define the optimal conditions while providing 

optimal material composition. Furthermore, the optimization 

based on DNN models reduces significantly the computational 

effort, while using a first principles models it would be 

required several days to obtain an optimization result, through 

the DNN based method this result can be obtained in few 

minutes (5 minutes in the present case). Thus, it is possible to 

conclude that the method can be applied in real-time scenarios 

where process reconfiguration is necessary.  
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