Brunton, S.L., Brunton, B.W., Proctor, J.L., and Kutz, J.N. (2016). Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLOS ONE, 11(2), 1-19. Bück, A., Dürr, R., Schmidt, M., and Tsotsas, E. (2016). Model predictive control of continuous layering granulation in fluidised beds with internal product classification. Journal of Process Control, 45, 65-75. Kaiser, E., Kutz, J.N., and Brunton, S. (2017). Data-driven discovery of koopman eigenfunctions for control. arXiv: Optimization and Control. Koopman, B.O. (1931). Hamiltonian systems and transformation in hilbert space. Proceedings of the National Academy of Sciences of the United States of America, 17(5), 315-318. Korda, M. and Mezic, I. (2018). Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica, 93, 149-160. Lusch, B., Kutz, J.N., and Brunton, S.L. (2018). Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications, 9(1), 851. Maksakov, A. and Palis, S. (2020). Koopman-based optimal control of boost dc-dc converter. In 2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP), 1-4. IEEE. Mauroy, A., Mezic, I., and Susuki, Y. (2020). The Koop- man Operator in Systems and Control, volume 484. Springer International Publishing, Cham. Narasingam, A. and Kwon, J.S.I. (2019). Koopman lyapunov-based model predictive control of nonlinear chemical process systems. AIChE Journal, 65(11), 1. Neugebauer, C., Palis, S., Bück, A., Tsotsas, E., Heinrich, S., and Kienle, A. (2017). A dynamic two-zone model of continuous fluidized bed layering granulation with internal product classification. Particuology, 31, 8-14. O. Williams, M., W. Rowley, C., and G. Kevrekidis, I. (2015). A kernel-based method for data-driven koopman spectral analysis. Journal of Computational Dynamics, 2(2), 247-265. Palis, S. and Kienle, A. (2012a). Discrepancy based control of continuous fluidized bed spray granulation with internal product classification. In 8th International Symposium on Advanced Control of Chemical Processes, ADCHEM 2012, 756-761. IFAC. Palis, S. and Kienle, A. (2012b). H_inf loop shaping control for continuous fluidized bed spray granulation with internal product classification. Industrial & Engineering Chemistry Research. Palis, S. and Kienle, A. (2014). Discrepancy based control of particulate processes. Journal of Process Control, 33-46. Proctor, J.L., Brunton, S.L., and Kutz, J.N. (2018). Generalizing koopman theory to allow for inputs and control. SIAM Journal on Applied Dynamical Systems, 17(1), 909-930. Randolph, A.D. and Larson, M.A. (1971). Theory of par- ticulate processes: Analysis of techniques of continuous crystallization. Acad. Press, New York, NY. Rumpf, H. (1990). Particle technology. Powder technology series. Chapman and Hall, London. Schmidt, M., Bück, A., and Tsotsas, E. (2015). Experimental investigation of process stability of continuous spray fluidized bed layering with internal separation. Chemical Engineering Science, 126, 55-66. Takeishi, N., Kawahara, Y., and Yairi, T. (2017). Learning koopman invariant subspaces for dynamic mode decomposition. In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS'17, 1130-1140. Curran Associates Inc., Red Hook, NY, USA. Tu H., J., Rowley W., C., Luchtenburg M., D., L. Brunton, S., and Nathan Kutz, J. (2014). On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 1(2), 391-421. Vreman, A.W., van Lare, C.E., and Hounslow, M.J. (2009). A basic population balance model for fluid bed spray granulation. Chemical Engineering Science, 64(21), 4389-4398. Williams, M.O., Kevrekidis, I.G., and Rowley, C.W. (2015). A data-driven approximation of the koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science, 25(6), 1307-1346. Yeung E., Kundu S. , and Hodas N. (2019). Learning deep neural network representations for koopman operators of nonlinear dynamical systems. In 2019 American Control Conference (ACC), 4832-4839.