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Abstract: The optimization of a controlled process in a simulation without access to the
model itself is a common scenario and very relevant to many chemical engineering applications.
A general approach is to apply a black-box optimization algorithm to a parameterized control
scheme. The success then depends on the quality of the parametrization that should be low-
dimensional though rich enough to express the salient features. This work proposes using
solution snapshots to extract dominant modes of the temporal dynamics of a process and use
them for low-dimensional parametrizations of control functions. The approach is called proper
orthogonal decomposition in time (time-POD). We provide theoretical reasoning and illustrate
the performance for the optimal control of a methanation reactor.
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1. INTRODUCTION

In many engineering applications, a simulation is a multi-
component combination of mathematical models, dis-
cretization routines, coupling conditions, and, possibly,
heuristics. All internal states and settings aside, any sim-
ulation software can be seen as a tool that maps an input
u, say a set of parameters, to an output y; cp. Figure 1
for the example of a reactor. In this scenario, the user will
have control on the input u and access to the output y.
The combined model that realizes the map

G : u 7→ y (1)

may stay in the background – maybe because the software
is closed source, maybe because working with the model or
the implementation directly on a low level is not feasible.

In optimization setups, one seeks for a control u∗ such that
the corresponding output y∗ = G(u∗) has certain desired
properties. With U denoting the set of admissible controls
and Y the space of the corresponding solutions, this task
is formalized as the computation of solutions

J (G(u), u)→ min
u∈U

, (2)

where J : Y ×U → R is a suitably chosen cost functional.

If U is of finite dimension k, such that any u can be
parametrized via a vector p = (p1, p2, . . . , pk) ∈ Ω̄ ⊂ Rk
and a generating system {Ui}i=1,...,k ⊂ U in terms of
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Fig. 1. Illustration of a simulation of a reactor as an input
to output mapping procedure.

u(p) =

k∑
i=1

piUi, (3)

the problem described in (2) becomes a nonlinear con-
strained optimization problem in k variables:



J̃ (p) := J (G(u(p)), u(p))→ min
p∈Ω⊂Rk

. (4)

An optimization problem like (4) can be solved by stan-
dard (black box) solvers. Apart from problem specific
smoothness or convexity, the time needed to compute an
approximate solution of (4) will mainly depend on

(1) the costs of evaluating J̃ (p) for a given p, and
(2) the number of control parameters k.

The presented work aims at reducing the costs through
reducing k. Note that we assume that the model is not
accessible, which means that also the opportunities to
optimize its evaluation are restricted.

We will consider dynamical systems with single inputs
and parametrizations of controls through basis functions
{ψ1, . . . , ψs} ⊂ L2(0, te) as in

u(t) =

s∑
i=1

piψi(t) (5)

on a time interval (0, te). We will show that from the gen-
eral considerations on space-time POD of Baumann et al.
(2018), one can derive that the right-singular vectors of a
matrix of snapshots of the system outputs y for some train-
ing controls provide an efficient low-dimensional basis for
such parametrizations. This idea to use temporal modes of
snapshots to design controls follows two principles, namely,
that these modes encode patterns of time evolution (cp.,
e.g., Carlberg et al. (2015)) and that systems can be
efficiently excited by targeting characteristic frequencies
(cp., e.g., King et al. (2005)).

The approach of discretizing the control as in (5) is com-
monly referred to as control parametrization; see e.g. Goh
and Teo (1988) for an early general theoretical consid-
erations. Typically, as laid out in Lin et al. (2014), the
control is discretized via a uniform time grid and through
piecewise constant or linear basis functions. In Elnagar
et al. (1995), the use of particular time grids has been
proposed in view of provably convergent approximations
with generally lower dimensions. This concept, also with
more general function space parametrizations, has been
applied to control batch reactors (cp., e.g., Welz et al.
(2006); Aydin et al. (2018)).

Since the general need for low-dimensional parametriza-
tions is unquestioned (cp., e.g., Alamir (2012) and the
discussion in Schlegel et al. (2005)), there have been
various attempts for deriving problem specific low order
parametrization based on adaptive sparsification or enrich-
ment of the underlying bases; see Schlegel et al. (2005) for
an approach based on wavelets and for an overview of alter-
native approaches. These adaptive approaches are targeted
to best resolve the optimal input for a particular optimal
control problem. In contrast, the presented approach of
using snapshot information is meant to provide an efficient
parametrization based on system characteristics and, thus,
for use in several or dynamically changing optimization
setups.

We illustrate the realization and performance of this so-
called time-POD based parametrization for a methanation
reactor.

The optimal control of a fixed-bed reactor (FBR), as
usually used for methanation, is a challenging task because
of fast dynamics, high sensitivity to possible disturbances,
strong nonlinearities, non-minimum phase characteristics,
dead-times, and often limited control capabilities (cp.,
e.g., Jørgensen (1986)). Ahead of its time, Wright and
Edgar (1994) introduced nonlinear model predictive con-
trol (NMPC) to the field of catalytic FBRs applied to
the water-gas shift reaction. The performance of NMPC
for set-point tracking of this nonlinear process was shown
to be superior to conventional adaptive control, since pa-
rameter estimates varied as rapidly as the state, making
successful parameter adjustment extremely difficult. Apart
from that, NMPC allowed for input and state constraints
simultaneously, which is often vital for practical applica-
tions and flexible reactor operation in a broad operating
range. We note that the method proposed here is suitable
for any control problem and thus readily included in an
MPC loop. More recently, Bremer et al. (2017) considered
the optimal control of an FBR start-up as a vital option
to improve the reactors’ heat management and, thus, to
avoid hazardous reactor runaways.

This paper is structured as follows. In Section 2 and
3, we introduce the basic concepts of the time-POD
approach and show how it applies for low dimensional
control parametrization for general black box models.
In Section 4, we describe the methanation reactor and
the associated optimal control problem. In Section 5,
we illustrate the numerical realization of the time-POD
based control parametrization and how it performs in the
optimal control of the reactor. We conclude the paper by
a discussion of the results and an outlook.

2. PRELIMINARIES

We recall the basic concepts and notations of the space-
time POD approach and show it provides the dominant
modes of the time evolution of the states.

For illustration purposes, we will refer to a generic model
of type

ẏ(t) = f(y(t), u(t)), on (0, te], y(0) = α. (6)

Let Y be the state space of the solutions, i.e. y(t) ∈ Y . We
assume that Y = Rq is equipped with a suitable norm and
inner product induced by a mass matrix MY .

For fixed u, let y ∈ ((0, te] → Y
)

be the solution to (6).
Let

S = span{ψ1, . . . , ψs} ⊂ L2(0, te)

be a s-dimensional space of measurement functions with
mass matrix MS and consider the matrix of measurements

X =

[∫ te

0

y(t)ψ1(t) dt . . .

∫ te

0

y(t)ψs(t) dt

]
M−1

S , (7)

where the k-th column is the solution y tested against
ψk in the L2(0, te) inner product. This matrix defines the
L2(0, te)-orthogonal projection ỹ of y onto

S · Y := {h ∈ ((0, T ]→ Y : h(t) =

s∑
k=1

ψk(t)vk, vk ∈ Y }

through ỹ(t) =
∑s
k=1X

(k)ψk(t), where X(k) is the k-th
column of X. Accordingly, depending on the resolution of



the time component through S, the matrix of measure-
ments represents the function y with a certain accuracy.

In view of optimally representing ỹ in a lower-dimensional
time resolution, we have the following result; see (Bau-
mann et al., 2018, Lem. 2.7 and Sec. 4.1):

Lemma 1. The space Ŝ ⊂ S of dimension ŝ defined as

span{ψ̂1, . . . , ψ̂ŝ}, where
ψ̂1

ψ̂2

...

ψ̂ŝ

 = V T
ŝ (MS)−1/2


ψ1

ψ2

...
ψs

 , (8)

with the matrix Vŝ of the ŝ leading right singular vectors
of

(MY )1/2X(MS)1/2,

is optimal in the sense that the distance of the projection
ỹ ∈ Ŝ · Y to y ∈ S · Y is minimal (measured in the norm
of S · Y ) over all ŝ-dimensional subspaces of S.

The practical implication of Lemma 1 is as follows. If the
time evolution of y was well resolved by S, then Ŝ provides
an optimal low-dimensional parametrization of the time
component of y. As the standard POD modes describe the
preferred states of a system and provide efficient Galerkin
discretizations of the space dimension, the temporal modes

ψ̂i encode preferred temporal dynamics and an optimal
base for time Galerkin schemes.

To motivate the use of the time modes for control
parametrizations, we consider a control-affine generic
model of type

ẏ(t) = f(y(t)) + bu(t). (9)

In a Galerkin time discretization on to the subspace

spanned by {ψ̂}i=1,...,ŝ, a solution to∫ te

0

ψ̂i(t)ẏ(t) dt =

∫ te

0

ψ̂i(t)[f(y(t)) + bu(t)] dt, (10)

for i = 1, . . . , ŝ, is sought. By the orthogonality property

of ψ̂i, those parts of the control u that are not in Ŝ will

be neglected in this model. On the other hand, modes ψ̂i
that resonate well with f(y(t)) will be preserved to a high
extend in this spectral discretization.

In this work we consider the single input case and the
task to reduce the temporal complexity of the control.
The same methodology generalizes to higher dimensions
(cp. Benner and Heiland (2020)) and can be used to also
reduce the spatial discretization of a distributed or multi-
input control setup.

3. APPLICATION TO BLACK-BOX MODELS

In this section, we illustrate how the time-POD approach
is realized for a model that only provides access to solution
trajectories y for a given input u.

The general formulas of Section 2 include (factors of)
the mass matrix that account for the right weighting
of the components. These mass matrices might not be
available in practice. For a black box model one may
assume that they are the identities. This modification still
leads to optimal bases but with respect to the standard

Euclidean norm as opposed to the norms that reflect the
geometry and the spatial discretization. Moreover, in the
case of finite difference discretization or finite volumes
on a uniform tesselation, the mass matrix is the identity
with a scaling factor which, however, has no effect on the
computation of the modes.

The overall approach consists of three steps, namely the
data acquisition, the extraction of the time modes, and the
parametrization of the controls. If present, then together
with the control, also the control constraints have to be
parametrized.

1. Data acquisition For the initial time discretization,
it is practical to define and interpret S as the nodal basis
of a piecewise constant approximation on an equidistant
grid

0 = t0 < t1 < · · · < ts (11)

so that the matrix of measurements as defined in (7) is
approximated as

X = [y(t0) y(t1) y(t2) . . . y(ts)] ∈ Rq,s. (12)

Here, the approximation happens in the rough approxima-
tion of the integrals.

2. Extraction of the modes With the above time
discretization, the mass matrix MS is a scaled identity
and can be omitted. Then, according to Lemma 1, the time

mode ψ̂ is represented by the i-th right singular vector vi
of (MY )1/2X in the sense that

ψ̂i(t) = [vi]` on [t`−1, t`), for ` = 1, . . . , s, (13)

where [vi]` denotes the `-th component of the vector vi.

3. Control parametrization With the matrix

Vŝ :=


v1

v2

...
vŝ

 (14)

that contains the modes as rows, a parametrized control u

with u(t) =
∑ŝ
i=1 piψ̂i(t) is represented as u = pTVŝ.

In this representation, the inclusion of control constraints
works as follows. Let u be the vector that represents
the control and du be its (numerical) time derivative
(e.g. through a finite difference approximations). Then, an
upper bound u ≤ ū translates as

u ≤ ū↔ VT
ŝ p ≤ ūT (15)

and an upper bound u̇ ≤ v̄ as

du ≤ v̄ ↔ dVT
ŝ p ≤ v̄T, (16)

where dVŝ contains the corresponding representations of

the (numerical) approximation of d
dt ψ̂i, i = 1, . . . , ŝ.

Note that linear inequality constraints of type (15) and
(16) are readily included in optimization packages.

4. EXAMPLE CASE: METHANATION REACTOR

Carbon dioxide methanation is considered an essential
technological link within the Power-to-X framework, en-
abling the conversion of renewable electricity (e.g., from
wind and solar energy) into valuable, easy-to-distribute
chemical energy carriers. An exemplary process config-
uration is illustrated in Fig. 2 and indicates how the



intermittent availability of renewable energy influences all
downstream processes. While some processes (e.g., water
electrolysis) can operate at different loads without re-
strictions (load flexibility), other processes (e.g., metha-
nation) require additional measures to cope with changing
loads. Such measures typically include aspects of optimal
dynamic operation and control (cp., e.g., Bremer et al.
(2017)). However, the high complexity of the required pro-
cess models often limits detailed dynamic investigations,
especially for real-time control applications. Thus, non-
intrusive time-POD represents a promising remedy, which
will be shown in the following.
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flow/operation
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power
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Fig. 2. Power-to-Methane process flow chart.

Let us consider the system (6) to be a dynamic fixed-
bed reactor model performing the catalytic methanation
of carbon dioxide

CO2 + 4 H2 −−⇀↽−− CH4 + 2 H2O, (17)

as reported by Bremer and Sundmacher (2019). This re-
action is highly exothermic and very selective to methane.
The required ”green” hydrogen gas comes from water
electrolysis, which may operate under varying loads. In
consequence, the downstream methanation reactor also
has to deal with changing loads, depending on the size
of intermediate buffer tanks (see Fig. 2). The major chal-
lenge is that different loads inevitably impact the reactor
performance and, thus, the product gas quality. In the
worst case, the gas quality is insufficient or requires too
much separation effort before it can be fed into the natural
gas grid. Nevertheless, the reactor can be controlled by
many operating parameters, which allow for significant
performance improvements. However, finding the right
parameter setting is tedious since it demands expensive
model or data-driven optimization strategies.

4.1 Reactor Model

The reactor model’s high complexity mainly originates
from a coupled set of strongly nonlinear partial differential
equations (PDEs), which correspond to mass and energy
balances applied to the reactor interior. We can write the
governing PDEs as

ερgas

∂wα
∂t

= −ρgasv ∇ · wα −∇ · jα + (1− ε)να r̃,

(18)

(ρcp)eff

∂T

∂t
= −(ρcp)gas

v · ∇T −∇ · q̇ − (1− ε)∆RH̃ r̃,

where ρ is the gas density, wα is the component mass
fraction for α ∈ {CO2, H2, CH4, H2O}, v is the superficial
gas velocity, jα are dispersive component fluxes, να are
the stoichiometric coefficients, r̃ is the reaction rate of
methanation, cp is the specific heat capacity, T is the

temperature, q̇ are heat fluxes, and ∆RH̃ is the heat of
reaction.

When solving the 2D reactor model, several simplifica-
tions are very helpful as deeply discussed by Bremer and
Sundmacher (2019). In addition to their assumptions, this
work, however, only considers one (axial) spatial coordi-
nate within the cylindrical reactor space. In the resulting
1D model, all PDE states are still strongly coupled via
fluxes, mixing rules, physical properties, and empirical
correlations. That is why slight disturbances (e.g., via the
inlet velocity) significantly influence the reactor bed tem-
perature field and, thus, also the reactor’s productivity. We
consider the conversion of carbon dioxide as the essential
productivity measure, which is defined as

XCO2
(t) = 1− wCO2,out(t)

wCO2,in
, (19)

which is required to be kept as high as possible even when
disturbances are present. Therefore, we consider cooling
temperature as input u(t) and mass fraction as well as
temperature field as solution y(t). Any change in the
reactor load is represented by a disturbance of the inlet
gas velocity vgas,in(t). This setup is illustrated in Fig. 1 and
the corresponding reactor’s reference setting in Tab. 1.

Table 1. Reactor operation and design param-
eter at reference state.

pgas,in Tgas,in vgas,in Tcool R L dp
bar(g) ◦C m/s ◦C m m m

5 180 1 320 0.01 1 0.002

4.2 Problem Formulation

The control task is to operate the reactor always at its
highest conversion, even under changing loads. In order
to meet this demand, we formulate the following optimal
control problem (OCP):

max
u(t)

J̃ (u) =
1

te

∫ te

0

XCO2
(t) dt,

s.t. reactor model:

ẏ(t) = f(y(t), u(t)), on (0, te]

y(0) = y0,

constraints:

uub(t) ≥ u(t) ≥ ulb(t),

u̇ub(t) ≥ u̇(t) ≥ u̇lb(t).

(20)

Here the reactor model is represented as an ordinary
differential equation (ODE) system, which results from
the finite volume method applied to PDE system (18).
Inequality constraints are used to incorporate technical



restrictions on states and control. For instance, we allow a
maximum input change of 20 ◦C/min, to account for the
inertia of the cooling system.

4.3 The forward solution

The initial state in problem 20 is represented by an
ignited reactor, operating after successful start-up at the
reference state of Tab. 1. From here the reactor model,
implemented in MATLAB2018a, is integrated in time via
the idas integrator provided by the SUNDIALS suite (cp.
Hindmarsh et al. (2005)). CasADi v3.5.1 (cp. Andersson
et al. (2018)) is used as symbolic framework that provides
the interface between MATLAB2018a and SUNDIALS.

5. BLACK-BOX OPTIMIZATION OF THE REACTOR

To compute the basis {ψ̂i}i=1,...,ŝ according to Lemma 1
and as laid out in Section 3, we compute the forward
solution of the reactor model for 4 training inputs as
depicted in Figure 4 (top). The resulting trajectories are
stacked into the snapshot matrix X as in (12). A singular
value decomposition of X then reveals the dominating time
modes (see Figure 4) as those that are associated with the
largest singular values (see Figure 3).

The performance of the reduced approach strongly de-
pends on the design of the training inputs and the choice of
the modes for the parametrization. In this application case,
to account for the fast transient dynamics of the reactor,
we used slowly varying training inputs. The number of
modes was fixed through testing the performance of the
optimization for varying model sizes.

0 50 100 150 200

10−12
10−10
10−8
10−6
10−4
10−2
100

singular value index

normalized singular value 1 to 10
normalized singular value 11 to 20
normalized singular value 21 to 30
remaining normalized singular values

Fig. 3. Singular values of the snapshot matrix.

We set ŝ = 8 and take the ŝ dominant modes for
parametrizing the control so that the PDE constrained
optimization problem (20) is turned into a finite dimen-
sional optimization problem (4) over ŝ parameters. As

constraints, we apply |u̇(t)| ≤ 20◦C
60 s to respect the max-

imal feasible change rate in the cooling temperature and
|u̇(t)| ≤ ε 20◦C

60 s , where ε = 0.1, on the final 20 s in order to
enforce a convergence towards a steady state.

To solve the optimization problem for the POD solution,
we employ the routine ga of MATLAB2018a which is an
implementation of a genetic algorithm.

We compare the result of the time-POD approach the
optimization of the two parameter control design

u(t) =

u0 +
p2 − u0

p1
t, if 0 ≤ t < p1,

p2, if t ≥ p1,
(21)

315

320

325

Tcool in ◦C

−0.2

0

0.2 POD modes 1 to 10

−0.2

0

0.2 POD modes 11 to 20

0 50 100 150 200
−0.2

0

0.2

time t / s

POD modes 21 to 30

Fig. 4. Training inputs for POD snapshot generation (top)
and calculated POD time modes 1 to 30.

that is motivated by the experience that the final optimal
state is a steady state. The corresponding 2P solution
is then obtained with the use of the fmincon routine in
MATLAB2018a that realizes an interior point method.
The compliance with the maximal change rate is enforced
through an inequality constraint on p1 and p2.

Despite the different control trajectories, both approaches
maximized the cost function in (20), since the conversion of
carbon dioxide is increased by the end of the time horizon.
This indicates that the time-POD approach delivers valid
optimal control trajectories that can be applied to the
presented example case. Further improvements may be
necessary to ensure a better convergence to an optimal
level towards the end of the simulation.

It is well-known for standard POD approximations, the
time-POD parametrization approach might perform better
for problems with more diffusivity. In the considered setup,
with fast reactive dynamics, the discrepancy between
oscillatory modes (cp. Figure 4) and the trend of optimal
controls to constant levels (cp. Figure 5) is challenging
for an optimization algorithm. In fact, the optimization
was significantly governed by the constraints and possibly
faster, gradient based optimization methods got stuck in
local minima in our investigations. Still, as the example
shows, the consideration of more dynamic controls may
ensure a high productivity level under changing conditions.

6. DISCUSSION AND CONCLUSION

We have presented an automated data-based approached
to control parametrizations for the optimal control of
black-box models. In the application for the optimization
of a methanation reactor, this time-POD parametrization
delivered a comparable performance improvement as a
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Fig. 5. The trajectory of the changing reactor load via
vgas,in (top), the considered controls with feasible re-
gion shaded in gray (center), and resulting conversion
rates (bottom).

heuristic low-dimensional approach that included a priori
knowledge. Curiously, the optimal control trajectories of
both approaches slightly differ which indicates further
potential for optimization.

In order to react to unknown perturbations, a feedback
approach is mandatory. The time-POD parametrization
provides an ansatz for an open-loop control that, without
further modification, can also be included in an MPC
loop for closed-loop control of reactors (Durand et al.
(2016)). In particular in such a setup, improvements can be
expected from updating the time-POD basis as it is done
in standard POD in optimization contexts as explained,
e.g., in Kunisch and Volkwein (2008).
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