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Abstract: The use of first-principle models is motivated by the potential of detailed information
available as well as their versatility. Therefore, it is important to keep these models up to date
so the models represent accurate enough the processes at hand. However, most of these models
are nonlinear with a large number of states and parameters but with a relatively low number
of measured outputs. This lack of measurements hinders the possibility to estimate all of the
parameters present in the model. In this work, parameter identifiability of large-scale nonlinear
models is explored using the empirical output controllability covariance matrix approach. This
empirical covariance matrix is used to extract the output sensitivity matrix of the model to
assess parameter identifiability. The advantages of the proposed methods are discussed while
different sensitivity indexes are evaluated to draw sound conclusions on the parameter ranking
results. A large-scale reactive batch distillation process simulation is used as a demonstrator.
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1. INTRODUCTION

The use of mathematical models to make decisions, mon-
itor, optimize, and/or control a process, encompasses
the so-called digital twin paradigm (Grieves and Vickers
(2017)) or master model paradigm (Backx et al. (2000)).
This particular setting requires constant communication
between the plant and the model to perform periodic
alignment of the model outputs and plant measurements
if needed. Despite the clear advantages these models offer,
they tend to be very complex with a large number of vari-
ables involved; hence, keeping these models up to date is a
challenging task. Under the assumption of no process un-
dermodeling, the discrepancies between the model and the
plant can be minimized/or eliminated performing parame-
ter estimation. Nevertheless, the processes represented by
a digital twin usually have a limited number of measured
outputs. This constraints the amount of information that
can be extracted from the process. Moreover, parameters
might not be all identifiable from the available inputs
and outputs. Thus, it must be first determined which
parameters can be indeed estimated with relatively high
certainty. In this sense, parameter output sensitivity is an
attractive approach because not only does it allow to assess
parameter identifiability, but also the design of insensi-
tive control (Okura and Fujimoto (2016)), input design
for parameter identification (Stigter and Peeters (2007)),
model parameter reduction (Sun and Hahn (2006)), etc.
Additionally, the underlying mathematical model can be
very complex, making analytical approaches for the analy-
sis of parameter sensitivity and identifiability intractable.
To deal with such complexity, numerical approaches can
be deployed to analyze local parametric properties of the
model. A comprehensible review on experiment design
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and parameter estimation can be found in Franceschini
and Macchietto (2008). In this work, the empirical output
parameter sensitivity covariance matrix is extracted from
the empirical output controllability covariance matrix to
assess parameter identifiability of nonlinear models. A
comparison to the identifiability covariance matrix based
on the observability covariance matrix is done, where sim-
ilarities and differences are discussed. Furthermore, a dis-
cussion on different sensitivity indexes is presented to show
that the parameter ranking changes drastically depending
on the sensitivity index used. The approach is based upon
the works of Hahn et al. (2003) and Sun and Hahn (2006),
and is extended for stable systems and systems that do
not possess fixed-point steady states.

The paper is organized as follows: Section 2 introduces
empirical gramians and empirical covariance matrices. Sec-
tion 3 presents the empirical output sensitivity covariance
matrix and the identiafibility covariance matrix, as well
as their connection to parameter identifiability. Section
4 explores different sensitivity indexes that account for
the sensitivity magnitude of each output with respect to
each parameter. Subsequently, Section 5 treats the case
study of a large-scale reactive batch distillation column
in which a set of parameters is assessed for identifiability
using the empirical output sensitivity covariance matrix.
Finally, Section 6 contains the conclusions of this work.

2. EMPIRICAL GRAMIANS AND SENSITIVITY
COVARIANCE MATRICES

Let S be a dynamical system, and M(·) be a model
structure. Furthermore, p ∈ P ⊆ Rnp be a vector of
parameters, where P is the feasible parameter space, and
M(p) be the specific model obtained when the parameters
take the values p. In this work, we restrict our attention
to general nonlinear ordinary differential equation (ODE)
models of the form



M(p) =


ẋ(t,p) = f(x(t,p), u(t),p), x(0) = x0
y(t,p) = h(x(t,p))

ṗ = 0

(1)

where t ∈ R[0,tf ], x(t,p) ∈ Rnx is the vector of states,
u(t) : [0, tf ] 7→ Rnu is the known input vector, y(t,p) ∈
Rny is the output vector.

Two important properties of the model structure M(p)
described in (1) is controllability (reachability) and ob-
servability properties. Each of these properties can be eval-
uated using the controllability and observability gramian
matrices. In the linear case, these matrices are given by

WC,lin =

∫ ∞
0

eAtBB>eA
>t dt (2)

WO,lin =

∫ ∞
0

eA
>tC>CeAt dt (3)

Another important gramian is the output controllability
gramian. The output controllability gramian contains in-
formation about the input-output map of a particular
model. Furthermore, it is advantageous for large scale
systems where the number of states is too large to compute
the output controllability gramian, as it only requires the
measured outputs. Additionally, it also allows to analyze
the effect of initial conditions and inputs on the output.
Therefore, the output controllability encodes both the
controllability and observability properties of a model. The
output controllability for a linear model as described in
Casadei et al. (2018) is given by

WCo,lin =

∫ ∞
0

CeAtBB>eA
>tC> dt (4)

However, the gramians in (2), (3), and (4) can only be
computed for linear models. In the case of nonlinear
model, empirical gramians can be calculated, but these
are restricted to Lyapunov-stable control-affine nonlinear
models (Lall et al. (2002)). Therefore, an extension to
general nonlinear models was made by Hahn et al. (2003)
to generate expressions similar to the controllability and
observability gramians, namely the controllability covari-
ance and observability covariance matrices. These covari-
ance matrices contain the controllability and observability
gramians as special cases.

Definition 1. (Empirical controllability covariance matrix).
Let the system given by (1) be stable, and introduce the
following sets

Tnu = {T1, · · · , Tr ∈ Rnu×nu , T>i Ti = Inu , i = 1, · · · , r}
M = {c1, · · · , cs ∈ R, ci > 0, i = 1, · · · , s}

Enu = {e1, · · · , enu
; standard unit vectors in Rnu}

where r is the number of matrices for perturbation direc-
tions, s is the number of different perturbation sizes for
each direction, and nu is the number of inputs.

The state-controllability covariance matrix is defined as

WC =

nu∑
`=1

r∑
m=1

s∑
n=1

1

src2n

∫ ∞
0

Φ`mn(t) dt (5)

where Φ`mn(t) ∈ Rnx×nx is computed as Φ`mn(t) =
(x`mn(t)− x`mnss )(x`mn(t)− x`mnss )>, and x`mn is the state

corresponding to the input u(t) = cnTmeiv(t) + uss, with
v(t) denoting the nature of the input signal, and xss and
uss are the state and input steady-state values.

Definition 2. (Empirical observability covariance matrix).
Let the system given by (1) be stable, and introduce the
following sets

Tnx = {T1, · · · , Tr ∈ Rnx×nx , T>i Ti = Inx , i = 1, · · · , r}
M = {c1, · · · , cs ∈ R, ci > 0, i = 1, · · · , s}

Enx = {e1, · · · , enx ; standard unit vectors in Rnx}

where r is the number of matrices for perturbation direc-
tions, s is the number of different perturbation sizes for
each direction, and nx is the number of states.

The observability covariance matrix is defined as

WO =

r∑
m=1

s∑
n=1

1

src2n

∫ ∞
0

TmΨmn(t)T>m dt (6)

where Ψmn(t) ∈ Rnx×nx is computed as Ψmn
ij (t) =

(yimn(t)−yimnss )(yjmn(t)−yjmnss )>, and yimn is the output
corresponding to the initial state x(0) = cnTmei+xss, and
yimnss is steady-state output that the system will reach after
such perturbation.

In Definitions 1 and 2, the state-controllability and observ-
ability covariance matrices are defined for stable systems,
ensuring that states, inputs, and outputs reach the steady-
state. However, these particular definitions fail in the case
of processes that do not posses steady-states, e.g. unstable
systems or batch processes. Moreover, this type of systems
might not be able to run for an indefinite amount of time,
which is the case of batch processes. Therefore, we use
the generalization introduced by Saltik et al. (2016) to
replace xss and uss by nominal trajectories and compute
a finite-time covariance matrices with respect to nominal
trajectories. On the other hand, the number of states can
be too large in a large-scale system for the computation
of the empirical state-controllability covariance matrix to
be feasible. Thus, we can construct the empirical output-
controllability covariance matrix (EOCCM) using the out-
put signals instead of the states, since the number of
measured outputs of a system is generally lower than that
of the states. Thus, the proposed finite-time EOCCM is

W̄Co =

nu∑
`=1

r∑
m=1

s∑
n=1

1

src2n

∫ tf

0

Φ̄`mn(t) dt (7)

where Φ̄`mn(t) ∈ Rny×ny is computed as Φ̄`mn(t) =
(y`mn(t) − ȳ)(y`mn(t) − ȳ)>, and y`mn is the state cor-
responding to the input u(t) = cnTmeiv(t)+ ū, with ȳ and
ū the state and input nominal trajectory respectively.

The EOCCM contains information of the input-output
information directly, which also contains information on
the observability and controllability of the system. It can
be used as a general tool for system analysis rather than
the separate empirical controllability and observability
matrices .

3. COMPUTATION OF PARAMETRIC
SENSITIVITIES USING COVARIANCE MATRICES

Another important property of the model structureM(p)
is parameter identifiability. In its most general form, iden-
tifiability accounts to determine if the map Φ : p 7→ M(p)



is injective, i.e. the map has one-to-one correspondence.
However, in most practical settings, the only measured
variable that provides information about the model be-
havior is the output y. This implies that the entire model
structureM(p) can be replaced by the input/output map
Γ(p) : U 7→ Y, whose domain is the input space U ⊂ Rnu

containing admissible input signals u, and codomain is the
output space Y ⊂ Rny with output signals y as elements.
The structural identifibiality analysis accounts to verifying
injectivity of the map Φ̄ : p 7→ Γ(p). We shall now
formalize this by the following definitions for ODE models
by Ljung and Glad (1994):

Definition 3. (Global identifiability). A modelM(p) given
by (1) is globally identifiable if for any admissible input
u ∈ U , and initial condition x0

∃x0,∃u,∀p,p∗ ∈ P : y(x(t), u(t),p) = y(x(t), u(t),p∗)

⇒ pi = p∗i ∀p∗ ∈ P
(8)

holds.

Definition 4. (Local identifiability). Let N(p0) define the
neighborhood of a particular point p0 in the parameter
space P. A modelM(p) given by (1) is locally identifiable
at p∗ if for any admissible input u ∈ U , and initial
condition x0

∃x0,∃u : y(x(t), u(t),p) = y(x(t), u(t),p∗)

⇒ pi = p∗i ∀p ∈ N(p∗) ⊂ P
(9)

holds.

Identifiability can be tested in many ways, but most meth-
ods can be classified in two categories: structure-based and
simulation-based. The former deals with the identifiability
problem using a formal mathematical approach, whose im-
plementation requires symbolic packages, while the latter
takes on a numerical approach. The structural approach
allows for a more in depth assessment, such as global
and/or local identifiability as well as calculation of identi-
fiable parameter combinations. However, it is only suitable
for small-scale systems with few parameters and states
due to the curse of dimensionality. Conversely, simulation-
based approaches can deal with large-scale systems at the
expense of obtaining just local results, i.e. in the vicinity
of the operating conditions. In this context, we can use the
covariance matrix to test for parameter identifiability. Two
approaches can be devised for parameter identifiability
Himpe and Ohlberger (2013): the empirical sensitivity co-
variance matrix and the empirical identifiability covariance
matrix. The two matrices are calculated as follows:

Extended output controllability covariance matrix

Around a nominal trajectory (or point in the case of
systems with steady-states), the system (1) can be rep-
resented by a linear system that approximates the behav-
ior in the neighborhood of the aforementioned trajectory.
Hence,

δẋ = Jf,xδx+

np∑
i=1

Jf,pi
δpi + Jf,uδu

δy = Jh,xδx

(10)

where δx = x − x̄, δpi = pi − p̄i, and δy = y − ȳ, and
δu = u − ū, with (̄·) represents the nominal value. Jf,x,
Jf,u, Jh,x, and Jh,u are the Jacobian matrices of functions
f and h with respect to the states and inputs, respectively.
Jf,p is the Jacobian matrices of the function f with respect
to the i-th parameter.

Notice, that at each point of the linearization, the system
can be realized as a sum of the effects of the inputs and
parameters on each through the states to the outputs (Sun
and Hahn (2006)). Therefore, the output controllability
covariance matrix is given by

W̄Co = W̄Co [u] +

np∑
i=1

W̄Co [pi] ∈ Rny×ny (11)

The right most terms of (11) correspond to each output
sensitivity covariance matrix whose representation is given
by

W̄Co [pi] =



(
∂δy1
∂δpi

)(
∂δy1
∂δpi

)>
· · ·

(
∂δy1
∂δpi

)(
∂δyny

∂δpi

)>
...

. . .
...(

∂δyny

∂δpi

)(
∂δy1
∂δpi

)>
· · ·

(
∂δyny

∂δpi

)(
∂δyny

∂δpi

)>


The information contained in each of the matrices of the
sum shown in (11) corresponds to the sensitivity of the
output with respect to each individual parameter of the
model, i.e. the total variation of the output to changes
in each parameter of the model. Notice that there are as
many sensitivity matrices as parameters. Moreover, each
of the sensitivity matrices provides information about the
interaction between all outputs with respect to the one pa-
rameter, which is helpful in determining the outputs that
should be measured. The construction of the sensitivity
covariance matrix presented in this work differs from pro-
posed one in Sun and Hahn (2006), where the development
is based on the observability covariance matrix.

Extended observability covariance matrix

Let the system (1) be represented by a linear system
around a nominal trajectory. Thus,

[
δẋ
δṗ

]
=

[
Jf,x Jf,p
0 0

] [
δx
δp

]
+

[
Jf,u
0

]
δu, δx(0) = δx0

δy = [Jh,x 0]

[
δx
δp

]
(12)

where δx, δp, δy, δu, Jf,x, Jf,p, Jfu , and Jh,x are defined
as before. The observability matrix has the form (Singh
and Hahn (2005), Saltik et al. (2016))

W̄ i
O =

 W̄ i
O[x0] W̄ i

O[x0,p]

W̄ i>

O, [x0,p] W̄ i
O[p]

 (13)

The lower diagonal block corresponds to the matrix of
output sensitivity covariance matrix, whose representation
is given by



W̄ i
O[p] =



(
∂δyi
∂δp1

)>(
∂δyi
∂δp1

)
· · ·

(
∂δyi
∂δp1

)>(
∂δyi
∂δpnp

)
...

. . .
...(

∂δyi
∂δpnp

)>(
∂δyi
∂δp1

)
· · ·

(
∂δyi
∂δpnp

)>(
∂δyi
∂δpnp

)


where i ∈ {1, 2, · · · , ny}. Notice that in this case, the
sensitivity matrix is part of the extended observability
covariance matrix, Himpe and Ohlberger (2013) defined
the identifiability covariance matrix W̄ i

I as the lower-
diagonal block Schur complement. Therefore

W̄ i
I [p] = W̄ i

O[p]− W̄ i>

O [x0,p]
(
W̄ i
O[x0]

)−1
W̄ i
O[x0,p] (14)

However, it is usually sufficient to approximate the em-
pirical identifiability covariance matrix by the lower right
block of (13) (Himpe (2018))

W̄ i
I [p] ≈ W̄ i

O[p] (15)

Note that that there are as many covariance matrices as
outputs, and each of these matrices provides information
on the interactions of all parameters with respect to one
output. Although both sensitivity representations W̄Co [pi]
and W̄ i

O[p] might seem similar, they provide slightly dif-
ferent information. However, it is possible to obtain the
same information from both matrices with the appropriate
manipulations. Furthermore, the construction of the sen-
sitivity covariance matrix from the output controllability
perspective can be exploited to explore the influence of the
input in the sensitivity analysis, which is relevant in input
design for parameter estimation. Moreover, these covari-
ance matrices are analogous to the Hessian matrix used in
the Gauss-Newton method for parameter estimation.

4. INDEXES TO ASSESS LOCAL IDENTIFIABILITY

Another important factor when computing a ranking of
parameters is the choice of a sensitivity index, which allows
to quantify the influence of a parameter over the set of
outputs. Several indexes have been used in literature to
perform this assessment as discussed in Singh and Hahn
(2005). We present the most common indexes used in
literature.

Trace: This index measures the total contribution of a
particular parameter over all of the outputs. From a pa-
rameter estimation point of view, the trace of the EOSCM
gives a measure of the total uncertainty magnitude or total
variation of a given parameter.

ιSi
1 = trace

(
W̄Co,[pi]

)
(16)

A modification can be performed to this measure to obtain
the average variations of the outputs with respect to the
parameters.

ιSi
2 =

1

ny
trace

(
W̄Co,[pi]

)
(17)

Determinant: This index measures the linear indepen-
dence of parameter sensitivity between output channels.
If the determinant is small, then the parameters generate
similar (linear dependent) variations in the outputs that
are indistinguishable from one another. Mathematically,
the determinant of the EOSCM provides a measure of the

volume of the uncertainty or the generalized variation of
a given parameter.

ιSi
3 = det

(
W̄Co,[pi]

)
(18)

Analogously, a modification proposed by Müller and We-
ber (1972), provides an average magnitude of the volume
of the uncertainty.

ιSi
4 = ny

√
det
(
W̄Co,[pi]

)
(19)

The particular use of these indexes in the context of
parametric sensitivity is to determine whether a parameter
is identifiable or not. The notion of a large or small trace
(resp. determinant) is ambiguous. Although there is no
straightforward way of choosing it, we propose to use a ra-
tio between the total variation (trace) and the generalized
variation (determinant) to assess identifiability. This ratio
allows us to confine these values to the range [0, 1]. By the
Arithmetic mean - Geometric mean (AM-GM) inequality,
we have that

ιSi
5 =

ιSi
4

ιSi
2

∈ [0, 1] (20)

This value represents the ratio between the generalized
variation to the total variation. A number close to 1 corre-
sponds with high parametric sensitivity with low correla-
tion between outputs, whereas a number close to 0 implies
that the output is not sensitive to parameter variations or
that induces high correlation between outputs.

Condition number: This index provides information
about the posedness of the matrix. A large condition
number implies that the matrix is ill-conditioned, thus,
some directions of sensitivities are small or linearly de-
pendent. On the other hand, a small condition number
means that the matrix is well-conditioned, and that all
sensitivity directions have similar magnitudes and are in-
dependent. This index plays an important role in numer-
ical approaches for gradient-based parameter estimation,
to select parameters that make the problem well-posed.

ιSi
6 =

λmax(W̄ e
Co,[pi])

λmin(W̄ e
Co,[pi])

∈ [1,∞) (21)

In this work, we will use

ιSi
7 =

1

ιSi
6

∈ (0, 1] (22)

The values close to 1 will represent identifiable parameters,
and values close to 0 will represent condition number
values that are very large; thus, unidentifiable parameters.

In general, there is no ’magical’ index that will provide all
the necessary information. Each of the indexes discussed
above provide different pieces of identifiability informa-
tion. The trace is a good measure if the sole interest is in
the total contribution of the parameters on each output.
However, the trace does not provide information about the
correlation between sensitivities, which is well-captured
by the determinant. Nevertheless, it does not allow to
conclude on the total variation of the sensitivities. Anal-
ogously, the condition number provides information on
the conditioning of the matrix without providing explicit
values for variation or correlation in the data. The best
option for sensitivity index will depend on the particular
application or the information sought.



5. EXAMPLE: REACTIVE BATCH DISTILLATION

The case study used in this work is an industrial reactive
batch distillation (RBD) process. The process consists of
a reactor at the bottom acting also as a reboiler, and a
standard tray distillation column on top. In the reactor, a
series of chemical equilibrium reactions take place to pro-
duce the polymer and water as a by-product. The latter is
then removed through the distillation column, constantly
shifting the equilibrium to generate more desired final
product. The measured outputs are the temperature and
pressure in the reactor stage, and the input variables are
the incoming jacket oil temperature, the pressure valve
travel and the reflux flow. The process consists of 8 stages,
and the reaction is only limited to the reactor stage where
10 chemical species interact in 16 chemical reactions. This
amounts to a total of 90 differential equations, and over
470 algebraic equations. A schematic of the process in
illustrated in Figure 1.

Fig. 1. Schematic representation of the RBD.

Molar Balance: Reactor stage

∀i = 1, · · · , S, j = 8

dnli,j
dt

= Finxin + Lj−1xi,j−1 − Vjy∗i,j + N>r(α) (23)

Energy balance: Reactor stage

dT

dt
=

1

nLCpl

[
Fin(hin − hlj ) + Lj−1(hlj−1

− hlj )

− Vj∆Hvap,j + ∆Hr + UA(Tjacket − Tj)
] (24)

dTjack
dt

=
1

MoilCpoil

[
Foil(hoil − hlj ) + UA(Tj − Tjack)

]
(25)

Pressure: Thermodynamic equilibrium

Pj =

S∑
i=1

xi,jγi,j(xi,j , Tj)P
sat
j (Tj) (26)

Reaction kinetics

r(α) = K0 exp

(
−α
RT

) S∏
i=1

[C]νi (27)

where nl ∈ RS is the vector of moles in the liquid phase,
Fin ∈ Rι is the inlet flow with composition xin. y∗ is the
gas composition in equilibrium with the liquid bulk com-
position x. N ∈ RR×S is the stoichiometric matrix, and
r the vector of chemical reactions. T is the temperature,
hl is the liquid phase enthalpy, hin is the enthalpy of the
inlet stream, ∆Hr is the heat of reaction, ∆Hvap is the
heat of vaporization, Cpl is the heat capacity of the liquid
phase, U is the overall heat transfer coefficient, A is the
reactor surface area, Moil is the total oil mass in the jacket,
Cpoil is the oil heat capacity, hoil is the enthalpy of the oil
at the inlet and Tjack is the jacket temperature. Pj is the
absolute pressure, γ is the liquid activity coefficient,P sat

is the saturation pressure. α is the activation energy, [C]
is the concentration of the reactants, and ν is the stoichio-
metric coefficient. The parameters considered for analysis

are p = [α1 α2 α3 α4 · · · K0,1 K0,2 K0,3 K0,4 Cpoil U ]
>

.
The nominal values for these parameters are shown in
Table 1.

Table 1. Nominal values of selected parameters

Parameter Value Unit
Activation Energy 1 (α1) 1.393272 × 105 kJ kmol−1

Activation Energy 2 (α2) 1.393272 × 105 kJ kmol−1

Activation Energy 3 (α3) 1.2675 × 105 kJ kmol−1

Activation Energy 4 (α4) 1.233 × 105 kJ kmol−1

Pre-exp. factor 1 (K0,1) 4.56 × 105 kg kmol−1 s−1

Pre-exp. factor 2 (K0,2) 9.7417 × 105 kg kmol−1 s−1

Pre-exp. factor 3 (K0,3) 5.73 × 108 kg kmol−1 s−1

Pre-exp. factor 4 (K0,4) 1.16939 × 109 kg kmol−1 s−1

Oil heat capacity (Cpoil ) 2.3 kJ kg−1 K−1

Heat transfer coefficient (U) 1.8 kW m−2 K−1

For this analysis, we perform an exploration up to 10%
with respect to their nominal values in the positive and
negative directions. In order to capture possible unknown
nonlinear effects, the range of each parameter is parti-
tioned using a centered linear spacing. Therefore,

T 5 = {I10,−I10}, M = {0.02, 0.06, 0.1} × pnom

where pnom correspond to the vector of parameters at
their nominal values. The analysis is carried out assuming
that each parameter remains constant at their adjusted
value during each iteration. The measured variables in the
process (outputs) are the reactor temperature Tr, the oper-
ating pressure in the reactor Pr, and the polymer viscosity
µ. Furthermore, the variations of the outputs to the input
signals are not considered because the process is already
in closed-loop, and the input-output pairing has already
been established by the process recipe. Additionally, Each
of the EOSCM is normalized using the nominal parameter
values and nominal trajectories to avoid that the units of
parameters and outputs affect the sensitivity indexes.

As it can be seen in Figure 2, the most sensitive parameter
is α3. This parameter exhibits the largest trace (average
total variation), the highest determinant (smallest correla-
tion in the outputs), and largest inverse condition number
(covariance matrix is well-conditioned). However, in this
example it is clear that the use of a particular measure
to rank parameters produces a substantial change. For
example, the parameters K0,3 and K0,4 exhibit a large
total average sensitivity, but inspecting the other indexes,
it is clear that they have a large degree of correlation which



Comparison of various sensitivity indexes
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Fig. 2. Sensitivity values of the EOSCM evaluated for
different sensitivity indexes.

makes them practically unidentifiable. Another interesting
example is Cpoil, this parameter is ranked very low with
respect to the average trace, but based on the determinant
and the inverse condition number, the oil heat capacity
induces low correlation in the outputs, and generates a
well-conditioned matrix covariance matrix. Furthermore,
it is ranked first in terms of the trade-off between the
average variation (average trace) and average correlation
(average determinant), implying that this parameter can
be estimated with low variance and correlation.

It must also be noted that by selecting an index to assess
identifiability, an important aspect of the analysis is lost:
the relative importance of a specific output for parameter
estimation. For example the normalized EOSCM with
respect to the highest ranked parameter α3, which reads

W̄Co [α3] =

[
0.0018 −2.16× 10−5 0.058

−2.16× 10−5 1.596× 10−6 −0.000114
0.058 −0.000114 1528.45

]
(28)

Inspecting the matrix in (28), it can be seen that the
most important output to compute a reliable estimate for
α3 is µ, which exhibits both high sensitivity as well as
low correlation with respect to the other outputs (Tr and
Pr). This shows that parameter identifiability and output
importance are a multidimensional problem that cannot
be dealt with separately or using one index alone.

6. CONCLUSIONS

In this work, we have established the connection between
sensitivity analysis and identifiability for large-scale non-
linear models using an output controllability approach and
empirical covariance matrices. This representation allows
us to address the identifiability of complex models from a
practical point of view, while also explore larger param-
eter ranges and possible nonlinear effects. The approach
is also extended to systems with no steady-states. The
information contained in the empirical output sensitivity
covariance matrix is similar to that of the observability
matrix, but it also allows for the assessment of parameter
sensitivity to input variation. This is advantageous for
input design to maximize or minimize parametric sen-
sitivity. Furthermore, since identifiability and sensitivity
analyses using empirical covariance matrices are numerical
approaches, these usually suffer from scaling issues. This
is taken care of first by normalizing the empirical output
sensitivity covariance matrix with nominal trajectories,
and second, by choosing specific sensitivity indexes that

could represent the parameter contribution to each avail-
able output. The approach has been implemented in a
reactive batch distillation process to assess the identifiabil-
ity of 10 parameters, where it is shown that indexes only
provide limited information, and multiple indexes must
be implemented to get sound conclusions. The empirical
covariance matrix approach shows that four or five param-
eters are practically identifiable with respect to the specific
operating trajectory.
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