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Abstract: Quality variables, which are usually measured offline, play important roles in describing process 
behaviors. However, online data obtained from soft sensors are significant as they provide accurate and 
immediate information. The reliability of online soft sensors is questionable due to changes in sensors, 
equipment, raw material availability, and operation conditions. In addition, chemical plants have dynamic 
properties and complex correlations amidst a large number of process variables. This causes most of the 
predictions obtained from steady-state soft sensors to be inaccurate in representing the particular chemical 
process. In this paper, the latent dynamic variational autoencoder is proposed to provide an estimation 
model and supervise soft-sensors. The input data are encoded in the latent space to remove underlying 
noises and disturbances in the data. Afterward, the dynamical properties are learned in the latent space 
through the bi-directional recurrent neural network, whose output (latent variable) is used to reconstruct 
back the input data. A simulation case study is conducted to show the effectiveness of the proposed method. 
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1. INTRODUCTION 

To obtain accurate and immediate information in a 
continuous process, soft-sensors are usually used to 
approximate the difficult-to-measure quality variables. 
However, the lifetime of soft-sensors is limited because the 
sensor, equipment, feedstock availability, or operating 
conditions may change from time to time. Although data-
driven soft-sensor models can be updated based on the recently 
available training data, process dynamics, outliers and 
nonlinearity affect the prediction performance significantly. 
Therefore, maintaining the reliability of the soft-sensor is 
crucial and demanding in manufacturing nowadays.  

Using a moving window mimicking the concept of 
autoregressive moving average exogenous time series model 
is a common method for data-driven models to learn dynamic 
behaviors of the system. The moving window simply extends 
the data to the matrix form to include the data at each specific 
time point within a certain time range. This allows principal 
component analysis (PCA) and partial least squares (PLS) to 
be extended to dynamic principal component analysis (DPCA) 
(Ku et al., 1995) and dynamic partial least squares (DPLS) 
(Kano et al., 1998) respectively, but the usage of DPCA and 
DPLS is limited to linear processes. The nonlinear dynamic 
models, such as dynamic kernel principal component analysis 
(DKPCA) (Jia et al., 2010) and dynamic kernel partial least 
squares (DKPLS) (Jia & Zhang, 2016), are developed using 
kernel tricks to represent nonlinear dynamic processes. 
However, applications of DKPCA and DKPLS are limited as 

huge historical data in chemical processes cause a large 
computational load.  

Alternatively, the recursive neural network (RNN) is 
developed to learn the dynamic characteristics of processes 
(Fig. 1). The dynamic properties are learned relying on the cell 
states as inputs along the input sequence are fed into the RNN 
nodes. RNN allows a deep nonlinear representation of the 
dynamic system. As chemical plants exhibit stochastic nature 
because of noises and disturbances, the RNN structure can be 
extended from the deterministic characteristic to the 
probabilistic form. 
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Fig. 1. Recurrent Neural Network (RNN) structure. 

Recent advances in artificial intelligence have shown 
growth in variations of variational autoencoder (VAE) model 
extended to learn the dynamic properties of the system, 
particularly in robotic motion, music, and video in computer 
science. The popular extension of VAE typically includes 
RNN in the encoder and decoder of VAE (Chen et al., 2019; 
Chung et al., 2015; Habibie et al., 2017) while other extension 
includes dynamic formulation approaches in the VAE model, 
such as Kalman filters (Krishnan et al., 2015; Karl et al., 2017; 
Fraccaro et al., 2017), dynamic movement primitives  
(Fraccaro et al., 2017), and the Lyapunov function (Agand et 
al., 2017). However, the model is developed in an 
unsupervised manner and the model parameters are 
constrained to be linear.  



 
 

 

In this paper, a latent dynamic variational autoencoder 
(LDVAE) is proposed. The proposed method uses Kalman 
filters to model the nonlinear dynamic properties through a bi-
directional RNN (bi-RNN) framework. The input data are 
projected onto lower dimensions for noise and disturbance 
removal. This can significantly reduce the computational load 
while learning the dynamic properties in the latent space. 
Moreover, the bi-RNN allows the data to move in a cyclical 
loop to prevent over-fitting.  

The remainder of this paper is organized as follows. The 
next section presents the methodology of the proposed 
LDVAE. In Section 3, a numerical case is presented first 
following by an industrial ammonia synthesis case. Finally, the 
conclusions presented in the last section summarize the results 
and merits of the proposed method. 

2. METHODOLOGY 

2.1  Problem formulation 

Given a set of time-sequential data with a total of T data 

which consists of process data { , 1, 2, , }m
t t T  X x    and 

quality data { , 1, 2, , }n
t t T  Y y   , the dynamic 

properties of X  and Y  can be represented by a stochastic 
continuous nonlinear latent variable (LV) model in a first-
order Markov manner: 
    1,       ,t t t t t t t tf h   z z a w a x y m   (1) 

                 t x t t t y t tg g   x z v y z n   (2) 

tz  is known as the state variable in dynamic systems. To avoid 

misunderstanding, tz is referred to as LV from now on while 

ta  is known as the temporal correlation existing in the changes 

of the process and quality variables. The nonlinear dynamic 
relations are assumed to exist in LV ( )tz , which depends on 

the previous latent variable 1( )tz  and the current temporal 

changes ( )ta . tz  and ta  can be approximated by the 

functions 1( , )t tf z a  and ( , )t th x y  in Eq.(1), respectively. 

This approximation closely associates the latent variables with 
the process and quality variables, so tz  can represent the 

temporal changes/dynamic properties in the tx  and ty  at each 

time point. With the corresponding LV, the process and the 
quality variables are formulated by the unknown nonlinear 
functions ( )x tg z  and ( )y tg z . tm  and tw  are the noises 

associated with the dynamic changes in ta  and tz  

respectively while tv  and tn  represent the noise of tx  and 

ty  respectively. All the noises are assumed to follow zero-

mean Gaussian distributions: 
    ~ 0,tp Nm I ,    ~ 0,tp Nw I   (3) 

    ~ 0,tp Nv Γ ,    ~ 0,tp N n   (4) 

where the covariance matrices of tm  and tw  can be assumed 

to be an identity matrix. which does not affect the model 
representation Meanwhile, the covariance matrices of tv and 

tn  are Γ  and  . With the conditional probability 

representation, Eq.(1) & (2) can also be re-written as: 
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1( | )t tp z z   is known as the transition distribution showing the 

changes of the latent variable from the previous time point till 
the current time point while  |t tp x z   and ( | )t tp y z  are 

known as emission distributions for process and quality 
variables. As 1( | )t tp z z  is modeled at the previous time point, 

an initial latent variable distribution is assumed to be 
    0 0 0~ ,p Nz μ Λ   (7) 

For process modeling, all the parameters 

0 0 1{ , , ( , ), ( , ), ( ), ( ), , }t t t t x t y th f g g μ Λ x y z a z z Γ  can be 

estimated by the EM algorithm (E-Step and M-Step). These 
two steps are repeated until the parameters converge and the 
condition of the loss function has been achieved.   

2.2 Latent dynamic variational autoencoder (LDVAE) 

The whole sequential dataset of process and quality 
variables are divided into K data samples of serial vectors 
(moving window), with   sequential data in each data 
window respectively as 1 1[       ]k t t t  X x x x  and 

1 1[      ]k t t t  Y y y y . To train the LDVAE model, the 

objective function is defined to maximize the marginal 
distribution of the process and quality data within the 
sequences for each moving window. 

  
1

max log ,
K

k kk
J p


  X Y   (8) 

To clarify this point, only one moving window with   data is 
used instead of using the whole sequence of the process and 
quality data. The window index k  is removed in the following 
derivations. To describe the way to infer latent variables from 
the process and quality variables, the posterior distributions are 
defined as follows:   
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From the definition of Kullback-Leibler (KL) divergence 
(Eq.(11)), KL is used to compare the similarity between 

( , | , )q Z A X Y  and the true posterior ( , | , )p Z A X Y .  
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Through the Bayes’ theorem, the true posterior  , | ,pθ Z A X Y  

can be represented by 
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The process variable X  and quality variable Y  are functions 
of the latent variable Z . The dynamic correlations are learned 
in the latent space within each time sequence. By substituting 



 
 

 

Eq.(9) and (12) into Eq.(11), the KL divergence between the 
two posterior distributions can be rewritten as  
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As ( , )t tpθ x y  is independent of the latent variable tz  and ta , 

it can be taken out from the expectation of ( , | , )qE
 Z A X Y .   

Assume [ ( , | , ) || ( , | , )]KL q p θZ A X Y Z A X Y  is equal to zero, 

which makes the posterior distribution similar to the true 
posterior. The variational lower bound term L  can be 
maximized instead. It would yield the same definition of 
maximizing the marginal distribution: 
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Based on Eq.(14), the LDVAE structure is shown in Fig. 2. 
The formulation of the loss function in Eq.(14) only accounts 
for single-window data. To take the whole dataset sequence 
into account, the formulation needs to be extended for the 
whole K window data.  
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Fig. 2. Model structure of the latent dynamic variational autoencoder 

2.3  The procedure of training LDVAE 

First, each data window consists of process and quality data 
sequences and ta  is the window data projected onto the latent 

space by the encoder ( | , )t t tq a x y . The aims of encoding the 

observation data into the latent space are to eliminate noises 
and disturbances in the data and reduce the computational load 
required for modeling the dynamic properties of the process. 
The encoded variable ta  is taken as an input into the bi-RNN 

block. In RNN, the forward RNN ( th  cell state) is used to 

produce the filtered distributions ( )f tq z . It represents the 

relation from the past time point to the current time point. The 

backward RNN ( th cell state) is used to produce the smoothed 

distributions ( )s tq z , which represent the relationship between 

the future time point and the current time point. The forward 

and backward RNN cell states are given by Eq.(15) with the 
same function   and their relations are shown in Fig. 3. 
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Fig. 3. Bi-RNN network structure. 

As 1th  is the accumulation of information of 1: 1ta , the 

backward cell state in Eq.(15) can be expressed as follows: 

  1 1,t t t h h h    (16) 

The forward RNN network in the bi-RNN (a.k.a Kalman 
filtered distribution) learns the dynamic properties from the 
initial time point till the final time point. In the meantime, the 
hidden cell states in the RNN network are the inputs to produce 
the filtered latent variable. The final hidden cell state acts as 
the initial hidden cell state for backward RNN recursion. The 
backward RNN network in the bi-RNN (a.k.a Kalman 
smoothed distribution) adjusts the dynamic changes to be more 
robust and smoother. Like the forward RNN network, each 
hidden cell state is the input to produce the smoothed latent 
variable. The final hidden state of the backward RNN would 
also act as the initial forward hidden cell state for the forward 
RNN network. This cyclical movement not only allows the 
forward RNN networks to represent the dynamical changes 
from the past to the current time points but also dynamical 
changes from the future to the current time points. Using bi-
RNN in the latent space can significantly reduce more 
computational load than the conventional RNN. Another 
benefit of using bi-RNN is that the filtering and smoothing 
action of the Kalman filter can be directly applied without 
specifying the state parameters although the past research 
(Karl et al., 2017; Fraccaro et al., 2017) states that parameters 
need to be specified beforehand. The trained bi-RNN is 
suitable for off-line or on-line modeling. 

During off-line training, the data are divided into past and 
future data to train the filtered ( )f tq z  and smoothed 

distributions ( )s tq z . As the end of the backward RNN is 

needed to be connected to the start of the forward RNN, the 
initial cell state 0h  of the forward RNN  (the final cell state of 

the backward RNN) has to be assigned.  With the initial value 

0h , the calculation of the filtered distributions is carried out 

following by the smoothed distributions in the backward RNN 
cell state. Assume that the initial prior latent distribution ( 0z ) 

at the time frame 0 is 0 ~ (0, )Nz I , the posterior latent 

variable distribution  1 :( | , )s
t t tp z z a  is given by the smoothed 

transition distribution of 1( | )s s
s t tq z z . Hence, the smooth 

transition distribution 1( | )s s
s t tq z z  can be represented by the 



 
 

 

Gaussian distribution with the mean and covariance of each 
cell state in the backward RNN: 

       1| ~ ,s
s t t t tq Nz z ν h Φ h     (17) 

The posterior latent variable distribution is approximated by 
the latent variable from the previous smoothed distribution and 
the previous cell state: 

       1 : 1 1 1 1| , ~ , , ,s s s
t t t t t t tp N    z z a ν z h Φ z h     (18) 

After the smooth posterior distribution is constructed, 
sampling is performed and the sampled latent variable would 
be reconstructed back as the process data and quality data at 
the time point t. To allow backpropagation of the neural 
networks, the reparameterization trick is done with 

( ) ~ (0, )p Nε I : 
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The neural network output of the smoothed distribution 
consists of mean and diagonal elements of the covariance 
matrix. The mean output is given by the linear activation 
function while the covariance matrix is given by the softplus 
function ( ) ln(1 )xx e   , which keeps the value to be positive. 
Similarly, these activation functions are kept the same in the 
filter distribution (forward RNN), the encoder, the decoder for 
process and quality variables, and the prediction network. 

During online learning, as future data cannot be gotten in 
advance, only the filtered distribution is used and the target 
latent variable would be updated by the filtered distribution. 
The smoothed transition distribution is replaced by the filtered 
transition distribution: 

      1 1 1: 1| ~ | , | ,s s s
f t t t t t t t tq p p  z z z z a z z a   (20) 

The sampling would also be drawn from the filtered 
distribution. Therefore, the reconstruction of each process data 
point and each quality data point would be used to compute the 
loss function given in Eq.(14), along with the KL divergence 
between the transition prior and the smoothed posterior 
transition (off-line learning) or between the transition pior and 
the filtered posterior transition (on-line learning). 

3. CASE STUDIES 

In this section, two cases are presented. Both cases are 
compared with the supervised-RNN (S-RNN) model and the 
dynamic KPLS (DKPLS) model to show the merits of the 
proposed method in predicting the quality data. 

3.1. Numerical case 

To simulate a case analogous to a dynamic process, assume 
the dynamic changes occur in the latent variables. The 
dynamic change is shown by 

  1 1
1 1 1 10.5sin( ) 0.05cos(0.02 ) 0.2k k kz z z n       (21) 

where tn  is the noise or uncertainty affecting the dynamic 

changes,  1 ~ 0,0.01n N , and   represents the noise of the 

phase changes in the cosine function for the dynamic 
characteristics, ~ (0.4,0.18)N . The value of the initial latent 

variable is generated by 0
1 0.25z  . A single process variable 

and a quality variable are generated as the process and quality 
data based on the latent variables with the following equations: 
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where  1 ~ (0,0.002)w N  and 2 ~ (0,0.005)w N . 

 
Fig. 4.  Process and quality variables in the numerical case. 

With the process equations, 1,200 data samples are 
generated. The graphical representation of the process and 
quality data is given in Fig. 4. The first 1,000 sequential 
datasets are used to train the model. The remaining 200 
sequential data are used to test the model. The length of the 
moving window in the RNN network   is set to be 20. The 
sequential dataset is divided into several batch sets with each 
batch size equal to  . In LDVAE, each encoder, transition 
prior, transition posterior, and decoder consist of 3 hidden 
layers with 30 neural nodes. Hyperbolic tangent activation 
functions are used in the nodes on each layer. Both the forward 
and the backward RNN networks have 20 neural nodes. The 
number of training iterations is set to be 800. The number of 
the encoded variable is set to be 1. These model parameters are 
chosen with the lowest lower bound value. The optimizer 
selected for training the model is AdamOptimizer with a 
learning rate of 0.002. The performance of the model 
prediction is evaluated by the root-mean-squared error (RMSE) 
value using the test data from noise-contaminated and noise-
free datasets. The RMSE formulation is given as follows:  

  2

1

1
ˆ

N

i ii
RMSE y y

N 
   (23) 

where N  is the number of data, iy  is noise-free quality data, 

and ˆiy  is the predicted quality of the model. The model with a 

lower RMSE value is preferred. To show the accuracy of 
prediction, the proposed LDVAE is tested against the S-RNN. 
The S-RNN structure is trained through the mean squared error 
(MSE) between the predicted output and the noise-
contaminated quality data. The training iteration and the 
learning rate are kept the same to ensure a fair comparison. The 
prediction results of the three models are compared in Fig. 5. 
The proposed LDVAE significantly outperforms S-RNN and 
DKPLS as the predicted data of LDVAE are closer to the 
actual data without noise. Also, the RMSE of LDVAE is 
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0.2148, of conventional S-RNN is 0.5261 and of DKPLS is 
0.5912.  

 (a) 

 (b) 

(c) 

Fig. 5.   Predictions of (a) LDVAE, (b) S-RNN and (c) DKPLS compared 
with noise-contaminated testing data in the numerical case. 

 

3.2 Industrial Case 

Data from an ammonia synthesis plant are used to study the 
effectiveness of the proposed method. Ammonia is an essential 
ingredient that has a lot of uses; for example, it can be used to 
produce fertilizer. One of the main important processes of 
ammonia synthesis is pre-decarburization. The carbon dioxide 
is absorbed for the further production process. The flowchart 
of this process in Fig. 6 is shown with 4 main units (the feed 

gas separator, the PG separator, the heat exchanger, and the 
absorption column). The absorption of CO2 mainly occurs in 
the absorption column. 
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Fig. 6. The decarburization unit of the ammonia synthesis process 

To maximize the effectiveness of the ammonia synthesis 
process, it is important to maximize the amount of absorbed 
CO2. The goal is to reduce the amount of CO2 gas in the 
process gas outlet, and a total of 19 process variables are 
selected based on prior knowledge of the variables affecting 
the CO2 absorption efficiency. To protect the confidential 
information about the detail regarding the process, the tag 
number and its sensor descriptions are excluded from the 
flowchart. There are 2,000 data samples, with complete 
information on the quality data. The training data consist of 
1,900 data samples, with the remaining 100 samples used as 
the testing data. The number of the window length   is set to 
be 20. Each encoder, transition prior, transition posterior, or 
decoder consists of 3 hidden layers with 30 neural nodes with 
the hyperbolic tangent activation function. Both the forward 
and the backward RNN networks have 20 neural nodes. The 
number of training iterations is set to be 300. The number of 
encoded variable dimensions is set to be 4. These model 
parameters are chosen with the lowest lower bound value. The 
rest of the supervised method uses all the data for training with 
the same number of window sizes. 

The comparative prediction results of the quality data points 
are shown in Fig. 7. The maroon star indicates the prediction 
result of the training data and the red star indicates the 
prediction result of the testing data. Just like the result of the 
numerical case, the prediction result of S-RNN is poor because 
the model overfits the noise in the data. At the same time, the 
prediction result of DKPLS is so poor although the best kernel 
function and the number of principal components are selected 
by trial and error. To measure the performance of the model in 
predicting the quality data, the RMSE value of each 
comparative model is calculated. The RMSE of the LDVAE is 
0.5119, of S-RNN is 0.7603 and of DKPLS is 0.9120. The 
RMSE value of the proposed LDVAE model is the lowest 
among the comparative methods. Due to the limited spaces, 
the merits of LDVAE in reducing computational load and 
preventing model over-fitting are omitted here.  
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Fig. 7. Comparative prediction results of the quality data at (a) LDVAE (b) 
S-RNN and (c) DKPLS models 

4. CONCLUSIONS 

In this research, an innovative soft sensor modeling 
algorithm called LDVAE is proposed. The prediction of 
LDVAE is shown to model the actual data distribution despite 
the effect of disturbances and noises in data. The dynamic 
modeling is conducted in the latent space, so it can lower 
computational load and remove the effect of noise in modeling. 
Lastly, the numerical and industrial ammonia cases show that 
the proposed LDVAE method can make a more accurate 
prediction than the conventional supervised RNN network and 

the DKPLS model. In the future, underfitting indices of the 
LDVAE-based soft sensor model can be developed to 
investigate the time point for soft sensor maintainance. 
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