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Abstract: A robust adaptive controller for nonlinear plants with parametric uncertainties,
additive disturbances, and state estimation errors based on the tube-enhanced multi-stage
(TEMS) nonlinear model predictive (NMPC) framework is proposed. In TEMS NMPC, primary
multi-stage NMPC is used to achieve robustness against the uncertainties which have a large
effect on the evolution of the state of the plant, and ancillary multi-stage NMPC is used to track
the predictions of the primary controller to counteract the effect of the small uncertainties. We
propose updating, at each time step, the uncertainty set considered by the scenario trees of
the primary and ancillary controllers with a tighter non-falsified uncertainty set, which results
from solving a guaranteed parameter estimation (GPE) optimization problem. This produces
significant performance improvements over the non-adaptive implementation as will be shown
on the Williams-Otto continuous stirred tank reactor (CSTR) case study.
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1. INTRODUCTION

Model predictive control (MPC) has become the most
used advanced process control strategy, especially in the
process control community because of its ability to handle
large multi-variable systems and to respect state and input
constraints in a non-conservative manner. Moreover, the
process performance can be optimized directly (rather
than indirectly via tracking of set points) within its frame-
work (Engell, 2007). However, since it is a model-based
strategy, the accuracy of the model is crucial for the stabil-
ity and satisfactory performance of the controlled system.
A plethora of research has been dedicated to the study
of the nominal robustness of MPC (using nominal MPC
despite the presence of uncertainties) such as in (Limon
Marruedo et al., 2002; Picasso et al., 2010). However, when
the uncertainties in the model are not sufficiently small,
robust MPC formulations must be employed, such that
robust constraint satisfaction and acceptable performance
are achieved despite the uncertainties.

The first robust MPC algorithm is the open-loop min-
max MPC (Campo and Morari, 1987; Zheng and Morari,
1993), where a sequence of control inputs that minimizes
the worst case cost that can result from all the possible re-
alization sequences of the uncertainty while satisfying the
state and input constraints is computed. The deficiency of
the open-loop min-max MPC formulation is its excessive
conservatism which is a direct consequence of ignoring the
feedback information in the optimization problem formu-
lation. Motivated by the need to reduce the conservatism,
closed-loop min-max MPC formulations were developed
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(Lee and Yu, 1997; Scokaert and Mayne, 1998), where
the feedback information is considered explicitly in the
formulation of the optimization problem, and as a result,
a sequence of control policies is computed rather than a
sequence of control inputs, which can considerably reduce
the conservatism of the approach. However, finding a so-
lution for the closed-loop min-max NMPC optimization
problem is very difficult, if at all possible.

Attempting to simplify the receding horizon nonlinear
optimal control problem, tube-based NMPC algorithms
were developed (Mayne et al., 2011; Yu et al., 2013; Falugi
and Mayne, 2014; Villanueva et al., 2017). In (Mayne et al.,
2011; Falugi and Mayne, 2014) a nominal primary NMPC
with tightened state and input constraints is used to track
the required target and an ancillary NMPC is used to
track the predictions of the primary controller in order to
provide robustness against the plant uncertainties. While
this is intuitive and computationally appealing, if the
uncertainties in the model have a large effect on the state
evolution of the plant, the required constraint tightening
for this approach can be very conservative as was shown
for case studies in (Subramanian et al., 2018; Abdelsalam
et al., 2020b).

Multi-stage MPC, first proposed for the linear case in
(Muñoz de la Peña et al., 2005) and for the nonlinear case
in (Dadhe and Engell, 2008; Lucia and Engell, 2012), is
a less conservative approach to the robust MPC problem,
where the model uncertainty is represented by a scenario
tree of future evolution, and the availability of feedback
information is considered explicitly in the formulation of
the optimization problem, where also a tree of future
control moves is computed. The objective function of



the optimization problem is to minimize the weighted
average of the costs of all considered scenarios. Stabilizing
formulations for multi-stage NMPC were proposed in
(Lucia et al., 2020; Abdelsalam et al., 2020a). However, as
the number of considered uncertainties and the prediction
horizon increase, the size of the optimization problem
grows quickly and may become unmanageable.

To mitigate the rapid growth of the problem size with
the number of considered uncertainties, tube-enhanced
multi-stage (TEMS) NMPC was proposed in (Subrama-
nian et al., 2018). In TEMS NMPC, a primary multi-
stage NMPC with tightened state and input constraints
is employed to handle the significant uncertainties, and
an ancillary multi-stage controller tracks the predictions
of the primary controller in order to robustify the scheme
against the small uncertainties. To further alleviate the
computational burden of the approach, simplified tube-
enhanced multi-stage (STEMS) NMPC was proposed in
(Abdelsalam et al., 2020b), where standard NMPC rather
than multi-stage NMPC was employed as the ancillary
controller which in an adaptive manner tracks one of the
scenarios of the primary multi-stage NMPC. However, for
both TEMS NMPC and STEMS NMPC, the measurement
knowledge was not used to update the uncertainties that
are considered in the multi-stage scenario tree(s).

In general, the conservatism of robust MPC algorithms
stems from the ignorance of the controller about the
true system description. Hence, a natural extension is
to refine the description of the model uncertainty by
exploiting the measurement information and the available
model structure, which leads to robust adaptive MPC.
In (Adetola et al., 2009; Canale et al., 2013; Gonçalves
and Guay, 2016) adaptive NMPC algorithms based on the
min-max NMPC framework for which finding a solution is
generally prohibitive, or adaptive algorithms that use the
Lipschitz bounds NMPC approach (Limon et al., 2005)
which can be very conservative during the uncertainty set
update phase were proposed.

In this paper, we propose a new robust adaptive NMPC
scheme for plants with parametric uncertainties, i.e. con-
stant but unknown model parameters, additive distur-
bances and state estimation errors based on the TEMS
NMPC framework. The idea is to augment the TEMS
NMPC scheme with a set membership estimation ap-
proach to shrink the uncertainty set that is considered
by the multi-stage primary and ancillary controllers. We
adopt a guaranteed parameter estimation (GPE) approach
similar to the one in (Gottu Mukkula and Paulen, 2016)
which results in a hyperrectangle over-approximation of
the set of uncertain parameters. The scenario trees of the
primary and ancillary controllers are updated at each time
step according to the uncertainty set obtained from solving
the GPE optimization. We demonstrate the significant
performance benefits that can be achieved by the proposed
adaptive TEMS scheme on the Williams-Otto continuous
stirred tank reactor (CSTR) example.

2. SYSTEM DESCRIPTION

We consider a discrete time system described by
xt+1 = f(xt, ut, dt) + wt, (1)

yt = h(xt) + δt, (2)

where xt ∈ Rnx is the plant state, ut ∈ Rnu is the
control input, dt ∈ D ⊂ Rnd is the vector of parametric
uncertainties and wt ∈ W ⊂ Rnx is a vector of additive
disturbances at time step t. The successor plant state
is denoted by xt+1 and the nonlinear plant dynamics is
described by f : Rnx × Rnu × Rnd → Rnx . The plant
output is denoted by yt ∈ Rny which is determined by (2),
where h : Rnx → Rny is a (possibly) nonlinear mapping
and δt ∈ ∆ ⊂ Rny is the measurement noise vector. The
plant state and input are constrained to lie in the compact
sets X and U respectively. The sets W and ∆ are assumed
to be compact and to contain the origin. The set D is
assumed to be a compact hyperrectangle.

Due to the unavailability of the full state information, a
state estimator will be employed to reconstruct the plant
state from the plant model and the output information.
We denote the state estimation error by et = xt− x̂t ∈ Et,
where the sets Et are assumed to be compact sets that
contain the origin ∀t ≥ 0. We assume the knowledge of
the initial state estimation error bound E0.

3. THE PROPOSED ADAPTIVE TEMS NMPC

The philosophy of TEMS NMPC (Subramanian et al.,
2018) is to classify the uncertainties into large and small
uncertainties. By large uncertainties, we mean the un-
certainties which can result in significant changes in the
evolution of the plant state from the nominal evolution,
and by small uncertainties, we mean the uncertainties
which have a small effect on the evolution of the plant
state. It will be assumed hereafter that the parametric un-
certainties dt are the large uncertainties, while the additive
disturbances wt and the state estimation errors et are the
small uncertainties.

We assume that the parameter vector dt is unknown but
constant over time:

dt = d = [d̃1, d̃2, · · · , d̃nd ]T . (3)
The proposed adaptation strategy will involve only the
large uncertainties dt. We assume that initially (at t = 0),
the unknown parameters lie in the compact hyperrectan-
gular set D. It is desired to utilize the available measure-
ments and the available model to find at each time step a
smaller compact hyperrectangle Dt which is guaranteed
to contain the true value of the vector of parametric
uncertainties dt, and to update the uncertainty sets that
are considered by the primary and ancillary controllers
accordingly.

The proposed adaptive TEMS NMPC consists of three
main elements, which are the primary controller, the
ancillary controller and the adaptation strategy, which are
explained in the following three subsections.

3.1 Primary controller

In TEMS NMPC, a primary multi-stage NMPC is used
to handle the parametric uncertainties. A scenario tree is
generated using a discrete uncertainty set Dd sampled from
the set D. The set Dd := {d1, d2, · · · , ds} contains a finite
number s of vectors. Although for nonlinear systems, the
parameters that give the worst case scenarios can be found
anywhere in the set D, however, as noted in (Srinivasan
et al., 2003), it is likely that they lie on the boundaries



Fig. 1. Scenario tree representation for multi-stage NMPC.

of the parameter set. Therefore, the set Dd should at least
contain the extreme realizations of the uncertainty, i.e. the
vertices of the set D. The evolution of the state of the
primary system is described by

zt+1 = f(zt, vt, d̄t), (4)
where zt ∈ Z ⊆ X is the primary system state, vt ∈ V ⊆ U
is the primary system input, d̄t ∈ Dd is the uncertainty
conceived by the primary system. The sets Z and V are
the tightened state and input constraints. As shown in
Figure 1, the branches of the tree model the different
realizations of the uncertainty, which together with the
scenario-dependent inputs of the primary system, give
rise to different evolution of the primary system state for
each scenario. The reaction to the feedback information
is modeled explicitly, because at each stage (prediction
step) in the scenario tree, different inputs are computed
for the different predicted states (tree nodes). However,
as the same information is used, the inputs generated at
each tree node must be the same, which is called the non-
anticipativity constraint. To reduce the rapid growth of the
problem size with the prediction horizon, the branching in
the scenario tree can be limited to a certain prediction step
called the robust horizon NR (Lucia and Engell, 2012),
and the uncertainty is assumed to be constant afterwards.
The optimization problem of the primary controller is
formulated as follows:

min
vj
k
∀(j,k)∈IN−1

V pN (zt) (5a)

subject to

zjk+1 = f(z
p(j)
k , vjk, d

r(j)
k ), ∀(j, k + 1) ∈ I, (5b)

zjk+1 ∈ Z, ∀(j, k + 1) ∈ I, (5c)

vjk ∈ V, ∀(j, k) ∈ IN−1, (5d)

vjk = vlk, if z
p(j)
k = z

p(l)
k , ∀(j, k), (l, k) ∈ IN−1, (5e)

V pN (zt) =

Ns∑
i=1

ωpi Ṽ
p
i , (6)

where with some abuse of notation, zt denotes the current
primary system state (at time step t) and zjk denotes a
predicted primary system state at the future time step
t + k. The set I contains all the indices of the scenario-
tree, N is the prediction horizon, Ns denotes the number
of scenarios (which depends on the considered discrete
realizations of the uncertainties and the robust horizon),
the set IN−1 denotes the set of occurring indices until

prediction step N − 1, ωpi is the respective scenario weight
for the primary controller, zjk+1 is the predicted primary
system state which is determined by (5b) and depends on
its parent state zp(j)k , the primary system input vjk and the
considered realization of the uncertainty dr(j)k ∈ Dd. The
primary system states and inputs are constrained accord-
ing to (5c) and (5d). The non-anticipativity constraints
are enforced by (5e). The scenario cost is given by

Ṽ pi =

N−1∑
k=0

`p(zjk+1, v
j
k), (7)

∀zjk+1, v
j
k in scenario i, where `p is the stage cost of

the primary controller. The optimal predicted inputs and
states are denoted by v∗jk , ∀(j, k) ∈ IN−1 and z∗jk , ∀(j, k) ∈
I. At time step t, let the set Zr(t) := {z∗11 , z∗21 , · · · , z∗s1 }
denote the optimal states predicted at the first stage by the
scenario tree. The scenario tree of the primary controller is
initialized at t = 0 with the initial state estimate x̂0, and is
initialized ∀t ≥ 1 with the state in Zr(t−1) which has the
minimum Euclidean distance to x̂t. As a result, d̄t ∈ Dd
in (4), ∀t ≥ 0. Note that the actual vector of parameters
dt ∈ D might be different from d̄t ∈ Dd.

3.2 Ancillary Controller

The task of the ancillary controller is to counteract the
effect of the small uncertainties which are assumed to be
the additive disturbances and the state estimation errors.
This is accomplished by employing multi-stage NMPC
with the same tree structure as for the primary controller
whose objective is to track the optimal state and input
predictions of the primary controller for all the considered
scenarios. The ancillary controller is initialized at each
time step with the state estimate x̂t. The optimization
problem of the ancillary controller is formulated as follows:

min
uj
k
∀(j,k)∈IN−1

V aN (x̂t) (8a)

subject to

x̂jk+1 = f(x̂
p(j)
k , ujk, d

r(j)
k ), ∀(j, k + 1) ∈ I, (8b)

ujk ∈ U, ∀(j, k) ∈ IN−1, (8c)

ujk = ulk, if x̂
p(j)
k = x̂

p(l)
k , ∀(j, k), (l, k) ∈ IN−1, (8d)

V aN (x̂t) =

Ns∑
i=1

ωai Ṽ
a
i , (9)

where ωai is the respective scenario weight for the ancillary
controller, x̂jk+1 is the predicted plant state which is
determined by (8b) and depends on its parent state
x̂
p(j)
k , the input ujk and the realization of the uncertainty
d
r(j)
k . The predicted inputs are constrained by (8c), and

(8d) is the non-anticipativity constraints for the ancillary
controller. The scenario cost for each of the scenarios of
the ancillary controller is

Ṽ ai =

N−1∑
k=0

`a(x̂jk+1 − z
∗j
k+1, u

j
k − v

∗j
k ), (10)

∀x̂jk+1, u
j
k in scenario i, where `a is the stage cost of

the ancillary controller. The optimal predicted inputs and
states are denoted by u∗jk , ∀(j, k) ∈ IN−1 and x̂∗jk , ∀(j, k) ∈
I, and u∗10 is applied to the plant.



As can be seen in (8), the predicted states are uncon-
strained in the ancillary controller optimization problem.
This is because, by the presented formulation, the plant
state trajectory will lie in a tube around the primary
system state trajectory, and hence by the adequate choice
of the constraint tightening (the sets Z and V) for the pri-
mary controller, the plant state xt will satisfy the original
state constraints X of the plant.

3.3 Adaptation of the scenario trees

In this subsection, we will detail how the available mea-
surements will be used in conjunction with the plant
model to update the sampled uncertainties used in the
scenario trees of the primary and ancillary controllers,
i.e. the scenario trees of the primary and ancillary con-
trollers at each time step will be generated using a new
discrete finite set Ddt . As mentioned earlier, we assume the
knowledge of the initial state estimation error bound E0,
and hence x0 ∈ x̂0 ⊕ E0. At time step t, a sequence of
t+ 1 measurement vectors {y0, y1, . . . , yt} and a sequence
of t applied inputs {u0, u1, . . . , ut−1} are available. At each
time step, ∀t ≥ 1, lower and upper bounds on each of the
uncertain parameters d̃i (i ∈ {1, 2, . . . , nd}) in the vector
of uncertain parameters (3), will be determined by solving
two guaranteed parameter estimation (GPE) optimization
problems similar to (Gottu Mukkula and Paulen, 2016).
The constraints for both the lower bound and upper bound
GPE problems are:
xk+1 = f(xk, uk, d) + wk, ∀k ∈ {0, 1, . . . , t− 1}, (11a)
yk = h(xk) + δk, ∀k ∈ {0, 1, . . . , t}, (11b)
δk ∈ ∆, ∀k ∈ {0, 1, . . . , t}, (11c)
wk ∈W, ∀k ∈ {0, 1, . . . , t}, (11d)
x0 ∈ x̂0 ⊕ E0, (11e)
d ∈ Dt−1, (11f)

The optimization problem for determining the lower bound
on the parameter d̃i at time step t is defined as follows:

min
x0,δk,wk,d

d̃i, subject to (11) (12)

where D0 = D and d̃i is the ith element in the vector
d given in (3). Accordingly, the optimizer determines
an initial plant state x0 (which has to satisfy (11e)), a
disturbance sequence {wk} (which has to satisfy (11d)),
a noise sequence {δk} (which has to satisfy (11c)) and a
parameter vector d (which has to satisfy (11f)) that results
in the minimum possible value of the unknown parameter
d̃i given the known applied input sequence {uk} and the
known measurement sequence {yk} (which have to satisfy
(11a) and (11b)). As a result, the lower bound is the
optimal value of d̃i which results from solving (12). In a
similar fashion, the optimization problem for determining
the upper bound on the parameter d̃i is defined as follows:

min
x0,δk,wk,d

− d̃i, subject to (11) (13)

and the upper bound is the optimal value of d̃i which
results from solving (13). The lower and upper bounds
will be denoted by d̃il(t) and d̃iu(t) respectively. Hence, at
each time step t, d̃i ∈ [d̃il(t), d̃

i
u(t)]. A new hyperrectangle

Dt is determined using the closed intervals [d̃il(t), d̃
i
u(t)],

∀i ∈ {1, 2 · · · , nd}, and by construction and due to using
(11f) in the constraints of both (12) and (13), Dt ⊆ Dt−1 ⊆
D0 = D. The discrete finite set Ddt can then be obtained by

including the vertices of Dt, and for the remaining vectors
in the set Ddt , any sampling criterion can be used. For
example, if at t = 0, the set Dd0 = Dd consists of the vertices
of the set D0 = D and a nominal parameter vector, which is
the average of the vertices of the set D0, then the nominal
parameter vector will be the average of the vertices of the
set Dt, for each t ≥ 1

The size of the optimization problems (12) and (13)
increases at each time step because we are using only the
set E0. If we assume the knowledge of the sets Et, ∀t ≥ 1,
then (12) and (13) can be solved in a receding horizon
fashion. Let NA denote the horizon length, then at each
time step, Et will be used in (12) and (13) instead of E0,
and only the last NA + 1 measurement vectors will be
used instead of all the past t + 1 measurement vectors
∀t ≥ NA. However, we will continue by assuming only the
knowledge of E0, and (12) and (13) will be solved only for
t ∈ {1, 2, · · · , Tmax}, for a predefined value of Tmax, and
the sets Dt and Ddt will be fixed from Tmax on.

According to the above, for each uncertain parameter d̃i,
two optimization problems are solved at each time step to
determine the upper and lower bounds on this parameter.
Therefore, 2nd optimization problems must be solved in
total. The 2nd optimization problems are independent,
and hence can be solved in parallel.

4. CONTROLLER IMPLEMENTATION

The controller can be implemented as per Algorithm 1.
Steps A1-4 are carried out only at t = 0. This is because
at t = 0, z0 = x̂0 and therefore the ancillary controller
optimization problem (if solved) will produce the same
solution (optimal state and input trajectories) as the
primary controller. Therefore, only the primary controller
optimization problem is solved at t = 0. Steps B1-8 execute
the adaptation of the scenario trees of the primary and
the ancillary controllers, and are performed only when
1 ≤ t ≤ Tmax. Steps C1-7 effectuate the primary and
ancillary controllers, where the input applied to the plant
is generated by the ancillary controller in step C4. Note
that steps B1-5 can be solved in parallel depending on the
available computational resources.

5. CASE STUDY: WILLIAMS-OTTO CSTR

We compare the performance of the proposed adaptive
TEMS NMPC with the non-adaptive version of the TEMS
NMPC for the Williams-Otto CSTR benchmark problem
(Williams and Otto, 1960), where the following reactions
occur:
A + B → C, k1 = 1.6599× 106e

− 6666.7
TR+273.15 s−1,

B + C → P + E, k2 = 7.2117× 108e
− 8333.3

TR+273.15 s−1,

C + P → G, k3 = 2.6745× 1012, e
− 11111

TR+273.15 s−1.

The reaction rates are of the form

ki = ai × e−
bi

TR+273.15 .

We consider the same CSTR model used in (Abdelsalam
et al., 2020b). The differential equations of the model are
omitted here for brevity. The mass fractions of the six
components are denoted by XA, XB , XC , XE , XG and
XP , and the reactor and jacket temperatures are denoted



by TR and TJ . The control inputs are the inlet flow rates
FA and FB , and the jacket cooling water inlet temperature
TJin. The values of the model parameters can be found in
(Williams and Otto, 1960).

As can be seen from values of the parameters b1, b2 and
b3 in the reaction rates, the parameter b1 has the largest
effect, and for that reason we consider inexact knowledge
of the parameter b1 which is considered to be uncertain by
±6% from its nominal value which is 6666.7. We consider
this as the parametric uncertainty which is considered in
the scenario tree of the primary and ancillary controllers.
Hence, dt ∈ [0.94, 1.06]. We assume random but bounded
additive disturbances on each of the eight plant states.
The bounds of the additive disturbances are ±5×10−4 for
the concentrations, ±0.2 for TR and ±0.01 for TJ . These
random additive disturbances are added to the solution of
the differential equations at each time step. The three mass
fractionsXE ,XG andXP are measured with measurement
errors of ±0.05. Furthermore, TR and TJ are measured
with measurement errors of ±0.3◦C. The state estimator
used is the extended Kalman filter (EKF). The assumed
initial state estimation errors are e0 ∈ [−0.05, 0.05] for
XA and XB , e0 ∈ [−0.03, 0.03] for XC and XE , e0 ∈
[−0.01, 0.01] for XG and XP and e0 ∈ [−2.5, 2.5]°C for
TR and TJ . The sampling time for the controllers and for
the EKF is Ts = 30 seconds. The prediction horizon for
the controllers is N = 20, and the multi-stage controllers
have a robust horizon NR = 1. The constraints on the
states and inputs are, 60 °C ≤ TR ≤ 90, 0.5 kg s−1 ≤
FA ≤ 10 kg s−1, 0.5 kg s−1 ≤ FB ≤ 10 kg s−1, 15 °C ≤
TJin ≤ 100 °C. The primary and ancillary multi-stage
controllers for TEMS NMPC and adaptive TEMS NMPC
consider the minimum, nominal and maximum values of
d, which are {0.94, 1.0, 1.06} at t = 0. The scenario
trees of the adaptive TEMS are adapted as was explained
earlier, where the adaptation occurs only for the first five
time steps, i.e. Tmax = 5. The objective function of the
primary controllers is an economic objective which is the
maximization of the instantaneous profit given by:
8.7×3600((0.66XP+0.015XE)(FA+FB)−0.044FA−0.066FB)

in $ hr−1, where the 8.7 is a correction factor for the
purchasing power of the USD from the year 1960 (when the
original paper was published (Williams and Otto, 1960))
to the year 2020, 0.66 and 0.015 are the sale prices in
$ kg−1 for products P and E in the year 1960, 0.044 and
0.066 are the costs in $ kg−1 for reactants A and B in the
year 1960, and the 3600 is for the conversion from $ s−1
to $ hr−1. The ancillary controllers are tuned to track the
primary system states and inputs with the stage cost:
10∆X2

P + 2∆X2
E + 5∆F 2

A + 10∆T 2
R + ∆F 2

B + 10−3∆T 2
Jin,

where ∆x is the deviation from the primary system state
or input. All the scenarios are assumed to be equally
weighted in both the primary and ancillary controllers.
The constraints for the primary and ancillary controllers
are shown in Table 1. Table 2 shows the steady state profits
that are achieved by applying TEMS NMPC and adaptive
TEMS NMPC for different values of the uncertain param-
eter, which shows a significant profit increase that can be
achieved by adaptive TEMS NMPC. This is a result of the
better knowledge gained by the adaptive TEMS NMPC
scheme about the uncertain parameter. Figure 2 shows the
evolution during the first five time steps, of the minimum,

Algorithm 1 Adaptive TEMS Implementation
Require: X, U, D, W, ∆, E0.
Offline: Choose Dd by including the vertices of the

hyperrectangle D, and for the remaining
elements of Dd use a pre-selected sampling
criteria. Determine the sets Z and V by
extensive simulations. Choose Tmax. Set
D0 = D and Dd0 = Dd.

Online:
Step A1 Initialize the primary controller with x̂0.
Step A2 Solve (5) and apply v∗10 to the plant.
Step A3 Store the elements of Zr(0) and set t = 1.
Step A4 At the next sampling instant obtain the

measurement vector y1.
Step B1 Set i = 1.
Step B2 Solve (12) and store the lower bound d̃il(t).
Step B3 Solve (13) and store the upper bound d̃iu(t).
Step B4 Set i = i+ 1.
Step B5 If i ≤ nd: Go to step B2.
Step B6 Determine the hyperrectangle Dt.
Step B7 Determine the discrete finite set Ddt from

Dt and the pre-selected sampling criteria.
Step B8 Set Dd = Ddt for the use in the primary and

ancillary controllers.
Step C1 Estimate the current plant state x̂t.
Step C2 Determine z∗j1 ∈ Zr(t − 1) which has the

minimum distance to x̂t and use it as the
root node for the primary controller (z10).

Step C3 Solve (5) and store the optimal solution
sequences {z∗jk }, {v

∗j
k } and the elements of

Zr(t).
Step C4 Solve (8), apply u∗10 to the plant and set

t = t+ 1.
Step C5 At the next sampling instant obtain the

new measurement vector yt.
Step C6 If t ≤ Tmax: Store u∗10 as ut−1, store yt and

go to step B1.
Step C7 Go to step C1.

Table 1. Constraints for the primary and ancil-
lary controllers of TEMS and adaptive TEMS.

Primary Controller Ancillary Controller Units
FA (0.6− 9.7) (0.5− 10) kg s−1

FB (0.6− 9.7) (0.5− 10) kg s−1

TJin (19− 97) (15− 100) °C
TR (60.5− 88.5) None °C

nominal and maximum values of the uncertain parame-
ter (the set Ddt ) considered by the scenario trees of the
primary and ancillary controllers of the adaptive TEMS
NMPC when the actual value of the uncertain parameter
is d = 0.94. The set Ddt evolved from {0.94, 1.0, 1.06} to
{0.94, 0.943, 0.946}. Note that since the actual value of the
parameter is 0.94, the lower bound in the set Ddt never
changed. For the case when the actual uncertain parameter
value was d = 1.0, the set Ddt evolved from {0.94, 1.0, 1.06}
to {0.975, 0.991, 1.007}, and for the case when the actual
uncertain parameter value was d = 1.06, the set Ddt evolved
from {0.94, 1.0, 1.06} to {1.025, 1.042, 1.06} (the plots of
the evolution of the minimum, nominal and maximum
parameter values for the cases when the actual parameter
value was d = 1.0 and d = 1.06 are omitted here for lack



Fig. 2. The evolution of the values of the uncertain
parameter considered by the scenario trees of the
adaptive TEMS NMPC, when the actual value of the
uncertain parameter is 0.94.

Table 2. Steady state profits for different values
of the uncertain parameter.

d TEMS Adaptive TEMS Units
0.94 7285 7483 $ hr−1

1.0 3255 3617 $ hr−1

1.06 932 1405 $ hr−1

of space). It should be noted that the final uncertainty
set DdTmax

might not be the same for all simulation runs
for the same actual value of the parameter because it
depends on the actual and random additive disturbances
and measurement errors. 500 simulations were performed,
scanning the parameter uncertainty range with a step
size of 0.005, and random but bounded generation of the
additive disturbances, measurement errors and initial state
estimation errors as explained earlier in this section. All
the simulations were implemented using CasADi (Anders-
son et al., 2019) for automatic differentiation, and IPOPT
(Wächter and Biegler, 2006) for solving the resulting non-
linear optimization problems. Figure 3 shows the trajec-
tories of the mass fractions of the profitable components
(XE and XP ) and the profit dynamics for the systems
controlled by the TEMS and the adaptive TEMS NMPC
when the actual value of the uncertain parameter is 1.06,
while Figure 4 shows the corresponding trajectories of the
control inputs. As can be seen, the adaptive TEMS NMPC
managed to increase the production of the profitable com-
ponents which resulted in a larger steady state profit when
compared with the TEMS NMPC. Note also, that system
controlled by the adaptive TEMS NMPC started making
profits earlier than the system controlled by the TEMS
NMPC, as can be seen from the profit plot in Figure 3 (the
profits started becoming positive earlier). Due to better
knowledge of the adaptive TEMS NMPC about the the
uncertain parameter (as shown in Figure 2), the adap-
tive TEMS NMPC acted less cautiously than the TEMS
NMPC by using higher inlet cooling water temperature
TJin as shown in Figure 4. Figure 5 shows the trajectories
of the reactor temperature TR for the system controlled by
the TEMS NMPC (upper figure) and the system controlled
by adaptive TEMS NMPC (lower figure). As can be seen,
both controllers result in the constraint satisfaction for
all the simulation runs. Moreover, it can be seen that the
spread of the trajectories of the reactor temperature for
the system controlled by the adaptive TEMS NMPC is
smaller, because the adaptive TEMS NMPC has a bet-
ter knowledge about the actual uncertain parameter and
hence it was acting less cautiously by heating the reactor

Fig. 3. Trajectories of the mass fractions XE , XP , and
the profit dynamics for one simulation run when the
actual uncertain parameter value is 1.06.

Fig. 4. Trajectories of the inlet flow rates FA, FB , and
the inlet cooling water temperature TJin for one
simulation run when the actual uncertain parameter
value is 1.06.

Fig. 5. Trajectories of reactor temperature TR for the
500 simulations for the TEMS (upper figure) and the
adaptive TEMS (lower figure).

temperature more than the TEMS NMPC. The average
steady state profit over the 500 simulations, achieved by
adaptive TEMS NMPC is 3982 $ hr−1, while for TEMS
NMPC, the average steady state profit is 3561 $ hr−1,
which means that the adaptive TEMS NMPC provides
12% increase of profit over the TEMS NMPC.

The significant benefits achieved by the proposed adaptive
TEMS NMPC comes at the expense of an increased com-
putational demand only in the first Tmax time steps (five
time steps in this case study), due to the GPE optimization
problems. However, it is possible to solve the GPE opti-
mization problems in between the the sampling times and
update the set Ddt at the following time step t+ 1 instead
of at time step t, i.e. updating the set Ddt will be lagging
by one sampling interval from what we proposed and
implemented. By that, the online computational demand
of the adaptive TEMS NMPC will be the same as that of



the non-adaptive TEMS NMPC, at the expense of delaying
the performance gains by one sampling interval.

6. CONCLUSION

We proposed a robust adaptive NMPC scheme for pro-
cesses with parametric uncertainties, additive disturbances
and state estimation errors. The proposed adaptive con-
troller uses TEMS NMPC to handle the different types
of the uncertainties, while the uncertainty set considered
by the scenario trees of the TEMS NMPC is updated
based on the available measurements and the plant model
to improve the knowledge of the controller about the
significant uncertainties in the plant and hence further
alleviate the conservatism which inevitably results from
robust control under uncertainty. It was shown for the
case study presented that adaptive TEMS NMPC results
in considerable performance gains over the non-adaptive
version.
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