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Abstract: Due to the frequent switching of operation condition, the real industrial processes show typical 
nonstationary characteristics. In some cases, the switching is frequent and may not be instantaneous, 
revealing typical transition characteristics different from steady operation. In this work, a condition-driven 
soft transition modeling and monitoring method is proposed to deal with this problem. The condition modes 
are obtained by an automatic sequential condition-mode division algorithm, then a fine-grained mode 
recognition strategy is developed to further separate the condition mode into steady and transition 
submodes. The steady submode model is established by designing a conditional autoencoder network 
which can more closely describe each steady submode and facilitate evaluation of the relationship between 
transition submode and each steady submode. Finally, an online monitoring strategy is designed which can 
capture the nonstationary process changes. A real industrial case illustrates the effectiveness and superiority 
of the proposed method, which establishes a more accurate model for nonstationary processes by revealing 
the transition feature. 

Keywords: condition-driven; nonstationary process monitoring; soft transition modeling; mode recognition; 
conditional autoencoder network. 

 

1. INTRODUCTION 

During the last few decades, data-driven technologies (Jackson 
et al., 1991; Cuentas et al., 2017) have been widely focused on 
to ensure successful operation of industrial processes. Some 
typical methods, including principal component analysis (PCA) 
(Jackson et al., 1991), partial least squares (PLS) (Geladi et al., 
1986), canonical correlation analysis (CCA) (Lin et al., 2018), 
construct feature spaces in different ways and analyse the 
measurement data from respective perspectives. However, 
these methods are only suited to stationary processes, which is 
not satisfied in many industrial cases. Under the influence of 
operating condition switching and production products 
changes, the real industrial processes often show non-
stationary characteristics, which is reflected by a time-variant 
mean, a time-variant autocovariance, or both (Chen et al., 
2021). The characteristics of non-stationary processes change 
along with time, which cannot be well described by traditional 
model (Zhang et al., 2020). 

Some existing methods may be used to address this problem. 
Cointegration analysis (CA) is an effective method to model 
the nonstationary process, which investigates the long-term 
cointegration relationships among nonstationary variables 
(Engle et al., 1987). Zhao et al. proposed a full-condition 
monitoring method which combined CA and slow feature 
analysis (SFA) to monitor the static and dynamic variations of 
multifarious operation conditions (Zhao et al., 2018). However, 
it is difficult to guarantee that nonstationary variables can be 
integrated in the same order, and at that case, CA will fail to 
handle the nonstationary processes. Multimode process 

modeling strategies divide the data into different modes by 
clustering methods, and then describe each mode respectively 
(Yu et al., 2008).  Nevertheless, it is difficult to judge which 
mode the current example belongs to for online application. It 
may lead to a bad result if the wrong model is applied. 

Neither the CA nor the multimode approaches consider the 
transition characteristics, which are common in nonstationary 
processes since the switching of operating conditions is not 
always instantaneous. If these data are strictly partitioned as a 
certain steady operation, it may lead to false alarm or missing 
alarm, since the model of steady operation is insufficient to 
describe the transition characteristics (Zhao et al., 2007; Zhao 
et al., 2015). In the resent years, the nonstationary processes 
modeling methods focusing on soft transition have attracted 
increasing attention. Adaptive strategy, which frequently 
updates the model as new samples arrives, is able to deal with 
this problem (Yu et al., 2019; Wu et al., 2020). Just-in-time-
learning (JITL) was combined with canonical correlation 
analysis (CCA) by Chen et al. to monitor the nonlinear 
nonstationary processes (Chen et al., 2020). However, it is 
perplexing for adaptive methods to distinguish different types 
of normal operation switching from real faults. The frequent 
updating of models also leads to great computational 
complexity. Qin et al. combined the finite Gaussian mixture 
model (FGMM) and Bayesian inference strategy to compute 
the posterior probabilities of each monitored sample belonging 
to the multiple components (Yu et al., 2008). Nevertheless, the 
number of Gaussian components is hard to determine in 
practice. Zhao et al. proposed a soft transition multiple PCA 
(STMPCA) to handle the hard-partition and misclassification 
problems of multimodal batch process monitoring (Zhao et al., 



 
 

     

 

2007). Whereas, this time-driven approach can be incredibly 
complex. The operation conditions change irregularly and 
frequently over time, which increases the difficulty in the 
identification of transition operation 

Recently, Zhao et al. proposed a condition-driven data 
analytics and monitoring strategy for nonstationary and 
transient processes (Zhao et al., 2020). It reveals that although 
the characteristics of nonstationary process change with time, 
the process might follow certain relations within the same 
condition. An automatic sequential condition-mode division 
(SCMD) algorithm is developed to divided the data into 
different condition modes following changes of condition 
indicator, and the characteristics are similar in the same 
condition mode and significantly different for different modes. 
This method fuses the accessible prior knowledge into the 
model through condition indicator, improving the accuracy of 
model. But it does not consider the different transition 
characteristics between different condition modes. 

In this paper, a condition-driven soft transition modeling and 
monitoring method is proposed for nonstationary process. First, 
based on the SCMD algorithm, the process data are initially 
divided into different condition modes. Second, a fine-grained 
mode recognition strategy is proposed to divide the data of 
each condition mode into steady and transition submodes. 
Then a conditional autoencoder network is designed for 
modeling the steady submodes data, which describes each 
steady submode closely and highlights the the difference 
across steady submodes synchronously. The relationship 
between transition submodes and each steady submode are 
further explored. Finally, an online strategy is developed to 
monitoring both the steady and transition submodes 
simultaneously. A real industrial case proves the effectiveness 
of the algorithm. 

The remainder of this article is described as follows. In Section 
Ⅱ, automatic sequential condition-mode division (SCMD) 
algorithm is briefly revisited. The motivation and the proposed 
method are introduced in Section Ⅲ. Then we present the 
application results of this method subsequently. The 
conclusion is drawn in the last section. 

2.  REVISIT OF SCMD ALGORITHM 

In this section, automatic sequential condition-mode division 
(SCMD) (Zhao et al., 2020) algorithm is briefly revisited. In 
industrial processes, some variables are directly related to the 
working condition and have an important influence on the 
whole process, which are named condition indicators. The 
process data with similar condition indicator value have 
similar characteristics, and should be modelled together, 
although they are at the different time. Therefore, it is a critical 
issue to determine which condition-mode data should be put 
together.  

The main steps of automatic SCMD algorithm can be 
summarized as follows. 

Step 1 (Data Preparation). Condition indicator is applied to 
reorganize the measurement data tx . The values of condition 
are reordered to increase monotonously. Then define the 

condition interval β to separate the condition values into M 
conditions, which is named condition slice mX  m(N J)×  here, 
where J is the number of variables. These condition slices are 
standardized, which are denoted as mX . The size of β is 
adjustable to adapt to cover enough examples.  

Step 2 (Condition-Slice-Based Modeling). Perform slow 
feature analysis (SFA) algorithm on the condition slices mX to 
get the condition-slice models for both slow parts s m,W ( J R× ) 
and  fast parts f m,W  ( J (J R)× − ), where R is the number of 
slow features (SFs). SFA combines the original variables to 
obtain new latent variables, which are arranged according to 
the change rate from slow to fast. Slow latent variables ( s,mS ), 
which are also named slow features, are generally considered 
to contain the essential information of the process, while fast 
features ( f, mS ) represent noise information. They are 
expressed as  

 s,m m s m,=S X W  (1) 

 f m m f m, ,=S X W  (2) 

Then calculate the monitoring statistics of slow features s,mS  
and fast features f, mS , and determine the control limits s,mCtr
and f mCtr , by kernel density estimation (KDE) method (Botev 
et al., 2010). The statistics of slow and fast features are 
designed as 

 2 T
s m s m s mT s s, , ,=  (3) 

 2 T
f m f m f mT s s, , ,=  (4) 

Step 3 (Condition-Segment-Based SFA Modeling). The 
characteristics of adjacent condition slices are similar to each 
other, which is reflected that the SFA models and control limits 
are also similar. These similar condition slices should be 
aggregated into large segment and modelled together, which is 
named condition segment here. Set the first condition slice (the 
kth condition slice) that have not been aggregated into segment 
as a new condition segment v k k(N J), ×X . Then add the next 
condition slice v k 1, +X k 1(N J)+ × to the segment v k 1, +X  

k k 1((N N ) J)++ × . Perform SFA on the new rearranged data 
matrix and calculate the monitoring statistic again. After that, 
the new control limits v s,k 1Ctr , + and v f k 1Ctr , , +  are obtained. 

Step 4 (Compare Model Accuracy). Compare v s,k 1Ctr , + with 

s,k 1Ctr +  and v f k 1Ctr , , + with f k 1Ctr , +  for each condition slice. If 
their relationship satisfies (5) and (6), it means that the k+1th 
conditional slice is similar to the previous condition segment, 
which should be incorporated together for modelling. 

 v s,k 1 s,k 1Ctr Ctr, α+ +≤ ∗  (5) 

 v f k 1 f k 1Ctr Ctr, , ,α+ +≤ ∗  (6) 



 
 

     

 

Here α is a constant termed relaxing factor. It determines how 
much the condition-segment SFA model is allowed to be less 
representative than the condition-slice SFA models. If the 
condition k* from which three consecutive samples cannot 
satisfy (5) and (6), we judge that the addition of the current 
condition slice is not adapted to the condition segment, which 
should be split off from the current condition segment, and set 
as the beginning of the next condition segment.  

Step 5 (Data Updating and Recursive Implementation). Repeat 
Steps 3-4 to find the condition segments until to the end. The 
characteristics within each condition segment are similar, 
while the characteristics of different condition segments are 
great difference. Therefore, each condition segment can be 
treated as a condition mode and analysed respectively.  

The illustration of SCMD algorithm is shown in Fig. 1. In 
automatic sequential condition-mode division algorithm, 
every condition slice is divided into a certain condition mode, 
paying no attention to transition processes, which is not 
consistent with the facts. Besides, SFA is a linear method, 
which is not able to explore the nonlinear relationship of the 
process. 

 

Fig. 1. The illustration of SCMD algorithm. Process data are 
divided into different condition slices, and the slices with 
similar characteristics are aggregated into the same condition 
mode.  

 

3. THE PROPOSED SOFT TRANSITION METHOD 

3.1 Motivation  

With the change of product requirements or the switching of 
operation conditions, complex nonstationary industrial 
processes may operate in different steady operations, which 
cannot be covered by the traditional monomodal method. It is 
reasonable to divide data with different characteristics into 
several modes and model them separately. However, in non-
stationary processes, transitional data are worthy of attention. 
The transition characteristics are generated between different 
steady mode switching. The characteristics of transition data 
collected at the beginning of the switch is similar to the 

previous steady data. With the change of operation condition, 
the previous model can no longer describe these transition data. 
Finally, the transition process enters into another steady 
operation. Therefore, it is inaccurate to divide the transition 
data into one steady model, which is prone to false alarm or 
missing alarm due to the insufficient descriptive ability of the 
original model.  

Under the idea of condition-driven, we further divide each 
condition mode into steady and transition submodes. For 
example, in Condition mode A, some data obtained when the 
industrial process operates stably under Condition mode A, 
while other data is collected only when the process is running 
temporarily through Condition mode A . These two kinds of 
data are different, and the latter cannot be described by Model 
A alone, which is also correlated with other models. There are 
both steady and transition submode data in the same 
conditional mode. We should divide these data and model the 
data separately. The number of condition modes according to 
the condition indicator is finite, which reduces the complexity 
of the model.  

3.2 Steady and Transition Submode Partition 

As mentioned above, steady and transition submode data may 
be falsely divided into the same condition mode. It is deemed 
that steady submode data possess similar characteristics, 
whose distribution is relatively close and compact. In contrast, 
the quantity of transition submode data is smaller and the 
characteristics are difference from others, which are more 
likely to be scattered at the edge of steady distribution. In order 
to capture the nonlinear relationship, autoencoder (AE) is 
applied to reduce the dimension of the original data, which is 
consisted with an encoder and a decoder (Bengio et al., 2013). 
The encoder reduces the dimension of the data, while the 
decoder uses low dimension features to reconstruct the original 
data. If the error of reconstruction is small, it means that these 
low dimension features have well covered the information of 
the original data, so as to achieve the purpose of dimension 
reduction. The mathematical is expressed as 

 m m=f ( )encoderF X  (7) 

 m de m=f ( )coderX̂ F  (8) 

where f ( )encoder   and f ( )decoder  are the function of encoder and 

decoder, mF are the low dimension features, and mX̂ is the 
reconstruction data. The objective of AE is to minimum mX

and mX̂ . 

Then a density-based spatial clustering method (DBSCAN) 
(Kumar, 2016) is performed on the low dimension features to 
divide the data into two submodes. DBSCAN algorithm 
defines cluster as a region of densely connected points 
separated by regions of non-dense points. The points are 
divided into three categories: core points, border points, and 
noise points. The core radius neighborr and the minimum adjacent 
points neighborN  are defined first. If a point has more than 



 
 

     

 

neighborN  points within neighborr , that point will be considered a 
core point. If a point is within the range of a core point, it is 
considered a border point. And the rest are noise points. The 
illustration of three kinds of points is shown in Fig. 2. Here, 
we consider that both core points and boundary points are 
closely distributed, which are classified as steady submode 
data, while the other points (noise points) are recognized as 
transition submode data. 

 

Fig. 2. Illustration: DBSCAN and submode partition. Different 
colors represent different categories of data.  

3.3 Steady Submode Model 

In Section 3.2, we divide the data into two submodes, and in 
this section, we establish the model for steady submode data.  

Inspired by the conditional variational autoencoder (CVAE) 
(Yan et al., 2016), we encode the information of condition 
mode as a one hot vector, which is spliced with the original 
data, thus adding the model information. For example, if there 
are C modes, the information of first mode is noted as the one 
hot vector 1 [0 0 0 1]mode, , ,..., ,=v (1 C× ). Then catenate the first 
mode data 1mode,X (N J)× with 1mode,v to get the new data 

1c_ mode,X (N (J C))× + with modal information. Put the 
catenated data 1c_ mode,X into AE for training, and its 
mathematical is written as 

 c 1 1=f ( )_ mode, c_encoder c_ mode,F X  (9) 

 1 c 1=f ( )mode, c_decoder _ mode,X̂ F  (10) 

where f ( )c_encoder   and f ( )c_decoder  are the function of encoder 
and decoder, c 1(N R)_ mode ×F ， are the low dimension features, 

R is the dimension of features and 1mode,X̂ is the reconstruction 
data. The reconstruction loss is expressed as 

  
2

reconstruction ˆ loss = X - X   (11) 

where X is the steady submode data, and X̂ is the 
reconstitution data. We apply autoencoder structure here since 
neural network method is able to capture the nonlinear 
information, which cannot be handled by SFA.  

For process monitoring, two statistics 2
kAmode, and kSPEmode, are 

designed. The former statistic monitors the principal 
component subspace, while the latter monitors the residual 
subspace, which are expressed as  

 2 1
mode k mode k mode k mode k mode k mode k( ) ( )T

, , , , , ,A −= − ∑ −f f f f  (12) 

 T
mode k mode k mode k, , ,SPE = e e  (13) 

where k is the kth mode, mode k,f is an example of c _ mode,kF , 

mode k,f  is the mean of c _ mode,kF , mode k,∑  is a diagonal matrix 
with the variance of c _ mode,kF , and e  is the residual vector. The 
control limits are estimated by KDE. The architecture of neural 
network is shown in Fig. 3. 

 

Fig. 3. The architecture of the proposed steady submode model.  

3.4 Transition Submode Model 

Even within the same condition mode, the transition data are 
generated from different condition switching, so the 
characteristics can be quite different. Transition submode data 
in one condition mode may be related to all steady submode 
models. To describe the transition data, an attention-based soft 
transition modeling method is proposed, where all the steady 
submode models are combined to explore the transition 
characteristics. The allocation of different model weights is 
estimated by attention mechanism. 

The transition data of all condition modes are noted as transX . 
Then the transX , catenated with the one hot vectors of different 
modes, are put into the trained encoder ( f ( )c_encoder  ) to obtain 
the characteristics ( c 1 c 2 c[ ]_ mode, _ mode, _ mode,C, ,...,=F F F F ) of each 
mode. For an example of transition submode data transx , every 
steady submode feature c (1 R k 1 C)_ mode,k , ,...,× =f may related 
to it. It is necessary to assign different weights to each steady 
submode feature, which can be realized by attention 
mechanism. A new encoder model is trained to obtain the 
weight assignment vector score (1 R)×v  , and calculate the 
weight of every steady submode . 

 scorev = trans encoder transf ( )_ x  (14) 

 T
k c scorew (k 1 2 C)_ mode,k , ,...,= =f v  (15) 



 
 

     

 

Then standardize the weight coefficient. 

 k
k C

i
i 1

(w )w
(w )

expˆ
exp

=

=

∑
 (16) 

The new feature is obtained by (18) 

 
C

trans k c
k 1

w _ mode,kˆ
=

= ∑f f  (17) 

Finally, train a decoder to reconstruct transf into original data. 

 trans trans coder transf ( )_deˆ =x f  (18) 

Analogously, we develop two statistics 2
transA and transSPE for 

process monitoring, which are expressed as 

 2 1( ) ( )T
trans trans trans trans trans transA −= − ∑ −f f f f  (19) 

 T
trans trans transSPE = e e  (20) 

where trans∑  is a diagonal matrix with the variance of 
T

trans trans 1 trans 2 trans[ ], , ,N, ,...,=F f f f and e  is equal to trans transˆ−x x . 

4. CASE STUDY 

In this section, the proposed method is illustrated by a 
nonstationary process of coal mill, which is one of the most 
important machines for ultrasupercritical unit of the thermal 
power plant. This machine works under varying operation 
conditions, and the coal feed rate is the key input to the coal 
mill, which is taken as the condition indicator. In this case, 35 
measured variables are collected for process monitoring. There 
are 10000 examples for training, which covers various changes 
in operation conditions. The value of coal feed rate varies from 
35.44 ton/h to 83.47 ton/h. According to previous work (Zhao 
et al., 2020), the nonstationary process can be partitioned into 
eight condition modes. The partition point of the indicator 
variable is 43.36, 44.32, 45.28, 63.04, 67.36, 76.96, and 77.92. 
As mentioned before, each condition mode contains both 
steady submode data and transition submode data. Here, we 
reduce the dimension of each condition mode data through AE, 
and the low dimensional features are clustered by DBSCAN. 
Steady and transition submode data are modelled in their 
respective methods. 

A fault case is presented to verify the performance for fault 
detection. The temperature becomes abnormal from the 750th 
samples in this case. The performance of proposed method is 
shown in Fig. 4. T2 statistic represent the principal component 
space, which is equivalent to A2, and SPE represents the 
information of the residual space. Either of these two statistics 
exceed the control limit can be considered that the fault has 
occurred (here we use the logarithm of statistics for more clear 
comparison). As shown from Fig. 4, the performance of SPE 
is more accurate than T2. It demonstrates that when the 
temperature becomes abnormal, the influence on the residual 
space is stronger than principal component space, which lead 
to earlier detection on SPE. It is noted that around the 250th 

sample, both T2 and SPE show disturbances and go beyond the 
control limits. At that time, the coal feed rate is much less than 
43.36 ton/h. There are very few similar samples in the training 
sample, so it is assumed that an anomaly has occurred. 

For comparison, another two methods are applied to explain 
the necessity of condition mode partition and soft transition 
modelling. The first method is global AE, which does not 
divide the data into different modes. The performance of 
global AE is shown in Fig. 5. According to the result, it can be 
found that there are a lot of false alarming around the 250th 
sample and the 700th example. Due to the influence of the other 
mode data, the modelling accuracy of global AE for the mode 
with fewer training samples is greatly reduced. The second 
method is hard partition method, which pays no attention to 
transition process (Zhao et al., 2020). And the performance of 
this method is shown in Fig. 6. The results show that it is 
unreasonable to hardly divide a transition sample into a steady 
submode. When the steady submode model is insufficient to 
describe the transition data, the transition data may be treated 
as an anomaly. Besides, without detailed modelling of the 
transition submode data, it may be difficult to find outliers in 
the transition process when it is directly described by a broader 
steady submode model. Therefore, the outliers around the 
1600th sample are not detected. The false alarming rates (FAR) 
and missing alarming rates (MAR) of three methods are listed 
in Table 1. 

 

 

Fig. 4. Monitoring results for two statistics using the proposed 
method. The blue line denotes the statistics and the red line 
denotes the control limit.  

 

 

Fig. 5. Monitoring results for two statistics using global AE. 
The blue line denotes the statistics and the red line denotes the 
control limit.  



 
 

     

 

 

 

Fig. 6. Monitoring results for two statistics using hard partition 
method. The blue line denotes the statistics and the red line 
denotes the control limit.  

Table 1. Monitoring comparison evaluated with FAR and 
MAR for three methods 

 The proposed 
method Global AE Hard partition 

method 
FAR 0.132 0.501 0.225 
MAR 0.000 0.000 0.310 

5. CONCLUSION 

In this work, a condition-driven soft transition modeling and 
monitoring strategy for nonstationary process is proposed. For 
each condition mode which are available by SCMD algorithm, 
the data are further divided into steady submode and transition 
submode, which are then modelled and monitored in a fine-
grained way. The changes of nonstationary process can be 
captured, which can reveal whether the process stays in one 
steady status or is switching dynamically. Based on the 
concept of condition-driven, the transition processes are easily 
identified and modelled, which is a cumbersome task for time-
driven methods since the switching along time can be very 
complex. An industrial case proves the effectiveness and 
superiority of the proposed algorithm. Compared with global 
model and hard partition model, the proposed algorithm has 
lower false alarming rate and missing alarming rate. 
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