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Abstract:
Machine learning techniques have demonstrated their capability in capturing dynamic behavior
of complex, nonlinear chemical processes from operational data. As full state measurements
may be unavailable in chemical plants, this work integrates recurrent neural networks (RNN)
within extended Luenberger observers to develop data-based state estimators. Then, an output
feedback model predictive controller is designed based on state estimates provided by the RNN-
based estimator to stabilize the closed-loop system at the steady-state. A chemical process
example is utilized to illustrate the effectiveness of the proposed state estimation approach.
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1. INTRODUCTION

Closed-loop performance of chemical processes under
model-based controllers (e.g., model predictive control
(MPC)) depends on the model representation of the pro-
cess, and real-time state measurements. In general, MPC
uses a first-principles model or a data-driven process model
to predict state evolution in the optimization problem,
and adjusts its control actions with state feedback from
sensor measurements. However, measurements of key pro-
cess states such as species concentration in a chemical
reactor could be time-consuming and sometimes involves
manual manipulation of samples during offline protocols
(McKenna et al. (2000); Zambare et al. (2002)). Addi-
tionally, the cost of equipments for getting the targeted
measurement in real time also hinders its application in
chemical plants (Patwardhan et al. (2012)). One way to
address this issue is to use measurable process state vari-
ables (e.g., pressure, level, and temperature) with state
estimation techniques to predict unmeasurable states in
real-time operation.
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State estimation has been extensively studied in the lit-
erature, and includes methods for both deterministic and
stochastic cases (Radke and Gao (2006); Dochain (2003);
Patwardhan et al. (2012); Alexander et al. (2020)). In
the deterministic state estimation case, Luenberger-based
observers are common source of filters for the practition-
ers (Dochain (2003); Ali et al. (2015)). Additionally, ex-
tended Luenberger observer, sliding mode observer, adap-
tive state observer, high-gain observer, geometric observer,
backstepping observer have found diverse applications in
many fields (Ali et al. (2015)). Similarities and difference
between the above methods together with their advan-
tages and disadvantages are further discussed in Radke
and Gao (2006); Ali et al. (2015). In order to achieve a
better performance using these methodologies, a mathe-
matical model for the targeted system is generally needed
to describe process dynamics in a certain operating re-
gion. However, the development of such a process model
for some complex reacting systems using first-principles
knowledge could be challenging. For example, for a cat-
alytic carbon monoxide oxidation over Pt-alumina, a com-
mon Langmuir-Hinshelwood rate law is only valid in a
small region of operation (Porru et al. (2000)). An al-
ternative method of process modeling is using machine
learning techniques with process data. Among many differ-
ent machine learning methods, recurrent neural networks



(RNN) and Long-Short-Term-Memory (LSTM) networks
have attracted an increasing level of attention due to
their ability of modeling dynamic systems. Recently, in
Wu et al. (2019a, 2020b), machine-learning-based MPC
schemes have been proposed to optimize process perfor-
mance and ensure system stability with feedback mea-
surements of process state variables available. However,
the assumption of full state measurements available for
feedback control may not hold for the chemical processes
with some state variables difficult to measure in real time.

As both MPC and state estimation need a process model
for predicting future states, this work utilizes machine
learning modeling techniques to develop a data-driven
model that can be efficiently implemented in both state
estimation and output feedback controllers. Specifically,
we develop an RNN model for a general class of non-
linear systems and integrate the RNN model within the
extended Luenberger observer and Lyapunov-based MPC
that uses state estimates in optimization. Section 2 intro-
duces the preliminaries, including the class of systems, and
the formulation of extended Luenberger observer. Section
3 presents the formulation of RNN models and of the
RNN-based Luenberger observer. Section 4 presents the
formulation of output feedback model predictive controller
that uses state estimates from RNN-based state estimator.
Finally, in Section 5, a chemical reactor example is used
to illustrate the effectiveness of the proposed estimation
approach.

2. PRELIMINARIES

2.1 Notations

The Euclidean norm of a vector is represented by | · |.
The standard Lie derivative is represented as Lfh(x) =
∂h(x)
∂x f(x). The notation \ stands for set subsection, i.e.,

A \B = {x ∈ Rn|x ∈ A, x /∈ B}. The function f(·) is said
to be of class C1 if it is continuously differentiable.

2.2 Class of Systems

We consider the following class of continuous-time nonlin-
ear systems in state-space form:

ẋ = F (x, u) := f(x) + g(x)u (1a)

y = h(x) (1b)

where the state vector is x = [x1, ..., xn]T ∈ Rn, the output
vector is y = [y1, ..., yq]

T ∈ Rq, and the input vector is
u = [u1, ..., um]T ∈ Rm. F (x, u) is a nonlinear function
with respect to x and u. The constrains on control inputs
is given by u ∈ U := {uimin ≤ ui ≤ uimax} . The function
f(·), g(·) and h(·) are matrices of dimension n× 1, n×m,
and q × 1 respectively.

2.3 Extended Luenberger Observer

Extended Luenberger observer (ELO) has been proposed
for nonlinear processes as natural extension of Luenberger
observer based on a linear approximation of the pro-
cess (Zeitz (1987); Dochain (2003)). The practical goal of

the state observer is to provide an estimation of the unmea-
sured internal states of a given system by utilizing mea-
sured states from the process along with the implemented
inputs. The extended Luenberger observer is presented in
the following form for the nonlinear system of Eq. 1.

˙̂x = F (x̂, u) +K (y − h(x̂)) (2)

where x̂ represents the estimated state vector, and the
observer gain is denoted by K. The observer gain is also
associated with desired properties from the state estimator
and will be discussed in detail later. It is observed from
Eq. 2 that the first term is the process model, and the last
term K(y−h(x̂)) is known as the output prediction error,
which is also considered as a correction term.

The goal of the ELO is to minimize the estimation error
(i.e., e = x − x̂) in which the dynamic of the error is
determined by the following equation (Dochain (2003);
Mesbah et al. (2011)):

ė = F (x̂+ e, u)− F (x̂, u) −K(h(x̂+ e)− h(x̂)) (3)

As shown in Eq. 3, the problem now is to determine under
which conditions e can decay to zero. Therefore, it is
important to design K to achieve this goal. In order to
shade some light of the choice of K, Eq. 3 can be simplified
to the following equation by linearizing the process model
at a fixed point, e = 0:

ė = (A−KL)e (4)

where A = [∂F (x, u)/∂x]x=x̂ and L = [∂h(x, u)/∂x]x=x̂

are the linearized terms of the nonlinear system evaluated
at the estimated states. Finally, K is selected such that the
eigenvalues of the matrix A − KL have strictly negative
real parts.

2.4 Stabilization via Control Lyapunov Function

We assume that there exists a feedback control law u =
Φ(x̂) ∈ U based on estimated states x̂ that can render the
origin of the system of Eq. 1 exponentially stable. This
stabilizability assumption implies that there exists a C1

Control Lyapunov function V (x) such that the following
inequalities hold for all x in an open neighborhood D
around the origin:

c1|x|2 ≤ V (x) ≤ c2|x|2, (5a)

∂V (x)

∂x
F (x,Φ(x̂)) ≤ −c3|x|2, (5b)∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ c4|x| (5c)

where c1, c2, c3 and c4 are positive constants. F (x, u) is
the nonlinear system of Eq. 1. A candidate controller for
Φ(x̂) is provided by the universal Sontag control law Lin
and Sontag (1991). Then, following Wu et al. (2019a), we
characterize the closed-loop stability region Ωρ as a level
set of Lyapunov function in the region D where the time-
derivative of V is rendered negative under the controller
Φ(x̂) ∈ U Ωρ := {x ∈ D | V (x) ≤ ρ}, where ρ > 0.
Additionally, based on the Lipschitz property of F (x, u)
and the boundedness of u, there exist positive constants
M , Lx, L

′

x such that the following inequalities hold for all
x, x′ ∈ D and u ∈ U :



|F (x, u)| ≤M (6a)

|F (x, u)− F (x′, u)| ≤ Lx|x− x′| (6b)∣∣∣∣∂V (x)

∂x
F (x, u)− ∂V (x′)

∂x
F (x′, u)

∣∣∣∣ ≤ L′x|x− x′| (6c)

3. RNN-BASED STATE OBSERVER

3.1 Recurrent Neural Network (RNN)

As a process model is needed in the extended Luenberger
observer of Eq. 2. The following RNN model is developed
to approximate the nonlinear system of Eq. 1 using process
operational data when a first-principles model is not
available:

˙̄x = Frnn(x̄, u) := Ax̄+ ΘT y (7)

where x̄ = [x̄1, ..., x̄n] is the RNN state vector, and
u = [u1, ..., um] is the manipulated input vector. y =
[y1, ..., yn, yn+1, ..., ym+n] = [σ(x̄1), ..., σ(x̄n), u1, ..., um] ∈
Rn+m is a vector of both x̄ and u, where σ(·) is the
nonlinear activation function. A is a diagonal coefficient
matrix and Θ = [θ1, ..., θn] ∈ R(m+n)×n is a matrix with
neural network weights to be optimized. The structure of
unfolded and folded RNNs are shown in Fig. 1.

Fig. 1. Structure of recurrent neural network.

After designing the RNN structure in terms of the number
of layers and neurons and other hyper-parameters, the
RNN is trained following the standard learning process
as discussed in Wu et al. (2019a,b). Specifically, training,
validation and testing datasets are generated from open-
loop simulations of Eq. 1 under different initial condi-
tions and control actions for a finite period of time. The
continuous-time system of Eq. 1 is integrated using explicit
Euler method with a sufficiently small integration time
step hc, and the control actions u are applied in a sample-
and-hold fashion, i.e., u(t) = u(tk), ∀t ∈ [tk, tk+1), where
tk+1 := tk + ∆ and ∆ is the sampling period. Since RNN
models are able to capture process dynamic behavior from
time-series data, the RNN model in this work is developed
using all the integration time step data (i.e., data at
each hc step) within each sampling period to predict the
state evolution for one sampling period. Additionally, as
discussed in Wu et al. (2019a), the RNN models needs
to satisfy a sufficiently small modeling error (i.e., with a
sufficiently high model accuracy) during training such that
it can well represent process dynamics in the operating
region we considered.

3.2 RNN-based State Estimator

The RNN model is then used in the extended Luenberger
observer of Eq. 2 as follows:

˙̂x = Frnn(x̂, u) +K(y − h(x̂)) (8)

Specifically, the state estimation based on the RNN model
of Eq. 7 is obtained from the following steps. 1) Given an
initial state estimate x̂(tk) at time t = tk along with the
manipulated input vector u(tk), the RNN model predicts
the state at the next integration time step at t = tk +
hc, then the state estimate at t = tk + hc is obtained
following Eq. 8 by adding the second term hc×K(y−h(x̄)).
2) After the state estimate at t = tk + hc is obtained,
the above process is repeated with the same input u
(because u remains constant within one sampling period).
3) Finally, the state estimate at the next sampling period
t = tk+1 := tk+∆ is obtained through ∆

hc
iterations of the

above process.

Since the RNN model is trained with a sufficiently small
modeling error, the state estimation through RNN-based
state estimator of Eq. 8 is sufficiently close to the estimated
value provided by Eq. 2 when the process model of Eq. 1 is
known. As a result, the following condition |x̂rnn − x̂| ≤ ε
holds for all states in the operating region, where ε > 0 is
the upper bound for the error between the state estimate
x̂rnn provided by RNN-based estimator and x̂ from Eq. 2.
The proof is omitted here due to space limitation.

Remark 1. The RNN model in this work is developed us-
ing noise-free data from extensive open-loop simulations of
Eq. 1 to capture process dynamics in the operating region.
In addition to computer simulations, datasets can also be
generated using industrial measurements and experimen-
tal data. In the case that real industrial measurements are
corrupted by noise from sensors variability and common
plant variance, co-teaching training algorithm and dropout
technique can be utilized in machine learning modeling
approaches to improve the approximation performance by
reducing the impact of noise. The interested reader is
referred to Wu et al. (2020a) for a detailed development
of co-teaching and dropout methods.

4. OUTPUT FEEDBACK MODEL PREDICTIVE
CONTROL

In this section, an output feedback model predictive con-
trol (MPC) is designed based on state estimates provided
by the RNN-based estimator to stabilize the nonlinear
system of Eq. 1 at the steady-state. Specifically, the
Lyapunov-based MPC is used in this work and the formu-
lation is presented as the following optimization problem:

J = min
u∈S(∆)

∫ tk+N

tk

L(x̃(t), u(t))dt (9a)

s.t. ˙̃x(t) = Frnn(x̃(t), u(t)) (9b)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (9c)

x̃(tk) = x̂(tk) (9d)

V̇ (x̂(tk), u) ≤ V̇ (x̂(tk),Φ(x̂(tk)),

if x̂(tk) ∈ Ωρ\Ωρnn
(9e)

V (x̃(t)) ≤ ρnn, ∀ t ∈ [tk, tk+N ), if x̂(tk) ∈ Ωρnn

(9f)



where x̃ is the predicted state trajectory, S(∆) is the
set of piecewise constant functions with period ∆, and
N is the number of sampling periods in the predic-
tion horizon. V̇ (x, u) represents the time-derivative of V ,

i.e., ∂V (x)
∂x (Frnn(x, u)). The LMPC calculates the optimal

input sequence u∗(t) over the prediction horizon t ∈
[tk, tk+N ), and sends the first control action u∗(tk) to the
system to be applied for the next sampling period. Then
the LMPC receives new measurements and is resolved with
new state estimates at the next sampling time.

In the optimization problem of Eq. 9, Eq. 9a is the
objective function of LMPC that minimizes the time-
integral of L(x̃(t), u(t)) over the prediction horizon subject
to the following constraints. The constraint of Eq. 9b is
the RNN model of Eq. 7 for predicting state evolution
given control actions and an initial state. Eq. 9c is the
input constraint. Eq. 9d defines the initial condition x̃(tk)
of Eq. 9b, which is the state estimates provided by the
RNN-based state estimator of Eq. 8 at t = tk. Specifically,
given the state estimates at the previous time step, and
the control actions, the estimation for the current state
at t = tk is obtained following the steps as discussed in
Section 3.2. Then, the state estimates x̂(tk) is used as
the initial state for the prediction model of Eq. 9b, and
also in the constraints of Eq. 9e. If x̂(tk) ∈ Ωρ\Ωρnn , the
constraint of Eq. 9e is activated, under which the state is
forced to move towards the origin since Φ(x̂) is a stabilizing
feedback control law. If the estimated state x̂(tk) enters a
small neighborhood Ωρnn around the origin Ωρnn , then the
constraint of Eq. 9f requires the states to remain inside
Ωρnn for the entire prediction horizon.

Closed-loop stability is guaranteed for the nonlinear sys-
tem of Eq. 1 under the LMPC of Eq. 9 using state esti-
mates from RNN-based estimator. Since the RNN is a well-
conditioned model with sufficiently high model accuracy,
the state estimation provided by the RNN-based estimator
is of high accuracy, and converges to the true state value
in a short time. Given that the error between the state
estimate x̂rnn provided by RNN-based estimator and the
one x̂ from Eq. 2 is bounded for all times, the stabilizing
controller u = Φ(x̂) designed based on the state estimates
from Eq. 2 also guarantees closed-loop stability of MPC
(in sample-and-hold fashion) that uses the state estimates
from RNN-based estimator.

5. APPLICATION TO A CHEMICAL REACTOR
EXAMPLE

In this section, a nonlinear chemical process is used
to illustrate the application of the proposed machine
learning-based estimator in the LMPC controller. A non-
isothermal, a well mixed continuous stirred tank reactor
(CSTR) is considered, with the following reversible first-
order exothermic reaction (Zhang et al. (2019)):

A↔ B

The nonlinear dynamical model that describes the process
dynamics is given by the following mass and energy
balance equations:

dCA
dt

=
1

τ
(CA0 − CA)− rA + rB (10a)

dCB
dt

=
−1

τ
CB + rA − rB (10b)

dT

dt
=

1

τ
(T0 − T ) +

−∆H

ρCp
(rA − rB) +

Q

ρCpV
(10c)

rA =kAe
−EA
RT CA (10d)

rB =kBe
−EB
RT CB (10e)

The concentration of A and B in the CSTR are given
by CA and CB respectively, and T represents the reactor
temperature. The feed concentration is denoted by CA0

and the feed temperature is denoted by T0. As for the
reaction kinetics, kA and EA represent the pre-exponential
constant and the activation energy for the forward reac-
tion, while kB and EB are for the reverse reaction. The
reactor residence time is denoted by τ . V represents the
reactor volume, ∆H is the reaction enthalpy, and the
heat capacity of the mixture liquid is denoted by Cp. The
CSTR is equipped with a heating/cooling jacket to pro-
vide/remove required heat at rate Q to/from the reactor.
Zhang et al. (2019) has provided the optimal steady states
for the process described in Eq. 10. The optimal steady
state values and process parameter values are listed in
Table 1.

Table 1. Parameter and steady-state values for
the CSTR.

To = 400 K Ts = 426.743 K

kA = 5000 /s EA = 1 × 104 cal/mol

kB = 106 /s EB = 1.5 × 104 cal/mol

R = 1.987 cal/(mol K) ∆H = −5000 cal/mol

ρ = 1 kg/L Cp = 1000 cal/(kg K)

CA0 = 1 mol/L V = 100 L

CAs = 0.4977 mol/L τ = 60 s

CBs = 0.5023 mol/L Qs = 40386 cal/s

5.1 Simulation Settings

The control objective is to drive CA, CB , and T to the
steady-state by manipulating the heat input rate Q. The
manipulated variable is considered in the deviation form as
u = Q−Qs. The control action u is bounded with upper
bound uUB = 40, 000 cal/s and a lower bound uLB =
−40, 000 cal/s. The process states are all represented in
the deviation form. The optimal steady-state is at xT =
[x1 x2 x3] = [CA − CAs

CB − CBs
T − Ts] such that

the origin is the equilibrium point of this system. Since
in practice not all process states are measurable (Kurtz
and Henson (1998)), unmeasurable states needs to be
estimated based on measurable states. In this case study,
we assume that the only measured state is x3 = T − Ts.
Therefore, x1 = CA − CAs and x2 = CB − CBs can be
estimated using the proposed RNN-based state estimator.
Based on the measurement y of the state variable x3,
the RNN-based observer first utilizes the RNN model to
predict x1 and x2, and then add the estimation error
part (K(y − x̂3)) to obtain the state estimates at the
current time step. Subsequently, the estimated states x̂T =



[x̂1 x̂2 x̂3] are sent to the MPC for solving the optimal
control action for the next sampling period.

The nonlinear optimization problem of LMPC is solved
using the IPOPT software package (Wächter and Biegler
(2006)), and its python version, PyIpopt, with the sam-
pling period ∆ = 10s. The objective function of LMPC is
of the form: L(x, u) = xTQx+uTRu, where Q = diag[5×
104 5× 104 1], and R = [10−7]. The observer gains used
in this work are K = [0.5, 0.0005, 0.0005]. The Lyapunov
functions is given by V (x) = xT P x, with the following
positive definite P matrix:

P =

625 0 0
0 625 0

100 100 105


5.2 Neural Networks Model Training

The data generation, neural network training and valida-
tion process for the RNN model are carried out as follows.
To generate the dataset for RNN model, the system of
Eq. 10 was numerically integrated for one sampling pe-
riod under different initial conditions. The explicit Euler
method with an integration time step of hc = 0.5 s is uti-
lized. Specifically, a data set of size 1.6×106 was built using
MATLAB. The data base was then divided into an input
matrix with u, x1, x2, x3 at t = tk and an output matrix
with x1, x2, and x3 as outputs at t = tk+1, from which 70%
of the data was utilized for model training, and 30% was
for validation. Note that the full state measurements are
available in the training stage as the data can be obtained
offline, while in real-time operation of CSTR, only the
temperature can be measured every sampling time. The
RNN model was developed using Keras library with two
hidden layers of 50 unit in each layer and tanh activation
function, and an output layer with 3 neurons and linear
activation function. 274 epochs were used for the training
process.

5.3 Closed-loop Simulation Results

Closed-loop simulation study is carried out to demonstrate
the performance of the proposed estimation approach in
the CSTR of Eq. 10. The closed-loop simulations results
using the RNN-based estimator with four different sets of
initial conditions, IC1, IC2, IC3, and IC4 are shown in
Figs. 2-5.

It can be seen from these figures that starting from
different initial conditions and different initial estimates,
the closed-loop states are stabilized at the steady-state
under LMPC using RNN-base state estimator. Specifically,
in Fig. 2 and Fig. 3, we consider two initial estimates that
are very close to the true state values. It is demonstrated
that the state estimates provided by the RNN-based
estimator converge to the true state value quickly, and
after that, the closed-loop states are driven the the steady-
state smoothly. In Fig. 4 and Fig. 5, we consider two initial
estimates that are not close to the true state values at the
beginning. It is demonstrated that the state estimates still
converge to the true states but takes longer time than those
in Fig. 2 and Fig. 3. In all cases, closed-loop stability is
achieved for the system under LMPC.
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Fig. 2. True state (red line) and estimated state (blue line)
trajectories for the closed-loop CSTR under LMPC
with the initial condition IC1.

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

C
A

 -
 C

A
s
 (

m
o

l/
L

)

True state

Estimated state

0 20 40 60 80 100 120 140 160 180 200
-0.2

-0.1

0

C
B

 -
 C

B
s
 (

m
o

l/
L

)

True state

Estimated state

0 20 40 60 80 100 120 140 160 180 200

-30

-20

-10

0

T
 -

 T
s
 (

K
)

True state

Estimated state

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

0

2

4

Q
- 

Q
s
(C

a
l/
s
e

c
) 10

4

Fig. 3. True state (red line) and estimated state (blue line)
trajectories for the closed-loop CSTR under LMPC
with the initial condition IC2.
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Fig. 4. True state (red line) and estimated state (blue line)
trajectories for the closed-loop CSTR under LMPC
with the initial condition IC3.

Subsequently, the mean squared errors (MSE) between
true state profiles and estimate state profiles are used
to evaluate the performance of the estimator. Table 2
summarized the MSE of state estimation using the RNN-
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Fig. 5. True state (red line) and estimated state (blue line)
trajectories for the closed-loop CSTR under LMPC
with the initial condition IC4.

based state estimator in the four closed-loop simulations.
It is shown that all the closed-loop simulations achieve
sufficiently small MSEs, and the simulations with IC1 and
IC2 achieve better results due to better initial estimates.
This is consistent with the closed-loop simulation results as
shown in Figs. 2-5. Therefore, from this simulation study
of CSTR example, it is demonstrated that the RNN-based
estimator can estimate true state values with a sufficiently
high accuracy.

Table 2. Estimation mean squared error of the
closed-loop CSTR under LMPC

Simulation No. MSE of x1 MSE of x2

1 1.3699 × 10−5 9.9753 × 10−6

2 1.9458 × 10−5 5.606 × 10−5

3 6.0499 × 10−4 5.3197 × 10−4

4 3.24 × 10−4 7.41 × 10−4

6. CONCLUSION

In this work, we proposed a machine-learning-based state
estimation approach for nonlinear processes. The RNN
model was first developed to represent process dynamics in
the operating region, and incorporated in extended Luen-
berger observer. Then, the RNN-based estimator was used
to provide state estimates for the optimization problem of
LMPC. From closed-loop simulations, it was demonstrated
that RNN-based estimator achieved a desired accuracy in
state estimation, and all the state trajectories initiating
from different initial conditions converged to the steady-
state under the LMPC using RNN-based estimator.
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