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Abstract: Biological systems are usually highly sensitive to process conditions variations, such as 

temperature, pH, substrate concentration. For this reason, it is important to adequately control and monitor 

the process in order to guaranteeing product quality while maintaining adequate performance and 

productivity. The production of ethanol by fermentation is certainly one of the most important industrial 

bioprocesses, being ethanol an alternative source of energy. For this reason, valuable models of this process 

based on different kinetic considerations are available in literature, and they can be considered a valid 

benchmark to investigate control system and estimation techniques for biological reactors. Three different 

control strategies have been analysed: direct reactor temperature control, cascade control where the primary 

loop uses delayed ethanol measurements, and 2x2 control system with inferential control for the product 

concentration. The proposed configurations have been compared at different operating conditions and 

results show that the use of the inferential control is the most effective in case of severe disturbances.  
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1. INTRODUCTION 

The need of monitoring and control systems for biological 

processes have become important due to the quality 

requirements imposed on the products, combined with 

constraints related to performance and productivity of the 

plants (Gomes et al., 2019).  Design of a control system for 

biological processes is not an easy task due to model 

uncertainties, nonlinear nature of the system and slow response 

of the process. The complexity of biological processes is 

mostly due to the presence of living organism and their 

metabolism is sensitive to process conditions, such as 

temperature, pH, substrate concentrations (Spigno and Tronci, 

2015). Furthermore, the lack of suitable and robust on-line 

sensors for measurement of biomass or product concentration 

makes more difficult the obtainment of an efficient control of 

biological processes. Soft sensor is an alternative to hardware 

sensor, through which available on-line measurements are 

used in conjunction with a process model and an estimation 

algorithm to estimate unmeasured variables (Lisci et al., 

2020a). 

Among the several biological processes, ethanol production 

through fermentation is surely one of the most investigated. 

Bioethanol represents the cleanest fuel alternative to fossil 

fuels and it can be obtained from different sources such as 

agro-food residues, municipal waste or dedicated energy crops 

which are collectively called “biomass”. Most of the 

worldwide production of ethanol occurs through fermentation 

and although in recent years many advances have been made 

in ethanol fermentation technology, there are still significant 

challenges that need further investigations (Lin et al., 2006).  

A model of the process for a continuous reaction has been 

proposed in Nagy (2007) and it constitutes an effective 

benchmark to evaluate control and state estimation strategies. 

Starting from the neural network based control of the reactor 

temperature developed by Nagy (2007), other linear and 

nonlinear control techniques have been proposed by several 

authors, evidencing that the control problem for this system is 

not trivial. Imtiaz et al. (2013) developed a temperature 

controller using inverse neural networks. A robust model-

based predictive control with integral action was presented in 

Bakošová et al. (2019), showing that the developed method 

can ensure high product yield and minimize energy 

consumption. Recently, Pachauri et al. (2017) compared a 

conventional PID with a modified factional order IMC-PID 

and they demonstrated that the new algorithm was more robust 

and efficient in comparison with other designed controllers. 

An IMC-PID controller was successfully applied by Kumar et 

al. (2019), where an identification tool was used to obtain the 

input-output transfer function between reactor temperature and 

manipulated variable.  A MIMO control system was presented 

in Imtiaz et al. (2014), where a nonlinear auto regressive 

moving average controller was applied to control reactor 

temperature, and a two degree of freedom PID was used to 

control pH and dissolved oxygen concentration.  

In this paper the problem of control for the fermentation 

bioreactor proposed by Nagy (2007) is considered and solved 

with a classical PI algorithm, which is usually well accepted 

by plant operators. The linear algorithm is able to lead to the 

same results shown by more sophisticated methods, like neural 

networks. Furthermore, as a step ahead with respect to 

previous papers, the product concentration is also controlled, 



 

 

     

 

using two different approaches. A cascade control is 

developed, where the master is the ethanol concentration 

controller that gives the set-point to the temperature controller. 

In this case, available delayed measurement concentrations 

can be used to improve the process performances and assure 

that system is able to guarantee the required ethanol 

productivity for different disturbances entering the system. 

Then, using a state estimator for inferring product 

concentration, a MIMO system is developed, where both 

temperature and concentration are controlled. In this case, the 

convergence of the controlled concentration is related to the 

convergence of the estimator. 

2. BIOREACTOR MODEL 

The system investigated in the present paper is the same 

proposed in Nagy (2007), and it describes the dynamic 

behaviour of six states, which are biomass concentration (𝐶𝑋), 

ethanol concentration (𝐶𝑃), substrate concentration (𝐶𝑆), 

dissolved oxygen concentration (𝐶𝑂2
), reactor temperature 

(𝑇𝑟), and jacket temperature  (𝑇𝑎𝑔), as reported in Eqs. (1-6).  
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A detailed description of the model, parameters values and 

nominal conditions have not been reported for the sake of 

brevity, but they can be found in Nagy (2007), as well as the 

relationships to calculate the equilibrium oxygen 

concentration (𝐶𝑂2
∗ ), which is a function of temperature and 

ionic strength, the mass transfer coefficient (𝑘𝑙𝑎) and the 

specific growth rate (𝜇𝑋) as temperature functions.  

Introducing the state vector 𝒙 = [𝐶𝑋, 𝐶𝑃 , 𝐶𝑆, 𝐶𝑂2
, 𝑇𝑟 , 𝑇𝑎𝑔], 

output measured vector 𝒚  defined later (Section 3), and the 

inputs  𝒖 = [𝐹𝑖 , 𝐹𝑎𝑔], the system dynamics can be compactly 

written as 

𝑑𝒙

𝑑𝑡
= 𝒇(𝒙, 𝒖)     (7) 

𝒚 = 𝒉(𝒙)     (8) 

where 𝒇(𝒙, 𝒖) is the vector field of the system and 𝒉(𝒙) is the 

vector relating states and measured outputs.  

 

3. CONTROL SYSTEM DESIGN 

The quality of final products is an essential parameter to be 

controlled in the bioreactor. The objective of the controller is 

to achieve the desired concentration as early as possible in the 

presence of disturbances. This task has been solved by 

studying different situations with respect to measured outputs. 

First, only temperature measurements (reactor and cooling 

agent) are considered available, and the output vector is 𝒚𝐼 =

[𝑇𝑟(𝑡), 𝑇𝑎𝑔(𝑡)]. As second possible options, ethanol 

concentration is available with delay due to the time required 

by the analyser to perform the measurement, and the output 

vector is 𝒚𝐼𝐼 = [𝐶𝑃(𝑡 − 𝑡𝑑), 𝑇𝑟(𝑡), 𝑇𝑎𝑔(𝑡)]. The final case is 

when substrate and oxygen concentration can be measured 

online along with temperature, and the output vector is 𝒚𝐼𝐼𝐼 =

[𝐶𝑆(𝑡), 𝐶𝑂2
(𝑡), 𝑇𝑟(𝑡), 𝑇𝑎𝑔(𝑡)]. Substrate and dissolved oxygen 

concentration measurements have been considered online, 

without delay, according to a previous study (Lisci et al., 

2020a-b) and a review on the available sensors for biosystems 

(Holzberg et al., 2018). 

3.1 Controllability 

Controllability of a n-dimensional linear system, m inputs and 

l outputs in the form (9) can be assessed by considering the 

controllability matrix 𝑳𝑐 (10) 
𝑑𝒙

𝑑𝑡
= 𝐀𝒙 + 𝐵𝒖, 𝒚 = 𝐶𝒙, 𝒙 ∈ ℜ𝑛 , 𝒖 ∈ ℜ𝑚, 𝒚 ∈ ℜ𝑙 (9) 

𝐿𝑐 = [𝐁 𝐀𝐁 𝐀2𝐁 … 𝐀n−1𝐁]   (10) 

 

This definition can be used to assess local controllability of a 

nonlinear system if A is the Jacobian matrix calculated at the 

reference conditions and the coefficients of B are the 

derivative of the functions describing the dynamics of the 

states with respect to the inputs. Controllability is verified if 

the rank of matrix 𝐋𝑐 is equal to the dimension of the state 

vector. By taking the Jacobian matrix of (1-6), it is possible to 

verify that the system is locally controllable when coolant and 

inlet flow rates,  𝐹𝑎𝑔 and 𝐹𝑖, can be both manipulated. The 

system is still locally controllable when only 𝐹𝑎𝑔 is 

manipulated because kinetic parameters and mass transfer 

coefficient depends on reactor temperature.  

3.2 Observability 

Real-time information about concentration of product, 

substrate and biomass is the key to controlling and optimizing 

the bioreactor.  When these variables are not measured online, 

soft sensors can be used to obtain information on their 

dynamics if observability is satisfied.   

 

Observability of a n-dimensional linear system, m inputs and l 

outputs in the form (9) can be assessed by considering the 

observability matrix 𝑳𝑜 in Eq. (11) 

 

𝑳𝑜 = [𝐂 𝐂𝐀 𝐂𝐀2 … 𝐂𝐀n−1]𝑇   (11) 

 

In case that only temperature measurements are available, the 

system is not observable therefore it is not possible to 

reconstruct the dynamics of all the states. Local observability 



 

 

     

 

is satisfied when the output vector 𝒚𝐼𝐼𝐼 is considered, as 

reported in Lisci et al. (2020a-b).  

3.3 Temperature control 

Because of the controllability property, it is theoretically 

possible to drive the system to the required conditions for all 

the six states by using only one manipulated variable. When 

considering that only temperature measurements are available, 

the first proposed solution is to design a temperature controller 

using the coolant flow rate as manipulated variable. 

Temperature set-point has been selected such that the required 

product composition has been obtained. A PI from IMC 

(Internal Model Control) algorithm (Skogestad, 2003) has 

been used to control the output and a step-response 

identification method has been applied to obtain the input-

output model. A first-order-plus-time-delay has been used to 

represent the data.  

3.4 Cascade control with concentration delayed 

measurements 

Even if controllability is satisfied, some changes in the process 

conditions (disturbances) may cause a discrepancy between 

the desired species concentration and actual values even if 

temperature is maintained at set-point. In this case it could be 

useful to add another control loop that guarantees the respect 

of product quality. Indeed, this variable generally influences 

the successive separation process. The delayed ethanol 

concentration measurement has been used in a cascade 

arrangement, where the outer loop exploits a discrete regulator 

to keep the product concentration around a desired value, 

while the inner loop guarantees that the bioreactor temperature 

was maintained at a predetermined set-point. The delay in the 

composition measurements of the product has been included 

in the simulation so that the updated 𝐶𝑃 value was available 

only after 18 minutes. The use of a cascade control guarantees 

a faster response because temperature measurement is 

continuously available, while the outer loop reduces when 

necessary the offset for the ethanol concentration. 

3.5 Inferential control 

When ethanol concentration measurement is not available 

online, but the system is observable, that is the case of 

measured output 𝒚𝐼𝐼𝐼, inferential control can be used to ensure 

product quality. The strategy used in the present work has been 

developed by using the state estimator reported in Lisci et al. 

(2020b). The ethanol concentration has been inferred by 

applying the extended Kalman filter, which is one of the most 

widely used estimation techniques for monitoring bioprocess 

(Dewasme et al., 2013).  The estimated value has been used in 

a classical feedback control strategy manipulating the inlet 

flow rate. This control solution has two loops, one for ethanol 

composition and the other for reactor temperature.  

4. STATE ESTIMATION 

The development of a state estimation for the bioreactor in (1-

6) has been discussed in previous papers by the authors (Lisci 

et al., 2020a-b). For sake of clarity, the obtained estimator 

structure is here reported. The estimated states have been 

partitioned in innovated (𝒙𝑖) and not innovated (𝒙𝑢) states (12-

15), defined in (16), following the procedure reported in Salas 

et al (2019). In more details, the innovated states are dynamic 

states of the estimation model whose changes are captured by 

the secondary measurements (Eq.12), while the not innovated 

states are inferred by the estimation model in an open loop 

mode (Eq.13) (Porru and Özkan, 2017).  

𝑑�̂�𝑖

𝑑𝑡
= 𝒇𝑖(𝒙𝑖 , 𝒙𝑢, 𝒖) + 𝑲(𝒚 − �̂�), 𝒙𝑖(𝑡0) = 𝒙𝑖,0   (12) 

𝑑�̂�𝑢

𝑑𝑡
= 𝒇𝑢(𝒙𝑖 , 𝒙𝑢, 𝒖), 𝒙𝑢(𝑡0) = 𝒙𝑢,𝑜=0   (13) 

𝐾 = 𝑷(𝑡)𝑯𝑇𝑹−𝟏      (14) 

�̇�(𝑡) = 𝑷(𝑡)𝑭(𝑡) + 𝑭𝑻(𝑡)𝑷(𝑡) + 𝑸(𝑡) − 

𝑲(𝑡)𝑯(𝑡)𝑷(𝑡), 𝑷(𝑡0) = 𝑷0     (15) 

𝒙𝑖 = [�̂�𝑋, �̂�𝑆, �̂�𝑂2
, �̂�𝑟 , �̂�𝑎𝑔], 𝒙𝑢 = [�̂�𝑃]  (16) 

𝑭(𝑡) is the Jacobian of the vector field 𝒇𝑖( 𝒙𝑖 , 𝒙𝑢, 𝒖), 

calculated with respect to the innovated states, 𝑷(𝑡) is the error 

covariance matrix of the innovated states, 𝑯(𝑡) is the matrix 

of the derivative of the map h with respect to the states, Q and 

R are, respectively, the covariance matrix of the model and 

measurements errors (Jazwinski, 2007). The constant matrix 

Q, R, and P0 are tuning parameters of the estimation model 

and they have been calculated minimizing the error between 

the states calculated with the simulated plant and the estimator 

along a reference trajectory.  

As reported in Lisci et al. (2020a), the estimator is more robust 

and efficient with the selected configuration with respect to the 

use of a full order structure (all states are innovated). It has 

been demonstrated that ethanol concentration trajectory is well 

reconstructed by the EKF even if it is not innovated and it can 

be used to design an inferential control.  

5. PERFORMANCE INDEXES 

In order to optimize the choice of the best control structure 

among those proposed here, the time-integral performance 

criteria have been used. In particular, the integral of the 

squared error (ISE), the integral of the absolute value of the 

error (IAE) and the integral of the time-weighted absolute error 

(ITAE) have been calculated to compare the performance of 

the analysed control structures. The indexes have been 

calculated using the following equations (17):  

𝐼𝑆𝐸 = ∫ 𝑒2(𝑡)𝑑𝑡
∞

0
, 𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|𝑑𝑡,

∞

0
𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝑒(𝑡)|𝑑𝑡

∞

0
 (17) 

Because the goal of the control structure is to obtain the desired 

ethanol concentration, e(t) is the error signal obtained as the 

difference between the required ethanol concentration and the 

output signal.    

6.  RESULTS 

This section analyses and compares the performance of 

different designed controllers for disturbance rejection. Three 

different control strategies are compared: (i) reactor 



 

 

     

 

temperature control (SISO system), (ii) cascade control using 

ethanol delayed measurements where temperature control is 

the secondary loop, (iii) inferential control for ethanol 

concentration and reactor temperature control (2x2 MIMO 

system).  In the simulations, step variations of the following 

three inputs have been considered as disturbances: the inlet 

temperature (Tin); the substrate inlet concentration (Cs,in); the 

biomass specific growth rate (µX) in order to simulate a 

hypothetical pH variation. The steps used to excite the system 

are reported in Figure 1. For sake of brevity, the results 

obtained when inlet temperature has been changed is only 

reported in terms of performance indexes (Tables 1-3). Inlet 

temperature variations have a smaller effect on the ethanol 

composition than the other disturbances. Indeed, when Tin 

varies, the SISO configuration with only feedback temperature 

controller is able to maintain the ethanol concentration at the 

required set-point. 

 
Figure 1. Disturbance trajectories used to analyse the control 

for the three runs: inlet temperature (a), substrate inlet 

concentration (b), and biomass growth factor (c).   

 

Figure 2. SISO control performances: (a) controlled reactor 

temperature; (b) ethanol concentration (open loop); (c) 

manipulated coolant flow rate. 

Figs. 2(a) and 2(b) show the closed-loop dynamic simulation 

of the bioreactor temperature Tr and the product concentration 

Cp respectively, with only temperature feedback control, along 

with the manipulated variable Fag, when a step-change in Cs, in 

is introduced. Figs. 3(a) and 3(b) represent the simulated 

closed-loop trend of the variables Tr and the ethanol 

concentration Cp, when varying specific growth rate µX.  

Table 1. Controller performance indexes for SISO control 

structure 

SISO 

 IAE ISE ITAE 

Tin 62.87 1.42 9.91E+04 

Cs,in 340.32 115.39 4.62E+05 

µX 1.76E+03 2.44E+03 2.98E+06 

Results show that temperature controller cannot guarantee the 

desired value of ethanol composition and an offset is registered 

(Figs. 2(b) and 3(b)). The offset is higher when the reactor 

conditions imply a change in the biomass growth rate, as it 

may happen when pH varies.   

 

Figure 3. SISO control performances: (a) controlled reactor 

temperature; (b) ethanol concentration; (c) coolant flow rate. 

Table 2. Controller performance indexes for cascade 

control structure. 

Cascade 

 IAE ISE ITAE 

Tin 5.85 0.04 9.10E+03 

Cs,in 44.12 7.52 6.08E+04 

µX 216.04 106.79 3.76E+05 

In Figs. 4 and 5 the results obtained when cascade control is 

used are reported. As expected, this control structure has 

proven to be more effective despite the time delay of ethanol 

composition measurements. This can be confirmed by 

evaluating the error indices shown in Table 1 and Table 2. The 

cascade controller is more performing than the SISO system, 
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thus determining a smaller error and a faster achievement of 

the desired ethanol composition.  

 

 
Figure 4. Cascade control performances: (a) controlled reactor 

temperature (secondary loop); (b) controlled ethanol 

composition (primary loop); (c) manipulated coolant flow rate. 

 
Figure 5. Cascade control performances: (a) controlled reactor 

temperature; (b) controlled ethanol composition (primary 

loop); (c) manipulated coolant flow rate. 

Table 3. Controller performance indexes for MIMO 

control structure that used the inferential control for 

ethanol concentration 

MIMO 

 IAE ISE ITAE 

Tin 4.12 0.02 6.62E+03 

Cs,in 34.34 1.73 4.99E+04 

µX 164.02 27.38 3.04E+05 

It is possible to observe, in presence of the disturbances, how 

the ethanol concentration can quite well follow the setpoint 

value by the action of outer loop (Figs. 4 and 5(b)). In this way, 

the set-point of Tr is modified in order to ensure the required 

product concentration. The temperature controller is effective 

to follow the set-point variations.  

In Figs. 6 and 7 the trends obtained with MIMO configuration 

are reported, where an inferential control is used for the 

composition. In this case, the inferred concentration control 

loop allows to maintain the product close to the set-point. As 

it can be observed in Figs. 6(b) and 7(b), in correspondence to 

the variations of μX factor, it can be observed that Cp moves 

further away from the setpoint value than when Cs,in 

disturbance is applied. However, the controller brings it back 

quickly enough to the desired value compared to the cascade 

control configuration. Therefore, the MIMO control system 

handles the situation of bioreactor temperature and 

composition control more effectively compared to other 

designed structures, when disturbances include substrate 

concentration or conditions affecting the growth of 

microorganisms. The quality indexes reported in Table 3 

confirm such considerations. 

 

Figure 6. MIMO performances: (a) controlled reactor 

temperature; (b) controlled ethanol composition; (c) 

manipulated coolant flow rate; (d) manipulated inlet flow rate. 

 

Figure 7. MIMO performances: (a) controlled reactor 

temperature; (b) controlled ethanol composition; (c) 

manipulated coolant flow rate; (d) manipulated inlet flow rate.  



 

 

     

 

7. CONCLUSIONS 

In this work, the issue of biotechnological process control such 

as the production of ethanol by fermentation has been 

addressed. The importance of having a suitable control system 

is due to the sensitivity of this process to the conditions in 

which it is performed. Different control strategies have been 

designed and implemented to achieve a precise and efficient 

control of temperature and composition. A comparative 

analysis of the designed controllers showed that temperature 

control was not able to maintain the ethanol concentration at 

the required set-point when disturbances varied substrate 

concentration in the reactor or when process conditions (e.g. 

pH) affected the biomass growth rate. When severe 

disturbances are present, as the ones used in this study, it is 

necessary to develop different control strategies that can 

efficiently suppress disturbances effect on the ethanol 

concentration. To improve system performances, two different 

situations were considered: (i) online analyser for measuring 

ethanol concentration with significant delay; (ii) estimation of 

ethanol by means of secondary available measurements. In the 

first case a cascade control was proposed, where temperature 

control received the set-point from ethanol concentration 

control. The use of delayed measurement in a primary loop 

diminished the offset in product composition with respect to 

using only temperature controller. The second situation was 

addressed by using an inferential control for the ethanol 

concentration in conjunction with the temperature controller. 

The 2x2 MIMO control outperformed the cascade structure, 

but the successful of this solution is due to the good 

performance of the estimation system and its robustness.   
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