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Abstract: In this study, we propose a dual-mode finite-time extremum seeking control system
for the solution of real-time optimization problems for a class of unknown nonlinear dynamical
systems. The technique provides fast convergence of the closed-loop to the optimum of a
measured objective function in the absence of exact knowledge of the process dynamics. The
finite-time approach provides a control system suitable for a large class of process control
problems where exact models are not available. A simulation study is presented to demonstrate
the effectiveness of the technique.
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1. INTRODUCTION

Recent developments in continuous-time optimization
have led to the development of finite-time optimization
techniques. In [Garg and Panagou, 2018], a model-based
gradient descent with finite-time convergence was pro-
posed. A Lyapunov stability approach was used to es-
tablish the finite-time stability of the optimum. Model-
based continuous-time algorithms have also been proposed
to force the finite-time convergence of real-time optimiza-
tion problems subject to time-varying objective functions
[Romero and Benosman, 2020].

In the absence of exact model information, data-driven
model free techniques must be used. Extremum seeking
control (ESC) provides an effective data-driven control
mechanism to solve real-time optimization problems. ESC
is a well established real-time optimization technique with
a solid theoretical foundation. Its stability properties were
fully characterized in Krstic and Wang [2000] and Tan
et al. [2006] for the solution of steady-state optimization
problems. Building on these results, considerable research
has been conducted over the last two decades to address
the limitations of the basic ESC methodology.

A number of recent studies have led to the develop-
ment of extremum seeking control schemes with finite-time
and fixed-time with practical convergence properties. In
Poveda and Krstić [2020], an ESC design technique was de-
velop to achieve fixed-time practical convergence of a class
of static maps. An alternative technique was also proposed
in Guay and Benosman [2020] for the same class of systems
where finite-time practical convergence was achieved. The
main difference between the two techniques is related to
the dynamics of the averaged closed-loop system. The
averaged system obtained in Guay and Benosman [2020]
achieves finite-time stability of the unknown optimum as
perturbations vanish. Newton seeking generalizations of
these techniques have also been proposed in Guay [2020]
and Poveda and Krstic [2020].

One important limitation of ESC is the lack of guaranteed
transient performance. When solving steady-state opti-
mization problems, the leading strategy is to operate the
real-time optimization near the steady-state to overcome
the effect of the unknown process dynamics. Fast ESC
techniques (e.g., Moase and Manzie [2012], Scheinker and
Krstic [2016]) have been proposed in the literature to over-
come the requirement for slow transients. In Guay [2016]
and Guay and Atta [2018], a dual-mode ESC approach
was proposed to improve the transient performance of ESC
systems. In this study, we seek a dual-mode method that
provides finite-time convergence of an ESC system to its
unknown optimum conditions.

In this study, we propose a dual mode approach that
achieves finite-time convergence of an unknown dynamic
system to a neighbourhood of the optimum of a mea-
sured objective function. We consider a dual-mode ESC
formulation that achieves finite-time practical stability of
ESC system. Following the methodology proposed in Guay
[2016], the proportional feedback component of the dual
mode is used to achieve finite-time stability while the
integral feedback corrects for the correct value of the input
variable at steady-state.

The paper is structured as follows. Some preliminaries are
given in Section 2. The problem formulation is given in
Section 3. The proposed ESC is presented in Section 4.
Section 5 presents a brief simulation study. Conclusions
are presented in Section 6.

2. PRELIMINARIES

2.1 Finite-time Stability

In this section, we present the definition of finite-time
stability considered in this study (as stated in Hong
et al. [2010]). We introduce the following class of finite-
dimensional nonlinear systems:

ẋ = F (x) (1)



where x ∈ Rn and F : Rn → Rn is continuous in x.

The continuity of the right hand side of (1) guarantees
existence of at least one solution, possibly non-unique. The
set of all solutions of (1) with initial conditions x(t0) = x0

is denoted by φ(t, t0, x0) for t ≥ t0. In the remainder,
the set of all solutions of system (1) at time t will be
simply denoted by x(t). The equilibrium x0 = 0 is a unique
solution of the system in forward time.

Definition 1. The equilibrium x = 0 of (1) is said to be
finite-time locally stable if it is Lyapunov stable and such
that there exists a settling-time function

T (x0) = inf

{
T̄ ≥ t0

∣∣∣∣ lim
t→T̄

x(t) = 0 ; x(t) ≡ 0, ∀t ≥ T̄
}

in a neighbourhood U of x = 0. It is globally finite-time
stable if U = Rn.

Finite-time stability can be expressed using a special class
of K functions. A continuous function α : R≥0 → R≥0 is
a called a class K function if it is strictly increasing and
α(0) = 0. It is a class K∞ function if it is class K and
lims→∞ α(s) =∞.

A continuous function φ : R≥0 → R≥0 is a generalized
class K function if φ(0) = 0 and{

φ(s1) > φ(s2) ifφ(s1) > 0, s1 > s2

φ(s1) = φ(s2) ifφ(s1) = 0, s1 > s2.
(2)

A continuous function β : R≥0 × R≥0 → R≥0 is a
generalized KL function if, for each fixed t ≥ 0, the
function β(s, t) is a generalized K function and each fixed
s ≥ 0, the function β(s, t) is such that limt→T β(s, t) = 0
for T ≤ ∞. We can characterize finite-time stability using
generalized K functions as follows:

Definition 2. System (1) is finite-time stable if there exists
a generalized KL function β : R≥0 × R≥0 → R≥0 such
that every solution x(t) satisfies: ‖x(t)‖ ≤ β(‖x(0)‖, t)
with β(r, t) ≡ 0 when t ≥ T̄ (r) with T̄ (r) continuous with
respect to r and T̄ (0) = 0.

Definition 3. Let V (x) be a continuous function. It is
called a finite-time Lyapunov function if there exists class
K∞ functions φ1 and φ2 and a class K function φ3 such
that φ1(‖x‖) ≤ V (x) ≤ φ2(‖x‖) and

D+V (x(t)) ≤ −φ3(‖x‖)
where, in addition, φ3 satisfies: c1V (x)a ≤ φ3(‖x‖) ≤
c2V (x)a for some positive constants a < 1, c1 > 0 and
c2 > 0.

Finally, we will need the following definition of practical
finite-time stability.

Definition 4. System (1) is semi-globally practically finite-
time stable if there exists a generalized KL function β :
R≥0×R≥0 → R≥0 and a positive constant ζ > 0 such that
every solution x(t) starting in X satisfies:

‖x(t)‖ ≤ β(‖x(0)‖, t) + ζ (3)

with β(r, t) ≡ 0 when t ≥ T̄ (r) with T̄ (r) continuous with
respect to r and T̄ (0) = 0.

3. PROBLEM FORMULATION

We consider a class of multivariable unknown nonlinear
systems described by the following dynamical system:

ẋ = f(x) + g(x)u (4a)

y = h(x) (4b)

where x ∈ Rn are the state variables, u ∈ R is the input
variable, and y ∈ R is the output variable. It is assumed
that the function h : Rn → R is sufficiently smooth. The
function h, is assumed to be unknown. It has an unknown
minimizer x∗ with an optimal value y∗ = h(x∗).

The cost function, h(x), meets the following assumption.

Assumption 5. The function h(x) is such that its gradient
vanishes only at the minimizer x∗, that is:

∂h

∂x

∣∣∣∣
x=x∗

= 0.

The Hessian at the minimizer is assumed to be positive and
nonzero. In particular, there exists a positive constant αh
such that

∂2h(x)

∂x∂x>
≥ αhI

for all x ∈ X ⊂ R.

The objective of this study is to develop an ESC design
technique that guarantees finite-time convergence to a
neighbourhood of the unknown minimizer, x∗, of the
measured function y = h(x).

4. FINITE TIME EXTREMUM SEEKING
CONTROLLER DESIGN AND ANALYSIS

4.1 Proposed target average system

The intended target averaged system is given by the
control system

ẋ =f(x) + g(x)u

˙̂u =− k

τI
γ(Lgh)

(Lgh)3√
1 + (Lgh)4

u =− kγ(Lgh)Lgh+ γ(Lgh)
(Lgh)2√

1 + (Lgh)4
û

(5)

where k, τI are controller gains to be assigned.

As in Andrey [2012], Lopez-Ramirez et al. [2018], the
function γ(v) is given by:

γ(v) =
c1
‖v‖α1

+
c2
‖v‖α2

where α1 =
q1 − 2

q1 − 1
and α2 =

q2 − 2

q2 − 1
for q1 ∈ (2,∞) and

q2 ∈ (1, 2). In this study, it will be assumed that c2 =
0. Furthermore, we will make the following simplifying
assumption.

Assumption 6. The function |Lgh| is assumed to be such
that there exists β1 and β2:

β1(h− h∗) ≤ |Lgh|2 ≤ β2(h− h∗).
Assumption 7. For the system (4a)-(4b), there exists a
k∗ ≥ 0 such for all k > k∗:

Lfh− kLgh2 + ρ(Lgh)Lghu
∗ ≤ 0 (6)

for x ∈ D ⊂ Rn where ρ : R → R is a bounded positive
definite continuous function such that ρ(0) = 0.

The function γ(v)v is not locally Lipschitz continuous at
v = 0 but it is continuous everywhere. Finite-time stability
analysis of the optimal equilibrium (x = x∗, u = u∗) of the
target system (5) is stated in the following lemma.



Lemma 1. Consider the nonlinear system (5). Let As-
sumptions 5, 6 and 7 be satisfied. Then the optimum
x = x∗ is a finite-time stable equilibrium of (5).

Proof: Let ũ = û − u∗ and pose the following Lyapunov
function candidate:3

V1 = h(x)− h(x∗) +
τI
2k
ũ2.

Its derivative along the trajectories of (5) yields:

V̇1 = Lfh− kγ(Lgh)Lgh
2 +

(Lgh)3√
1 + (Lgh)4

γ(Lgh)û

− ũ (Lgh)3√
1 + (Lgh)4

γ(Lgh).

Upon substitution of û = ũ+ u∗. This can be written as:

V̇1 = Lfh+
Lgh

3√
1 + (Lgh)4

γ(Lgh)u∗ − kγ(Lgh)Lgh
2.

By Assumption 7, it follows that:

V̇1 ≤ −kγ(Lgh)Lgh
2.

It follows from Lyapunov stability theory that all trajec-
tories of the system are bounded. That is, there exists a
constant cu such that ‖ũ‖ ≤ cu.

Next, let V2 = h(x)− h(x∗). Then it follows by definition
that:

V̇2 = V̇1 + ũγ(Lgh)
Lgh

3√
1 + (Lgh)4

.

or,

V̇2 ≤ −kγ(Lgh)Lgh
2 + cuγ(Lgh)

|Lgh|3√
1 + (Lgh)4

.

Upon substitution of the γ(Lgh), we obtain:

V̇2 ≤ −kc1|Lgh|2−α1 + cuc1
|Lgh|3−α1√
1 + (Lgh)4

.

Using Assumption 6, we obtain:

V̇2 ≤ −kc1β2−α1
1 V

1−α1
2

2 + cuc1β
3−α1
3

V
3
2−

α1
2

2√
1 + β4

1V
2
2

.

If one defines the continuous positive function:

γ1(V2) = cuc1β
3−α1
3

V
3
2−

α1
2

2√
1 + β4

1V
2
2

Then it is easy to see that,

lim
V2→0

γ1(V2)

V
1−α1

2
2

= 0.

It follows that, for any cu, one can find a constant r(cu) > 0
such that:

γ1(V2) ≤ k

2
c1β

2−α1
1 V

1−α1
2

2

for all V2 ≤ r(cu). Thus if V2(0) < r then

V̇2 ≤ −
k

2
c1β

2−α1
1 V

1−α1
2

2 . (7)

Hence, it follows that V2(t) ≤ r for t ≥ 0. Furthermore,
the system will converge to x = x∗ in finite-time.

On the other hand, if V2(0) > r then it is claimed that the
system reaches V2(t) ≤ r in finite-time.

By definition, it follows that V1 ≥ V2 > r.

V1(0) ≥ V1(τ) +

∫ τ

0

k

2
c1β

2−α1
1 V2(σ)1−α1

2 dσ.

By assumption, we get:

V1(0) ≥ τ k
2
c1β

2−α1
1 r1−α1

2 .

This leads to a contradiction when

t ≥ V1(0)
k
2 c1β

2−α1
1 r1−α1

2

.

Thus the system enters the set V2 ≤ r in finite-time. By
the finite-time stability of the system in this set, it follows
the system converges to x∗ in finite-time.

This completes the proof.

4.2 Proposed Dual-mode Finite-time ESC

The proposed ESC system is given by:

ẋ = f(x) + g(x)u

ξ̇ = −ωl(ξ + δ1)γ(ξ + δ1)

˙̂u =
k

τI
γ(ξ)

ξ2√
1 + ξ4

δ1(t, x)

u = −kξγ(ξ) + γ(ξ)
ξ2√

1 + ξ4
û+ a sin(ωt)

(8)

where δ1 = 2ω
a cos(ωt)h(x), ωl, a and ω are positive

constants.

An average of this system is given by:

ẋa = f(xa) + g(xa)ua

ξ̇a = −ωl
T

∫ T

0

ξa + δ1(σ, xa)

|ξa + δ1(σ, xa)|α1
dσ

˙̂ua = − k

τI

ξa2

|ξa|α1

√
1 + ξa4

Lgh
a

ua = −k ξa

|ξ|α1
+

ξa2

|ξa|α1

√
1 + ξa4

ûa.

(9)

Next we note that one can show using standard arguments
that:

1

T

∫ T

0

(ξa + δ1(xa, t))dt ≈(ξa − Lgh(xa)) +O
(

1

ω

)
.

Similarly, it is also easy to compute that:

1

T

∫ T

0

|ξa + δ1(xa, t)|dt ≈|ξa − Lgh(xa)|+O
(

1

ω

)
.

We can now proceed with the stability analysis of the
averaged system.

Lemma 2. Let Assumptions 5, 6 and 7 be satisfied. Then
the optimum xa = x∗, ξa = 0 is a finite-time stable
equilibrium of the averaged system (9).

Proof: Pose the Lyapunov function: V3 = 1
2 (ξa)2.

V̇3 =− ωl(ξa)
1

T

∫ T

0

ξa + δ1(σ, xa)

|ξa + δ1(σ, xa)|α1
dσ.



This can be rewritten as follows:

V̇3 =− ωl(ξa − Lgha)
1

T

∫ T

0

ξa + δ1(σ, xa)

|ξa + δ1(σ, xa)|α1
dσ

− ωlLgha
1

T

∫ T

0

ξa + δ1(σ, xa)

|ξa + δ1(σ, xa)|α1
dσ (10)

Using the approach outlined in Guay and Benosman
[2020], it can be shown that:

V̇3 ≤−
ωl‖ξa − Lgha‖2

T‖ξa − Lgha‖α1

− ωlLgh
a

T

∫ T

0

ξa + δ1(σ, xa)

|ξa + δ1(σ, xa)|α1
dσ.

The last inequality can be further written as:

V̇3 ≤−
ωl‖ξa − Lgha‖2

T‖ξa − Lgha‖α1

+
ωl|Lgha|

T

∫ T

0

|ξa + δ1(σ, xa)|
|ξa + δ1(σ, xa)|α1

dσ.

As a result, we obtain:

V̇3 ≤−
ωl‖ξa − Lgha‖2

T‖ξa − Lgha‖α1

+
ωl|Lgha|

T

∫ T

0

|ξa + δ1(σ, xa)|1−α1dσ

or,

V̇3 ≤−
ωl‖ξa − Lgha‖2

T‖ξa − Lgha‖α1

+
ωl|Lgha|

T

∣∣∣∣∣
∫ T

0

|ξa + δ1(σ, xa)|dσ.

∣∣∣∣∣
1−α1

Finally, we show that:

V̇3 ≤−
ωl
T
|ξa − Lgha|2−α1 + ωl|Lgha||ξa − Lgha|1−α1 .

Next we pose the Lyapunov function candidate: V4 = V3 +

h(xa)− h(x∗) + τI
2k ũ

a2 .

Upon differentiation with respect to t, we obtain:

V̇4 = V̇3 + Lfh
a+Lgh

a

(
− kγ(ξa)ξa

+ γ(ξa)
ξa

2√
1 + ξa4

ûa
)

+ ũa ˙̂ua

Upon substitution of ˙̂ua and ũa = ûa − u∗, the last
inequality is written as:

V̇4 =V̇3 + Lfh
a − kLghaγ(ξa)ξa + Lgh

aγ(ξa)
ξa

2√
1 + ξa4

u∗

Next we substitute for V̇3 to get:

V̇4 ≤−
ωl
T
|ξa − Lgha|2−α1 + ωl|Lgha||ξa − Lgha|1−α1

+ Lfh
a − kLghaγ(ξa)ξa + Lgh

aγ(ξa)
ξa

2√
1 + ξa4

u∗.

By Assumption 7, one can write:

V̇4 ≤−
ωl
T
|ξa − Lgha|2−α1 + ωl|Lgha||ξa − Lgha|1−α1

− kLghaγ(ξa)ξa.

Upon rearrangement, the last inequality as follows:

V̇4 ≤−
ωl
T
|ξa − Lgha|2−α1 + ωl|Lgha||ξa − Lgha|1−α1

− k(Lgh
a − ξa)γ(ξa)ξa − k|ξa|2γ(ξa),

leading to the following inequality:

V̇4 ≤−
ωl
T
|ξa − Lgha|2−α1 + ωl|Lgha||ξa − Lgha|1−α1

+ k|ξa − Lgha|γ(ξa)|ξa| − k|ξa|2γ(ξa).

Substituting for γ(ξa):

V̇4 ≤−
ωl
T
|ξa − Lgha|2−α1 + ωl|Lgha||ξa − Lgha|1−α1

+ k|ξa − Lgha||ξa|1−α1 − k|ξa|2−α1 .

By the triangle inequality, we can upper bound |Lgha| ≤
|ξa|+ |ξa − Lgha|. This yields:

V̇4 ≤ −
ωl
T
|ξa − Lgha|2−α1 + ωl|ξa||ξa − Lgha|1−α1

+ ωl|ξa − Lgha|2−α1 + k|ξa − Lgha||ξa|1−α1 − k|ξa|2−α1 .

We can then apply Young’s inequality to obtain the
following expression:

V̇4 ≤−
(
k − ωl

γ1

1

2− α1
− k

γ2

1− α1

2− α1

)
|ξa|2−α1

−
(
ωl
T
− ωlγ1

1− α1

2− α1
− ωl − kγ2

1

2− α1

)
|ξa − Lgha|2−α1

for positive constants γ1 and γ2. It is then easy to find a
T ∗ such that for each T < T ∗ and a k∗ with k > k∗, such
that:

V̇4 ≤− γ3|ξa − Lgha|2−α1 − γ4|ξa|2−α1

for positive constants γ3 and γ4. As a result, we obtain:

V̇4 ≤− γ3|Lgha|2−α1 − γ5|ξa|2−α1

for some γ5 > 0. This gives:

V̇4 ≤− γ3β
1−α1/2
1 |h(x)− h(x∗)|1−

α1
2 − γ521−α1

2 V
1−α1

2
3 .

It follows that all signals of the averaged dynamics are
bounded. As in the proof of Lemma 1, we define the
function V5 = V3 + h(x) − h(x∗). This function is such
that:

V̇5 ≤− γ3β
1−α1/2
1 |h(x)− h(x∗)|1−α1/2

− γ521−α1/2V
1−α1/2
3 + |ũ||Lgha|

ξa2√
1 + ξa4

.

By definition of the function V5, this yields:

V̇5 ≤− γ621−α1/2V
1−α1/2
5 + |ũ||Lgha|

ξa2γ(ξa)√
1 + ξa4

.

Since all signals of the system are bounded, there exists a
constant cu > 0 such that ‖ũa‖ ≤ cu. The last inequality
can be written as:

V̇5 ≤− γ621−α1/2V
1−α1/2
5 + cuβ

1/2
2 (h− h∗)1/2 |ξa|2−α1√

1 + ξa4
,

or

V̇5 ≤− γ621−α1/2V
1−α1/2
5 + cuβ

1/2
2

21−α1/2V
3/2−α1/2
5√

1 + ξa4
.

Following the development in the proof of Lemma 1, there
exists a constant r(cu) > 0 such that



cuβ
1/2
2

21−α1/2V
3/2−α1/2
5√

1 + ξa4
≤ γ6

2
21−α1/2V

1−α1/2
5

whenever V5 < r(cu). It follows that if V5(0) = 0 then,

V̇5 ≤−
γ6

2
21−α1/2V

1−α1/2
5 .

As a result, we conclude that the equilibrium ξa = 0 and
xa = x∗ is finite-time stable. If V5(0) > r(cu), we can
proceed as in the proof of Lemma 1 and show that the
system reaches the set V5 < r(cu) in finite-time. This
completes the proof.

The main result of the previous analysis is that the
averaged system (9) are closely related to the stability
properties of the target system (5). It thus remains to
prove that the trajectories of the closed-loop system (8)
remain close to the trajectories of the target system. In
this study, we follow the analysis presented in Guay and
Benosman [2020] where we applied a classical averaging
theorem [Krasnosel’skii and Krein, 1955]. This theorem
can be used to show the closeness of solution of the nominal
system and the averaged system over a compact set D ⊂
R2 as a→ 0. A generalization, with proof, for averaging of
differential inclusions was proposed in Plotnikova [2005].

The theorem can be stated as follows.

Theorem 1. Krasnosel’skii and Krein [1955] Consider the

nonlinear system Ẋ = f(t,X, ε) where,

(1) the map f(t,X, ε) is continuous in t and X on R≥0×
Rn,

(2) there exists a positive constant L > 0 and a compact
set D ⊂ Rn such that ‖f(t,X, ε)‖ ≤ L for t ∈ R≥0,
X ∈ D and ε ∈ (0, ε∗],

(3) the averaged system

Ẋa = lim
T→∞

1

T

∫ T

0

f(t,Xa, 0)dt

exists with solutions defined on the set D with
Xa(0) = X(0).

Then, for each ε ≤ ε∗, there exists constants δ and T such
that:

‖X(t)−Xa(t)‖ ≤ δ
for t ∈ [0, T ].

We can now state the final result of this study.

Theorem 2. Consider the dual model finite-time ESC sys-
tem (8). Let Assumptions 5, 6 and 7 be satisfied. Then
there exists an ω∗ such that for all ω > ω∗ > 0, the
optimum x = x∗, ξ = 0 is a semi-globally practically finite-
time stable equilibrium of system (8).

Proof: The proof proceeds in two steps. In the first step,
we consider the application of Theorem 1. For the analysis
of the proposed finite-time ESC, the Krasnosel’skii-Krein
theorem can be applied as follows.

Consider the state, X = [x, û, ξ]>, and the corresponding
averaged variables Xa = [xa, ûa, ξa]>. By the analysis pro-
vided above, the averaged system has a finite-time stable
equilibrium at the origin X∗ = [x∗, u∗, 0]>. Furthermore,
the solutions of the system (9) exist and can be contained
in a compact set D ∈ Rn+2 containing X∗. Consider

the nonlinear system (8). By the smoothness of the cost
function h(x) and the periodicity of the dither signal, it
follows that the right hand side of the system can be
bounded a the compact set D ∈ Rn+2 uniformly in t. The
continuity and the boundedness of the right hand side of
(8) over a compact set D guarantees existence of solution
for the averaged system. As a result, one can invoke the
Krasnosel’skii-Krein theorem with ε = ω−1 to guarantee
that for any ω > ω∗ there exist constants T and δ such
that:

‖X(t)−Xa(t)‖ ≤ δ (11)

for t ∈ [0, T ].

In the second step, we exploit the finite-time stability of
the averaged system and the averaging result established
in the first step to establish the finite-time practical semi-
global stability of the ESC system.

Using the finite-time stability property of the averaged sys-
tem and the averaging result for small amplitude signals,
one can apply the approach in the proof of Theorem 1 in
Teel et al. [2003] to show that there exist a generalized
class K∞ function, βX and a constant, cX , such that:

‖X(t)‖ ≤ βX(‖X(t0)‖, t) + cX

for X(t0) ∈ D.

By inequality (11), we have that:

‖Xa(t)‖ ≤ ‖X(t)‖+ δ

for t ∈ [0, T̄ ].

Assume that there exists a constant r such that the set
{‖X(t0)‖ ≤ r} ⊂ D.

First, we pick the constant δ0 > 0 such that:

sup
γ0∈[0,r], t=[0,∞)

(βX(γ0 + δ, t)− βX(γ0, t)) + δ ≤ δ0
2
.

There always exists a T̄ such that:

βX(‖Xa(0)‖, τ) ≤ β(r, τ) ≤ δ0
2

for τ ∈ [T̄ ,∞).

For any t ∈ [0, 2T̄ ], it follows that:

‖X(t)‖ ≤βX(‖Xa(0)‖, t) + δ ≤ βX(‖X(0)|+ δ, t) + δ

≤βX(‖X(0)|, t) +
δ0
2
.

Thus it follows for t ∈ [T̄ , 2T̄ ], we conclude that:

‖X(t)‖ ≤ δ0.

Repeating the argument, it follows that:

‖X(t)‖ ≤ δ0
for t ∈ [T, ∞).

As result, we obtain:

‖X(t)‖ ≤ βX(‖X(0)‖, t) + δ0.

As a result, system (8) has a semi-globally practically
finite-time stable equilibrium at the optimal conditions
x = x∗ and ξ = 0.

This completes the proof.



5. SIMULATION STUDY

We first consider the following system:

ẋ1 = −x3
1 + x2,

ẋ2 = −x2 + x1 + u

y = 1 + 2(x2 − 1)2.

The objective is to drive the system to the unknown
optimum x∗2 = 1, x∗1 = 1, y∗ = 1 and u∗ = 0.
The dual mode finite-time extremum seeking controller is
implemented with the following tuning parameters: a = 5,
ω = 100, ωl = 100, α1 = 1/2, k = 1, and τI = 0.5.

Figures 1 and 2 show the resulting trajectories of the state
variable x2, the input variable û and the cost function y
for varying initial conditions. In Figure 1, we consider five
different initial conditions for x2(0)(= -10, -5, 0, 5 and
10) with û(0) = 0. The trajectories corresponding to five
different initial conditions in û(= -10, -5, 0, 5 and 10)
with x2(0) = 0 are shown in Figure 2. The trajectories are
shown to reach the optimum at the same time for all initial
conditions. The results demonstrate that the ESC system
achieves finite-time practical convergence. It is important
to note that the proposed finite-time ESC system cannot
guarantee to convergence of û to u∗.
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Fig. 1. Performance of the finite-time seeking system with
varying initial conditions for x2(0).
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Fig. 2. Performance of the finite-time seeking system with
varying initial conditions for û(0).

6. CONCLUSION

We proposed a dual-mode finite-time extremum seeking
control system for a class of unknown nonlinear dynamical

systems. It is shown that practical finite-time stability of
the unknown optimum of the measured cost function is
achieved. Future work will focus on the study of systems
with arbitrary relative degree for the design of data-driven
controllers.

REFERENCES

Andrey, P. (2012). Nonlinear feedback design for fixed-
time stabilization of linear control systems. IEEE
Transactions on Automatic Control, 57(8).

Garg, K. and Panagou, D. (2018). New results on finite-
time stability: Geometric conditions and finite-time con-
trollers. In 2018 Annual American Control Conference
(ACC), 442–447. IEEE.

Guay, M. (2016). A perturbation-based proportional
integral extremum-seeking control approach. IEEE
Transactions on Automatic Control, 61(11), 3370–3381.

Guay, M. (2020). Finite-time newton seeking for a class of
unknown static maps. In Proc. IEEE CDC. Jeju Island.

Guay, M. and Atta, K. (2018). Dual mode extremum-
seeking control via lie-bracket averaging approxima-
tions. In Proceedings of the 2018 American Control
Conference. Milwaukee, WI.

Guay, M. and Benosman, M. (2020). Finite-time ex-
tremum seeking control for a class of unknown static
maps. International Journal of Adaptive Control and
Signal Processing, n/a(n/a).

Hong, Y., Jiang, Z.P., and Feng, G. (2010). Finite-
time input-to-state stability and applications to finite-
time control design. SIAM Journal on Control and
Optimization, 48(7), 4395–4418.

Krasnosel’skii, M.A. and Krein, S.G. (1955). On the
principle of averaging in nonlinear mechanics. Uspekhi
Matematicheskikh Nauk, 10(3), 147–152.

Krstic, M. and Wang, H. (2000). Stability of extremum
seeking feedback for general dynamic systems. Auto-
matica, 36(4), 595–601.

Lopez-Ramirez, F., Efimov, D., Polyakov, A., and Perru-
quetti, W. (2018). In 27th European Control Conference
(ECC).

Moase, W.H. and Manzie, C. (2012). Fast extremum-
seeking for wiener–hammerstein plants. Automatica,
48(10), 2433–2443.

Plotnikova, N.V. (2005). The krasnosel’skii-krein theorem
for differential inclusions. Differential Equations, 41(7),
1049–1053.
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