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Abstract: The observer design problem for the cell population estimation in a yeast batch
process is addressed. The cell population balance model is described by a partial integro-
differential equation coupled with a set of ordinary differential equations. Based on the
observability property of the first moment of the cell distribution and the structural observability
of the discretized cell population balance model, an extended Kalman Filter operating on on-
line biomass measurements is designed for the model equations. The observer is validated using
experimental data.
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1. INTRODUCTION

Observers are a key component of on-line monitoring when
on-line sensors are not available, do not have an adequate
accuracy or are associated with high cost. The basis of an
observer is given by the underlying model (or digital twin)
which is typically designed to capture key characteristics
of the process.

In bioprocess technology the models of bioreactors are
divided into different levels of detail. The classification
is usually based on (un-)structured and (un-)segregated
models [Schügerl and Bellgard 2000]. Unstructured models
do not describe the microorganism in detail and assume
that one type of biomass is equally distributed in the
reactor, whereas in structured models different types of
biomass are considered. Segregated models do also take
into account the distributed and statistical nature of the
biological process by means of cell mass, size or age. Seg-
regated models like the cell population balance model are
typically described by a partial integro-differential equa-
tion [Tsuchiya et al. 1966, Villadsen 1999, Mhaskar et al.
2002, Daoutidis and Henson 2002]. Cell population balance
models provide a more detailed description of the species
in a biological reactor compared to classical mass balance
models. As a trade off, the parameterization and identifi-
cation of cell population balance models is more complex
and requires suitable measurement data revealing insight
to the cell distribution. For this purpose cell distribution
measurements are usually obtained by special designed
experiments in a small scale or by time consuming off-
line analysis [Waldherr 2018]. This motivates to design an
observer driven by classical available on-line measurement
data, like optical density measurements, for the estimation
of the cell distribution in a biological growth process.
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The observer design problem for (un-)structured and un-
segregated bioreactor models has been addressed by dif-
ferent authors considering high-gain observers [Gauthier
et al. 1992], asymptotic observers [Dochain et al. 1992,
Dochain 2003], dissipativity-based observers [Moreno 2005,
Schaum and Moreno 2006.], Kalman Filters [Dewasme
et al. 2013], and interval observers [Moisan et al. 2009,
Goffaux et al. 2009]. The observer design problem for
segregated cell population balance models in bioreactors is
addressed in [Schaum and Jerono 2019], where a moment-
based observer for a reactor in chemostat operation is
designed. Cell population balance models are mathemat-
ically close to the models of crystallization processes. In
this area Luenberger observers, high-gain observers and
Kalman Filters [Motz et al. 2008, Bakir et al. 2006, Mesbah
et al. 2011] have been designed based on finite-dimensional
and moment-based model approximations.

In the present work an extended Kalman Filter for the
estimation of the cell mall distribution and the glucose
concentration based on on-line biomass measurements by
means of the optical density in a yeast fermentation
process is designed in an early lumping approach. For
proof of concept the yeast fermentation is carried out
under anaerobic conditions, so that the reactions can be
described taking into account only biomass, substrate and
by-product concentrations.

The paper is organized as follows. In Section 2 the math-
ematical model of yeast growth is presented. In Section
3 the model equations are discretized. In Section 4 ob-
servability properties are established and the observer is
designed for the discretized model equations. The exper-
imental setup of the yeast fermentation is presented and
the measurements are described in Section 5. In Section 6
the designed observer is validated using the experimental
data. In Section 7 conclusions are drawn.



2. MODEL DESCRIPTION

Yeast growth follows the three substantial pathways

S + a1O2
ρ1−→ g1B + c1CO2 (1a)

S
ρ2−→ c2CO2 + g2B + d2E (1b)

E + a3O2
ρ3−→ g3B + c3CO2, (1c)

where B, S, E, O2 and CO2 denote the biomass, glucose,
ethanol, oxygen, and carbon dioxide compounds respec-
tively. The reaction rates are denoted by ρi and the related
stoichiometric coefficients are given by ai, gi and di, where
i ∈ {1, 2, 3}. Reaction (1a) describes the oxidation of
glucose to biomass, reaction (1b) the anaerobic production
of ethanol and biomass and reaction (1c) describes the ox-
idation of ethanol to biomass. Usually the reaction rates ρi
are chosen to capture characteristic effects of yeast growth
like the crab-tree effect [Deken 1966]. When considering
anaerobic growth of yeast only reaction (1b) takes place
and the reaction dynamics can be described by a Monod
growth rate

ρ(s) = ks
s

s+Ks
, (2)

where ks is the maximum growth, Ks is the half saturation
constant and s denotes the glucose concentration. Based
on the reaction scheme for anaerobic yeast growth in a
batch reactor the following set of ordinary differential
equations for the mass balance can be derived

ḃ = g2ρ(s)b, b(0) = b0 (3a)

ṡ = − ρ(s)b, s(0) = s0 (3b)

ė = d2ρ(s)b, e(0) = e0, (3c)

where b, s and e denote the concentrations of biomass,
glucose and ethanol, respectively.

The mass balance is complemented by the general cell
population balance model [Villadsen 1999, Mhaskar et al.
2002, Daoutidis and Henson 2002, Mantzaris and Daou-
tidis 2004] in batch operation mode

∂tn(m, t) = −g2∂m[r(m, s)n(m, t)]+

− Γ(m, s)n(m, t)+

+ 2

∫ m∗

m

Γ(µ, s)p(m,µ)n(µ, t)dµ

(4a)

ṡ(t) = −
∫ m∗

0

r(m, s)n(m, t)dm (4b)

n(m∗, t) = 0 (4c)

n(m, 0) = n0(m), s(0) = s0, (4d)

with m ∈ [0,m∗] being the cell mass, m∗ the maximum
cell mass, n(m, t) the cell density of mass m at time t, r
the cell growth rate function, Γ the cell division rate, p the
partition probability density function, i.e., p(m,µ) is the
probability that by division of a cell of mass µ a cell of m
is produced. Note that in virtue of its definition, p has the
property that

∀µ ≤ m : p(m,µ) = 0 (5)

and is chosen as a symmetric binomial distribution
[Mantzaris and Daoutidis 2004]

p(m,µ) =
1

B(q)

1

µ

(
m

µ

)q−1(
1− m

µ

)q−1

,

with the normalization factor

B(q) =
2Γf (q)

Γf (2q)
.

In the sequel a linear dependency of r on the cell mass
m, as discussed in [Mantzaris and Daoutidis 2004], is
considered so that

r(m, s) = ρ(s)m. (6)

Moreover the division rate Γ(m, s) is assumed to be
proportional to the cell growth rate

Γ(m, s) = γ(m)r(m, s). (7)

The function γ(m) is chosen to be a ramp function

γ(m) =

{
0, if m ≤ m∗

βm, if m∗ < m,
(8)

where the minimal cell mass required for division is given
by m∗ and β is a constant. Note that the existence,
uniqueness and positivity of solutions in L1 × R+ for (4)
has been shown in [Beniich et al. 2018]. Taking the first
moment of the cell population balance model

b(t) =

∫ m∗

0

mn(m, t)dm (9)

its time derivative results in

ḃ(t) =

∫ m∗

0

m∂tn(m, t)dm. (10)

Recalling mass conversation during cell division [Mantzaris
and Daoutidis 2004, Schaum and Jerono 2019], one obtains

ḃ(t) = g2ρ(s)

∫ m∗

0

mn(m, t)dm = g2ρ(s)b

ṡ(t) = −ρ(s)

∫ m∗

0

mn(m, t)dm = −ρ(s)b,

(11)

which corresponds to the mass balance model (3a) and
(3b). In an analogous manner the dynamics of product
formation can be included into (4).

3. DISCRETIZED MODEL EQUATIONS

In order to design an observer in the framework of an early
lumping approach, the cell population partial integro-
differential equation (4) needs to be discretized in the mass
domain. Here the partial derivative is approximated using
a backwards finite differences scheme with step size ∆m.
For the approximation of the integral term the trapezoidal
rule is chosen. The discretized model equations then read

ṅi = − 1

∆m
g2ρ(s)mi(ni − ni−1)− Γ(mi, s)ni+

+ 2∆m

z∑
j=i

(Γ(mj , s)p(mi,mj)nj+

+ Γ(mj+1, s)p(mi,mj+1)nj+1)

(12a)

ṡ = −ρ(s)b (12b)

ė = d2ρ(s)b (12c)

n(mz+1, t) = 0

n(m, 0) = n0(m), s(0) = s0, e(0) = e0.
(12d)

By introducing the state vector x = [n1, ... , nz, s, e]
T with

z denoting the number of interior discretization points,
(12) can be re-cast into the form



ẋ = f(x) =


fn,1(x)

...
fn,z(x)
fs(x)
fe(x)

 , x(0) = x0 ∈ Rz+2. (13)

Note that the boundaries of the cell distribution n(0, t) and
n(m∗, t) can be excluded from the state vector, because
ρ(s)mmin = 0 and n(m∗, t) = 0. The measurement
equation of biomass b using the trapezodial rule reads

y = h(x) = b = ∆m

z∑
i=1

mini. (14)

4. OBSERVER DESIGN

4.1 Observability properties of the moment model

The observability properties of (3a), (3b) when measuring
the biomass concentration y = b for the class of reactor
models (11) has been discussed in the literature [Schaum
et al. 2005, 2007, Moreno and Dochain 2005] revealing
the detectability property for non monotonic growth rates
ρ(s) and global observability in R≥0 for monotonic growth
rates. Based on these results the convergence of the ob-
server error in the first moment of the cell distribution can
also be concluded [Schaum and Jerono 2019]. Note that
the observability property of the system (3) only holds
when the product formation, i.e, the ethanol production
(3c) is not taken into account. Since for anaerobic yeast
growth ethanol will only be produced and not consumed,
i.e., there is no coupling of the ethanol concentration into
the biomass or glucose dynamics, the ethanol dynamics
can simply be neglected in the state vector. Nevertheless
since the initial ethanol concentration in a yeast batch
experiment is usually known, in the observer design the
ethanol dynamics can be estimated by the simulator using
the estimated biomass [Rapaport and Dochain 2020].

4.2 Observability of the cell population balance model

The observability of the cell distribution estimation for the
discretized model (neglecting the product formation (12c)
as outlined before) is analyzed subsequently. For this pur-
pose the graph-theoretical approach to analyse structural
observability is followed [Chan and Shachter 1992, Liu
et al. 2013]. The basic idea is to map the interconnection
between the system vector field f(x) and the states x
into a network graph, where an interconnection from xi
to xj is given when ∂fi(x)

∂xj
6= 0. This network is then

analyzed to identify the nodes which have to be measured
to achieve structural observability, i.e, the corresponding
observability map of the system

O =
∂

∂x


h(x)
L1
fh(x)

...
Ln−1
f h(x)

 (15)

has full rank considering that no linear dependencies
occur due to unfavourable system parameters. Since the
measurement equation (14) is not part of the system vector

field, for the analysis, the system equations are extended
by the measurement y = b, i.e,

f b(xb) =


fn(xb)
fs (xb)

∆m

z∑
i=1

mifn,i(xb)

 , xb =


n1
...
nz
s
b

 . (16)

Taking into account (12a), (12b), (14) and (16) the so-
called inference diagram shown in Figure 1 is obtained.

n1 n2 . . . nz

s

b

Fig. 1. Inference diagram of the system equations (16).

In the next step the network is structured into strongly
connected components, i.e, vertexes including nodes such
that every vertex is reachable from another vertex. In case
of Figure 1 it can be seen that every node is a strongly
connected component. For n1, ..., nz this is mainly given
due to the cell growth and birth term in equation (12a).
Next, the nodes which have no incoming connection need
to be identified. These nodes need to be measured in order
to achieve structural observability. It can be seen that ev-
ery node in Figure 1 has at least one incoming connection.
This reveals that structural observability is achieved when
one arbitrary node of the network is measured. Thus the
structural observability of the system for y = b can be con-
cluded. Since all nodes are strongly connected components
regardless of the number of discretization points z, this
result holds for any z ∈ N≥2. Note that b is the only node
having one incoming interconnection, namely from s to b.
When the analysis is carried out for substrate independent
growth rates, it becomes directly clear that in this scenario
the measurement equation y = b is the only configuration
ensuring structural observability with respect to the cell
distribution. It has to be pointed out that structural ob-
servability is lost when ρ(s) = 0. Therefore convergence of
the observer error has to be ensured before the end of the
batch experiment.

4.3 Extended Kalman Filter design

For practical applications the Kalman Filter is a well es-
tablished observer scheme. The Kalman Filter is a statisti-
cal optimal observer which minimizes the covariance of the
estimation error and is well suited for noisy measurements
[Gelb 1978]. Compared to the growth dynamics of yeast in
a batch reactor the measurement sample frequency is rela-
tively high, so that the extended Kalman Filter is designed



within a continuous update scheme [Gelb 1978, Lewis et al.
2017]. The corresponding early lumping extended Kalman
Filter to be implemented hence reads

˙̂ni = fn,i(x̂) + li(y − b̂) + ωi, i = 1, 2, ..., z (17a)

˙̂s = fs(x̂) + ls(y − b̂) + ωs (17b)

˙̂e = fe(x̂) (17c)

Ṗ = FP + PFT +Q− PHTR−1HP (17d)

l = PHTR−1 (17e)

n̂(mz+1, t) = 0

n̂(m, 0) = n0(m), s(0) = s0, e(0) = e0
(17f)

b̂ = h(x̂) = ∆m

z∑
i=1

min̂i (17g)

y = b+ v =

∫ m∗

0

mn(m, t)dm+ v, (17h)

where l = [l1, . . . , lz, ls] is the correction gain vector,
ωi ∼ N (0, Qi), i ∈ {1, ..., z}, ωs ∼ N (0, Qs) and v ∼
N (0, R) are assumed to be gaussian distributed and the
state vector is given by x̂ = [n̂1, ..., n̂z, ŝ]

T . The associated
Jacobians in the Kalman Filter equations (17d) and (17e)
read

F =



∂ṅ1
∂n1

· · · ∂ṅ1
∂nz

∂ṅ1
∂s

...
. . .

...
...

∂ṅz
∂n1

· · · ∂ṅz
∂nz

∂ṅz
∂s

∂ṡ

∂n1
· · · ∂ṡ

∂nz

∂ṡ

∂s


(18a)

H = [∆mm1, · · · , ∆mmz, 0] . (18b)

Note that in (17c) ê is only driven by the simulator and
thus is not included in the state vector.

5. EXPERIMENTAL SETUP

A batch yeast fermentation experiment was carried out in
a 2 liter stirred-tank reactor. The process conditions are
listed in Table 1. To ensure that the yeast growth pro-
cess is performed under anaerobic conditions, the reactor
is aerated with nitrogen. Optical density measurements
are taken on-line at 600 nm wavelength. Glucose and
ethanol measurements are evaluated off-line at discrete
time instances. The parameters of the mass balance model
(3), namely ks, Ks, b2 and d2 have been adapted to fit
the experimental data from previous experiments. In the
identification process the biomass growth rate ρ(s) remains
almost constant for glucose concentrations s � Ks and
ethanol concentrations e > 0, so that inhibition of the
growth rate by ethanol formation has no measurable im-
pact for the considered experimental setup and is therefore
neglected in the model description. The parameters of the
cell population balance model with respect to cell division
and birth have been identified with z = 51 by taking the
presented measurement data (see Figure 3) into account.
The complete set of model parameters is listed in Table 2.

Table 1. Process conditions

Parameter Value Unit

Temperatur 25 ◦C
Aeration (N2) 0.10 vvm
controlled pH 5.5 -
Stirrer speed 750 rpm
Glucose (s0) 8.496 g/l

Table 2. Model parameter

Parameter Value Unit

ks 2.9660 h−1

Ks 0.7000 gS/l
g2 0.1810 gB/gS
d2 0.4503 gE/gS
q 5.0000 -
m∗ 5.4808 · 10−11 g
m∗ 1.5000 · 10−10 g
β 6.7083 · 1021 -
γ∗ 5.4182 · 1011 -
%n 44.6801 · 104 g/l

5.1 Cell distribution measurements

The cell distribution in terms of number of cells with a
specific diameter have been measured by the Casy TT
cell counter and cell analyzer from Omni Life Science
(OLS). Since the considered cell population balance model
is constructed for cell density functions with respect to
mass, the raw measurements of the cell analyzer have been
transformed to the mass domain. The mass density per
volume of a cell, namely %n, for this transformation was
chosen such that the first moment of the cell distribution
fits the biomass dry weight measurements of the related
probe. The value of %n is also listed in Table 2. In order to
determine the cell distribution density function the inverse
function of the trapezoidal integration formula

n(mi+1, t) =
2

mi+1 −mi

∫ mi+1

mi

n(m, t)dm− n(mi, t)

was applied to the filtered measurement, where the integral
term is given by the measurement and i ∈ {1, ..., 399}
being the number of measurement channels of the cell an-
alyzer which are mapped to z = 51 by linear interpolation.

6. RESULTS

In Figure 2, 3 and 4 the results of the implemented ex-
tended Kalman Filter observer scheme are compared with
an open-loop simulation, i.e., when no correction based
on the biomass measurement is applied. The initial states
of the observer and the open-loop simulation are chosen
to be x̂ = [2.22 · 1010 sin4(πm/m∗), 8.6] and the initial
ethanol concentration is given by ê(0) = 0.145 g/l. The
values of Qi and P0,i are chosen to be shifted and left-side
truncated gaussian functions, which goes along with the
assumption that the discretized cell population balance
model is more accurate at the edges of the mass domain.
Figure 2 shows the estimation of the biomass, glucose and
ethanol trajectories. The discrete snapshots of the cell pop-
ulation distribution estimation are shown in Figure 3. The
estimated states of the Kalman Filter are given by the solid
red lines. The open-loop simulation is represented by the
dashed green lines and the measurements are given by the
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Fig. 2. Estimation of the biomass, glucose and ethanol con-
centration (solid red), open-loop simulation (dashed
green) and measurements (solid blue and blue mark-
ers).

solid blue lines and blue markers. Note that the glucose,
ethanol, and cell distribution measurements are obtained
off-line and are only used for validation purpose since the
observer operates only on on-line biomass measurements.
The estimation of the ethanol concentration is only driven
by the simulator due to the lack of observability, i.e., in
the estimation of the ethanol concentration a correction
term is not applied. Figure 4 shows the comparison of the
estimation error in the cell distribution ε1 given by

ε1(t) =
1∫m∗

0
n(m, t)dm

∫ m∗

0

|n(m, t)− n̂(m, t)|dm

and corresponds to a normalized L1-norm which is ap-
proximated by the trapezodial rule and evaluated at the
discrete measurement time instances. The estimation error
in the glucose concentration ε2 is simply given by

ε2(t) = |s(t)− ŝ(t)|.
Note that for batch experiments the initial estimation er-
rors of the concentrations is relative low because the initial
concentrations are part of the process conditions which
are usually known. Nevertheless it can be seen that during
the experiment the open-loop simulation has significant
errors compared to the measurements of biomass, glucose,
ethanol, and the cell population distribution. At the end
of the batch experiment these errors become small again
because of the relative low initial error in the glucose
component and the known stoichiometric coefficients of the

Fig. 3. Snapshots of the cell population distribution es-
timation (solid red), open-loop simulation (dashed
green) and measurements (solid blue).
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Fig. 4. Estimation error ε1 and ε2 of the extended Kalman
Filter (red star markers) and the open-loop simulation
(green cross markers).

model. Contrary, the proposed extended Kalman Filter has
a good estimation performance over the whole experiment
and has a fast convergence of the estimation error in
the L1-norm of the cell distribution, namely ε1, shown in
Figure 4. In addition the estimation of the ethanol concen-
tration (equation (17c)) of the observer has a significant
better performance compared to the open-loop simulation.



7. CONCLUSION

In this work the observer design problem for the cell
population distribution in a yeast batch fermentation
with continuous biomass measurements is addressed. The
structural observability properties of the cell population
balance model for biomass measurements are established
and an extended Kalman Filter for the discretized model
equations operating only on on-line biomass measurements
is designed and validated in an experimental batch process.
The extended Kalman Filter has a good performance in
estimating the cell population distribution and glucose
concentration, enabling on-line information of these state
variables. Even though the observability of the system
is not given when the product formation is taken into
account, the estimation of the product concentration only
driven by the simulator of the observer shows a significant
better performance compared to the open-loop simulation.
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