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Abstract: Reinforcement learning (RL) is attracting attention as an effective way to solve se-
quential optimization problems that involve high dimensional state/action space and stochastic
uncertainties. Many such problems involve constraints expressed by inequality constraints. This
study focuses on using RL to solve constrained optimal control problems. Most RL application
studies have dealt with inequality constraints by adding soft penalty terms for violating the
constraints to the reward function. However, while training neural networks to learn the value
(or Q) function, one can run into computational issues caused by the sharp change in the function
value at the constraint boundary due to the large penalty imposed. This difficulty during training
can lead to convergence problems and ultimately lead to poor closed-loop performance. To
address this issue, this study proposes a dynamic penalty (DP) approach where the penalty
factor is gradually and systematically increased during training as the iteration episodes proceed.
We first examine the ability of a neural network to represent a value function when uniform,
linear, or DP functions are added to prevent constraint violation. The agent trained by a Deep
Q Network (DQN) algorithm with the DP function approach was compared with agents with
other constant penalty functions in a simple vehicle control problem. Results show that the
proposed approach can improve the neural network approximation accuracy and provide faster
convergence when close to a solution.
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1. INTRODUCTION

Sequential decision-making problems such as scheduling,
planning, and control involve constraints that should be
respected. When the state space system model is available,
the optimization problem can be formulated as follows:

min
[uk]Tk=0

T∑
k=0

l(x(k),u(k)) (1a)

s.t. x(k + 1) = f(x(k),u(k)), (1b)

gi(x(k),u(k)) ≤ 0, i = 1, ...υ (1c)

x(0) = x0, (1d)

x ≤ x(k) ≤ x, (1e)

u ≤ u(k) ≤ u, (1f)

where k is the time index, x ∈ Rn is the state vector,
u ∈ Rm is the control input, and l(x,u) is a cost
function. By solving the above problem at each time
instant for the given state (estimate) as the initial state x0

and implementing the resulting u0 as the control action,
one can effectively implement an optimal feedback policy.
This is a basic idea behind the popular model predictive
control (MPC) method. However, the model inevitably

has some mismatch with the real system due to model
errors, disturbances, noise, etc. The basic (deterministic)
MPC formalism does not allow one to consider various
uncertainties in the optimization, but instead compensate
for their effect passively through the feedback. This can
lead to a performance loss including constraint violations.
To address this problem, reinforcement learning (RL)
has been suggested as an alternative to MPC in the
process system engineering field (see Yoo et al. (2020);
Petsagkourakis et al. (2020b); Shin et al. (2019)).

An RL agent finds the optimal policy by exploring different
parts of the state space through simulations or by probing
the real system to learn the approximate value of each
state. Using the Bellman optimality principle, the value
estimate can be improved iteratively, with the aim of
eventually identifying the optimal value (Bellman (1966)).
In RL, the control problem is formulated as a Markov
decision process, which is composed of the state space
(S) and state (x ∈ S), action space (A) and action
(u ∈ A), the state transition model, and the reward
function (r : S × A → R) (Puterman (2014)). The state
transition model (1b) is used in this study but this can be



generalized to specify probabilistic transitions and/or the
effect of stochastic noise terms.

The agent gets a certain reward (or penalty) for each state
visited and the summation of the discounted rewards (with
a discount factor of γ ∈ [0, 1]) from current state to the

terminal state (
∑T
k=t γ

k−tr(x(k))) is the value of the state.
The value function, V (x), is the function that maps the
state to the expectation of the return value, which implies
the long-term ”value” of the state, and Q-function Q(x, a),
is the expected return value of an state and action pair. In
the MDP formulation, the action limits of (1f) can always
be satisfied by considering only the feasible actions. Mean-
while, the state bounds of (1e) and state/input constraints
(1c) cannot generally be satisfied in a strict sense as they
may become infeasible. To address this problem, policy
gradient RL methods for constrained MDP have been
proposed based on a trust region policy optimization algo-
rithm (Achiam et al. (2017); Petsagkourakis et al. (2020a)
and a Lyapunov-based approach (Chow et al. (2019)).
However, these methods are only applicable within the
policy gradient algorithms. Hence, we instead focus on
the penalty approach, where violations are penalized with
terms added to the reward function along with the original
objective function (1a). This approach is more general as
it can be applied to not only policy-based methods, but
also other value-based RL methods.

The form of penalty function can be a uniform constant,
as shown in Yang et al. (2020); Zhang et al. (2020), a
linear (1-norm) function of the magnitude of the violation
as shown in Ma et al. (2019), or a logistic function as shown
in Pan et al. (2020); Modares et al. (2016). The penalty
is typically chosen to be large enough in order to prevent
constraint violation. On the other hand, an infinite penalty
(as used in the barrier method for solving constrained
optimization) can lead to infeasibilities and thus will
not be used here. When we use a high uniform penalty
value or a steep linear penalty function, the training of
neural network (NN), a popular choice for representing
the value (or Q) function in RL, can give convergence
problems as will be demonstrated later with a simple
example. On the other hand, a small penalty term can lead
to unnecessary constraint violations, i.e., violations even
when the constraint can be satisfied. A penalty function
that strikes a right balance is needed, but this is not easy
to decide a priori.

In this study, we propose an approach that updates the
penalty factor as the training proceeds, in order to achieve
a stable training result with less approximation error
and to get a so-called ”sufficiently feasible” policy (Deb
(2000)). We will refer to this approach as the DP approach.
A similar approach has been studied to update parameters
during iterations in evolutionary optimization strategies
(Kramer (2010); Joines and Houck (1994)). Also, Lin
and Zheng (2012) suggested to gradually increase the
penalty value in RL-based control to address the numerical
difficulty approximating a steep function, but they do not
provide any detailed procedure or systematically analyze
the effect of varying the penalty parameter.

The paper is structured as follows: Section 2 describes
the DP function design with constraints aggregation using
the Kreisselmeier-Steinhauser (KS) function and penalty

factor update rules. In Section 3, we use a simple 1-
dimensional function approximation example to examine
the regression accuracy achieved with several penalty func-
tions including the DP function. In Section 4, the proposed
DP function is tested on a simple vehicle control example
and the results are summarized. Section 5 concludes the
paper.

2. DYNAMIC PENALTY (DP) FUNCTION

In this work we use a constraint aggregation method to
design an unbiased penalty for constraint violations. A
systematic rule for updating the penalty factor is described
for an application to any RL algorithm.

2.1 Constraint Aggregation

Let us assume that we have υ inequality constraints includ-
ing the inequality constraints on the state space boundary.
The RL agent gets a penalty value for each constraint
violation. A constraint aggregation is needed for unbi-
ased constraint handling when multiple constraints exist.
The KS function is a widely used constraint aggregation
method for gradient-based optimization (Kreisselmeier
and Steinhauser (1980)). Although RL is not a gradient-
based optimization algorithm, we can effectively use this
method with a high aggregation parameter, ρ, making the
error from the aggregation as small as possible (Poon and
Martins (2007)). For constraints gi(xt, ut) ≤ 0, i = 1, ..., ν,
the aggregate function KS[g(x,u)] is:

KS[g(x,u)] =

gmax(x,u) +
1

ρ
ln[

ν∑
i=1

eρ(gi(x,u)−gmax(x,u))].
(2)

where gmax is the maximum of all constraints evaluated
at the given state-action pair.

2.2 DP Function

Using the KS function, the reward function with DP term
can be defined as follows:

R(x,u) = l(x,u) + p(x,u|µ) (3a)

p(x, u|µ) = µ ·KS[g(x,u)]1KS[g(x,u)]>0 (3b)

where µ is the penalty factor which defines the slope of the
penalty function. The right-hand side of 3b is calculated
only when the aggregate constraint is violated. The DP
function approach starts with a low value of µ, which
facilitates the initial training of the NN, and gradually
increases it to a large value by multiplying the DP update
parameter c so that the slope becomes large to prevent
constraint violations (Fig. 1 illustrates this approach). The
procedure can be described as:

(1) Set µ := µmin.
(2) When the loss value of the NN is less than (100 −

α)% of the maximum loss value after the parameter
update, set µ := cµ where c is some constant larger
than 1

(3) Repeat step (2) until µ ≥ µmax
(4) After reaching µ ≥ µmax set µ := µmax
(5) Continue the training until an optimal policy is found.
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Fig. 1. Illustration of penalty update rule

3. VALUE FUNCTION REGRESSION TEST

3.1 1-Dimensional Example

A feed-forward NN is the most widely used function ap-
proximator for the value function or Q-function approxi-
mation. The agent uses the output value or the gradient of
the NN to update the optimal policy. Therefore, accuracy
of the approximation is important for a fast and stable
agent training. We tested the regression accuracy with a
priori fixed uniform penalty and linear penalty, which are
the popular choices for the penalty function against the
proposed dynamically varied penalty function. The test
value function V (x) is chosen as follows:

V (x) = 1 + cos (0.5x) + 0.05(x− 1)(x+ 2) + p(x). (4)

We assumed that this problem has inequality constraints
as −5 ≤ x ≤ 5 and the penalty functions are assigned as
in table 1 where the µmin = 0.1, µmax = 50 and c = 2.
This artificially chosen value function is not exactly in the
same form as in the optimal control problem where the
value should be calculated with respect to the cumulative
rewards. Nevertheless, this analysis should be useful to un-
derstand the tendencies of the NN approximation during
the agent training with the different penalty terms.

Table 1. Parameters for the penalty function

Penalty function p(x)

Uniform penalty 50 · 1x<−5,x>5

Linear penalty 50((−5 − x)1x<−5 + (x− 5)1x>5)

DP µ((−5 − x)1x<−5 + (x− 5)1x>5)

To examine the NN training performance within an RL
environment, the training environment is set similarly as
in RL. In every episode, 20 x points are randomly sampled
from -10 to 10 and the environment calculates the R(x)
value (R(x) = l(x) + p(x)) with the assigned objective
function (4) and the penalty function (table 1). Then, 20
samples are stored in a replay buffer and the NN is trained
with a batch of 64 data randomly sampled from the replay
buffer up to 500 episodes.

3.2 Results

Fig. 2 shows the output value of the NN during the training
process. As shown in Fig. 2a, the NN approximation
performance is poor at the boundary points, which causes
a bias in the estimate inside the feasible region. The linear
penalty case also gives a biased estimate inside the feasible
region during the training and the maximum loss function

is much higher than that of the DP case, as shown in Fig.
3. With the proposed scheme of dynamically varying the
penalty during traning, the function is well approximated
near the constraint boundary, which can reduce the bias
and loss. Fig. 3 shows that the loss of NN with the DP
function approach is increased during the penalty factor
update period but is decreased drastically afterward. The
final loss is the lowest in the case of DP, which implies the
best approximation performance. From this simple test,
we see the potential benefit of using a dynamically varied
penalty in training the NN to learn the value function with
a large penalty function.

4. CASE STUDY

4.1 Vehicle Control Example

To further examine the effectiveness of the DP approach,
a simple vehicle control problem described in (5) is solved
with RL. We modified the problem from Grüne and
Pannek (2017) to reduce the size of the feasible region and
make the starting point uncertain as described in (5f). The
objective is to minimize the running cost (5a). x1(k) is the
position of a vehicle at time k, x2(k) is its velocity and
u(k) is its acceleration.

min l(x, u) = x21 + u2 (5a)

s.t.

(
ẋ1(k)
ẋ2(k)

)
=

(
x2(k)
u(k)

)
(5b)

−1 ≤ x1(k) ≤ 1 (5c)

−0.25 ≤ x2(k) ≤ 1 (5d)

−0.25 ≤ u(k) ≤ 0.25 (5e)

x0 ∼ U((−1, 0.8), (−0.8, 1)) (5f)

We applied the Deep-Q-Network (DQN) algorithm which
uses a deep NN to approximate the Q-function and
chooses the ε-greedy policy (Mnih et al. (2013)). For
the training, we defined the discrete action space u ∈
{−0.25,−0.2375,−0.225, ..., 0.2375, 0.25} and each episode
was set for a time duration of 20min with 1min control
interval. The deep NN consisted of three hidden layers with
64 nodes of the ReLU activation function. For constraint
aggregation, (5c) and (5d) are decomposed as shown in (6)
and aggregated to a KS[g] function of (2) with ρ = 50. g1 : −1− x1 ≤ 0

g2 : x1 − x ≤ 0
g3 : −0.25− x2 ≤ 0
g4 : x2 − 1 ≤ 0

 (6)

The DP was updated when the loss became lower than 30%
of the maximum loss (α = 70) and the penalty factor was
doubled in each update (c = 2), starting from µmin = 0.05
up to µmax = 20. The value for the uniform penalty
function and the penalty factor for the linear penalty were
both set to 20 as shown in table 2. The training comprised
2000 episodes and the initial point was randomly selected
inside the feasible region to start each episode. To test the
agent’s behavior during training, we tested the policy after
every 100 episodes without exploration. In addition, for a
rigorous comparison, we trained a set of 100 agents in the
environment set with 100 different random seeds, which
introduced randomness to exploration, NN initialization,
buffer sampling, etc.



(a) Uniform penalty (b) Linear penalty (c) DP

Fig. 2. NN approximation results according to episodes progression

Fig. 3. NN loss according to episodes progression

4.2 Results

Table 3 shows that the agents trained with the uniform
penalty and the linear penalty could find sufficiently
feasible policies only in 42 and 48 cases out of the 100
random cases, respectively. Here, ‘sufficient feasible policy’
means that the policy does not violate all the constraints
and achieves a sufficient low cost value. The agent trained
with the uniform penalty incurred the highest average cost.
Also notable is that the agent could find feasible policies
in 82 cases, but almost a half of them were unable to
achieve sufficiently low cost. According to table 4, the
uniform penalty seems favorable for a rapid training, but
the final performance is not satisfactory. These results
are likely due to the interference of the bias in the
estimate inside the feasible region. The agent trained
with the linear penalty function performed poorly due
to having inaccurate approximate values for the value
function during training. This consequently resulted in the
policy being updated in a wrong direction, or converging
to sub-optimal policies.

The use of the DP approach was effective in finding a suf-
ficient feasible policy rapidly and consistently. The agent
trained with the DP approach could find sufficient feasible
policies in 83 cases, and the average cost of that cases
was lower than the results of the agent trained with other

Table 2. Penalty function types

Penalty function p(x)

Uniform penalty 20 · 1KS(g)>0

Linear penalty 20 ·KS(g) · 1KS(g)>0

DP µ ·KS(g) · 1KS(g)>0

Fig. 4. Trajectories in the training process of the agent
trained with a DP function. The dotted rectangle
represents the feasible region.

penalty functions. We also calculated the average degree
of violation by averaging the positive KS function values
from the converged infeasible policy. As shown in Table
3, when the agent was trained with the DP approach, the
degree of violation of the infeasible policies was much lower
compared to the other approaches. This means that even
the infeasible policies found in the 7 cases, nearly satisfied
the constraints. Table 4 also shows that sufficiently feasible
policies were found within 1500 episodes in 39 cases, which
is comparable to the training with the uniform penalty.
Fig. 4 shows the policy improvement during training with
the DP function.

5. CONCLUSIONS

To solve constrained optimal control problems with RL, in-
equality constraints imposed on the state should be trans-
lated into a penalty term in the reward function. However,
when the agent is trained with a priori set large uniform or
linear penalty function, inaccurate NN approximations can
result leading to convergence problems and poor eventual
performance. To address this, we propose an approach that
varies the penalty function during training in order that
NNs be trained stably and rapidly. Our results show that
the DP approach can reduce the approximation loss not
only during the training but also at the end of the training.
The DP approach was also found effective in the simple
vehicle control problem tested. We trained the agent with
different penalty forms, and the DP scheme showed the
best performance in finding sufficient feasible policies with
lowest average cost. In addition, the average degree of



Table 3. Summary of agent training results

Penalty function Uniform penalty Linear penalty DP

Finding feasible policy/100 82 62 93

Finding sufficient feasible policy*/100 42 48 83

Average cost of the sufficient feasible policy 3.56 3.49 3.36

Average degree of violation 0.948 2.051 0.137

∗’sufficient feasible policy’ means the policy does not violate all the constraints and achieves a sufficient low cost value

Table 4. Finding sufficient feasible policy until
each episodes

Penalty function 500 1000 1500 2000

Uniform penalty 0 14 15 13

Linear penalty 2 8 16 22

DP 2 8 29 44

violation was lowest when the agent was trained with the
DP function. The proposed approach can be applied to
any RL algorithm and can help the agent that uses NN
as a function approximator to be trained efficiently to
represent a function that includes a steep penalty term
for constraint violation. For future work, we will further
analyze the effectiveness of the DP function approach for
cases with model and exogenous uncertainties.
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and Lewis, F.L. (2016). Optimal model-free output syn-
chronization of heterogeneous systems using off-policy
reinforcement learning. Automatica, 71, 334–341.

Pan, A., Xu, W., Wang, L., and Ren, H. (2020). Addi-
tional planning with multiple objectives for reinforce-
ment learning. Knowledge-Based Systems, 193, 105392.

Petsagkourakis, P., Sandoval, I.O., Bradford, E., Zhang,
D., and Chanona, E.A.d.R. (2020a). Constrained re-
inforcement learning for dynamic optimization under
uncertainty. arXiv preprint arXiv:2006.02750.

Petsagkourakis, P., Sandoval, I.O., Bradford, E., Zhang,
D., and del Rio-Chanona, E.A. (2020b). Reinforcement
learning for batch bioprocess optimization. Computers
& Chemical Engineering, 133, 106649.

Poon, N.M. and Martins, J.R. (2007). An adaptive ap-
proach to constraint aggregation using adjoint sensitiv-
ity analysis. Structural and Multidisciplinary Optimiza-
tion, 34(1), 61–73.

Puterman, M.L. (2014). Markov decision processes: dis-
crete stochastic dynamic programming. John Wiley &
Sons.

Shin, J., Badgwell, T.A., Liu, K.H., and Lee, J.H. (2019).
Reinforcement learning–overview of recent progress and
implications for process control. Computers & Chemical
Engineering, 127, 282–294.

Yang, T., Zhao, L., Li, W., and Zomaya, A.Y. (2020). Re-
inforcement learning in sustainable energy and electric
systems: A survey. Annual Reviews in Control.

Yoo, H., Kim, B., Kim, J.W., and Lee, J.H. (2020). Re-
inforcement learning based optimal control of batch
processes using monte-carlo deep deterministic policy
gradient with phase segmentation. Computers & Chem-
ical Engineering, 107133.

Zhang, P., Li, H., Ha, Q., Yin, Z.Y., and Chen, R.P. (2020).
Reinforcement learning based optimizer for improve-
ment of predicting tunneling-induced ground responses.
Advanced Engineering Informatics, 45, 101097.


