Alamir, M. (2012). A framework for real-time implementation of low-dimensional parameterized NMPC. Automatica, 48(1), 198–204. doi: 10.1016/j.automatica.2011.09.046. Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., and Diehl, M. (2018). CasADi – A software framework for nonlinear optimization and optimal control. Mathemat- ical Programming Computation. Aydin, E., Bonvin, D., and Sundmacher, K. (2018). To- ward fast dynamic optimization: An indirect algorithm that uses parsimonious input parameterization. Indus- trial & Engineering Chemistry Research, 57(30), 10038– 10048. doi:10.1021/acs.iecr.8b02109. Baumann, M., Benner, P., and Heiland, J. (2018). Space- time Galerkin POD with application in optimal con- trol of semi-linear parabolic partial differential equa- tions. SIAM J. Sci. Comput., 40(3), A1611–A1641. doi: 10.1137/17M1135281. Benner, P. and Heiland, J. (2020). Space and chaos- expansion Galerkin POD low-order discretization of PDEs for uncertainty quantification. e-print 2009.01055, arXiv. URL http://arxiv.org/abs/2009.01055. Bremer, J., Rätze, K.H.G., and Sundmacher, K. (2017). CO 2 Methanation: Optimal Start-Up Control of a Fixed-Bed Reactor for Power-To-Gas Applications. AIChE Journal, 63(1), 23–31. doi:10.1002/aic.15496. Bremer, J. and Sundmacher, K. (2019). Operation range extension via hot-spot control for catalytic CO 2 metha- nation reactors. Reaction Chemistry & Engineering, 69(2015), 613. doi:10.1039/C9RE00147F. Carlberg, K., Ray, J., and van Bloemen Waanders, B. (2015). Decreasing the temporal complexity for non- linear, implicit reduced-order models by forecasting. Comp. Meth. Appl. Mech. Eng., 289, 79–103. Durand, H., Ellis, M., and Christofides, P.D. (2016). Eco- nomic model predictive control designs for input rate- of-change constraint handling and guaranteed economic performance. Comput. Chem. Eng., 92, 18 – 36. doi: 10.1016/j.compchemeng.2016.04.026. Elnagar, G., Kazemi, M.A., and Razzaghi, M. (1995). The pseudospectral Legendre method for discretizing opti- mal control problems. IEEE Transactions on Automatic Control, 40(10), 1793–1796. doi:10.1109/9.467672. Goh, C.J. and Teo, K.L. (1988). Control parametrization: A unified approach to optimal control problems with general constraints. Automatica, 24(1), 3–18. doi: 10.1016/0005-1098(88)90003-9. Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., and Woodward, C.S. (2005). SUNDIALS: Suite of nonlinear and differen- tial/algebraic equation solvers. ACM Transactions on Mathematical Software (TOMS), 31(3), 363–396. Jørgensen, S.B. (1986). Fixed Bed Reactor Dynamics and Control - A Review. IFAC Proceedings Volumes, 19(15), 11–24. doi:10.1016/S1474-6670(17)59393-3. 40 pt King, R., Seibold, M., Lehmann, O., Noack, B.R., 0.556 in Morzyński, M., and Tadmor, G. (2005). Nonlinear 14.1 mm flow control based on a low dimensional model of fluid flow. In T. Meurer, K. Graichen, and E.D. Gilles (eds.), Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems, 369–386. Springer. doi: 10.1007/11529798 23. Kunisch, K. and Volkwein, S. (2008). Proper orthogonal decomposition for optimality systems. ESAIM: Math. Model. Numer. Anal., 42(1), 1–23. Lin, Q., Loxton, R., and Teo, K.L. (2014). The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial & Management Opti- mization, 10, 275–309. doi:10.3934/jimo.2014.10.275. Schlegel, M., Stockmann, K., Binder, T., and Marquardt, W. (2005). Dynamic optimization using adaptive control vector parameterization. Comp. Chem. Eng., 29(8), 1731 – 1751. doi:10.1016/j.compchemeng.2005.02.036. Welz, C., Srinivasan, B., Marchetti, A., Bonvin, D., and Ricker, N.L. (2006). Evaluation of input parameteri- zation for batch process optimization. AIChE Journal, 52(9), 3155–3163. doi:10.1002/aic.10905. Wright, G.T. and Edgar, T.F. (1994). Nonlinear model predictive control of a fixed-bed water-gas shift reactor: An experimental study. Comput. Chem. Eng., 18(2), 83–102. doi:10.1016/0098-1354(94)80130-4.