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Abstract: The development of biopharmaceutical therapeutics, such as monoclonal antibodies, requires the 

testing of several cell lines at different development scales and the selection of the high performing cell 

lines which allow meeting the desired quality attributes of the product. In this context, data analytics, which 

is extremely useful for a better process understanding and a faster scale-up, can be used to understand the 

relation between biological information, such as cell metabolism, and process productivity.  

This study shows that monoclonal antibodies end-point titer can be estimated in the early stages of the 

industrial product development for cell line selection using information on cell metabolism dynamics. This 

allows the anticipated identification of the high-performing cell lines, and a better understanding of the 

relationships between the time evolution of both the metabolic information and the product titer.  
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1. INTRODUCTION 

In recent years there has been an increasing interest in the 

development of biopharmaceutical drugs as a response to the 

increased cost of conventional drug development, patent 

expiration, and market erosion through generic drugs. This has 

resulted in a rapid growth of the biopharmaceutical market, 

which recently assesses over 7000 drugs on development and 

more than 450 billion $ annual sales. Among the 

biopharmaceutical products, recombinant proteins, such as 

monoclonal antibodies (mAbs), are the highest selling class 

with more than 1500 drugs in the development pipeline (Hong 

et al., 2018).  

Monoclonal antibodies are an important class of therapeutic 

molecules used to treat immunological and oncological 

diseases in humans. Mammalian cell cultures, such as Chinese 

Hamster Ovary (CHO) cells, represent nowadays the preferred 

choice for mAbs production, since they guarantee enzymatic 

post-translational modification, such as glycosylation, which 

are essential for the activity and safety of mAbs (Karst et al., 

2017). The successful development of a mAb, as well as of any 

other biopharmaceutical product, is a resource intensive, time 

consuming and multiple step process (Li et al., 2010). For 

these reasons, a major challenge in biopharmaceuticals 

development is the rapid development of a robust and scalable 

process, which allows accelerating the progress of several 

mAbs into clinical trials. Thus, biopharmaceutical companies 

are increasingly looking at innovative solutions to reduce the 

drug time to market while maintaining the desired quality 

attributes in order to improve the economics of drug 

development (Rameez et al., 2014).  

The development pipeline of cell culture process for mAbs 

production typically begins selecting the best cell lines in small 

scale systems (e.g.: nanofluidic and optoelecto positioning 

systems, microwell plates, and shake flasks), which allow high 

throughput experiments. However, these systems lack the 

control of some important process parameters, such as 

agitation rate, dissolved oxygen, and pH. From this stage, the 

top cell-line candidates are isolated and further analyzed in 

fed-batch laboratory scale multi-parallel bioreactors, which 

mimic the performance of the industrial scale processes 

providing control of agitation, dissolved oxygen, and pH 

(Rameez et al., 2014). This stage enables the selection of the 

top cell lines, which will be further analyzed at bioreactor scale 

to identify the production and backup cell line.  

Such a scale-up procedure is essential to obtain the best final 

production cell line, since performance is cell line dependent. 

For this reason, several quality attributes, such as specific and 

volumetric productivity, cell growth, and product quality, are 

considered for cell selection. In particular, the volumetric 

productivity (product titer) has an important role because it 

quantifies the product concentration obtained in the bioreactor. 

Product quality can be effectively predicted through first 

principles (Duvigneau et al., 2020), data-driven or hybrid 

approaches. Data-driven methods do not require fundamental 

knowledge, and can be effectively used for early estimation of 

productivity. This class of models allow understanding the 

impact of process variables on the biopharmaceutical product 

quality, which is important to speed up and better understand 

the process development (Facco et al., 2020; Gregersen and 

Jørgensen, 1999). Furthermore, methods for quality control 

and process understanding are encouraged by regulatory 



 

 

     

 

agencies (Food and Drug Administration, 2004). Data-based 

method have rarely been applied to study the relationship 

between quality attributes and biological information (Zürcher 

et al., 2020), and studies on the early estimation of product titer 

through the biological information on cell metabolism are 

missing. Cell metabolism information can be obtained through 

untargeted metabolomics (Zhou et al., 2012), which consists 

in the collection of all the metabolites of a biological system 

with liquid chromatography mass spectrometry (LC-MS). 

Through untargeted metabolomics, information on the 

dynamics of metabolic profiles (i.e., how the metabolic profile 

of cell lines varies during the culture) can be linked to product 

titer. In this way, cells exhibiting high product titer can be 

identified observing the temporal variations in cell 

metabolism.  

In this study, two main objectives are pursued. First, 

information on the dynamics of cell metabolic profiles is used 

to early estimate product end-point titer in CHO cell cultures. 

The early identification of product titer allows: i) a reduction 

of the time required for the experimentation at the laboratory 

scale, and ii) the early identification and selection of best-

performing cell lines. The second objective is the study of the 

correlation between the product titer time profile during 

culture and the dynamics of cell metabolic profiles, because a 

better understanding of the relationship between cell 

metabolism and product titer allows the cell selection based on 

the desired metabolic traits.  

2. METHODS 

2.1  Dataset 

Cell culture data collected in the production of a human mAb 

are considered in this study. In particular, 48 CHO cell lines 

were cultured for approximatively 2 weeks in an Ambr®15 

Cell Culture apparatus (Sartorius Lab Instruments GmbH & 

Co. KG, Goettingen, Germany). Several culture process 

variables were measured at 7 time points along the 

experimental batch.  

The product titer (in mg/L), i.e., the concentration of the mAb 

in the culture, is the target quality attribute and is measured 

with Cedex Bio HT analyzer (Roche Diagnostic Corporation, 

Indianapolis, US). The measurement uncertainty is estimated 

in 6% of the measured value. 

Metabolomics data of the culture supernatant were collected 

from LC-MS measurements performed at the same 7 time 

points as product titer in 2 replicates. Samples were analyzed 

in negative ionization mode under a scan range of mass over 

charge (m/z) 50-1000 (Fuhrer et al., 2011). LC-MS 

measurements were pre-processed prior the statistical analysis 

following a standard procedure based on scan alignment, peak 

detection and modeling, peak alignment, baseline correction 

and removal of spurious peaks (Frederick et al., 2020). Then, 

metabolite identification and confirmation were performed 

prior to normalization and log-10 transformation. Several 

quality control samples were used to remove batch effects 

across different instrument runs.  

Pre-processed metabolomics data consist in log-10 

transformed intensity of 𝑀 = 4489 detected ions, which are 

characterized by their m/z. Pre-processed data are organized in 

a four-dimensional array 𝐗′ [𝑁 × 𝑀 × 𝐼 × 𝐾], where 𝑁 = 48 

cell cultures are located along the first dimension, 𝑀 ions m/z 

along the second dimension, 𝐼 = 7 time points along the third 

dimension, and 𝐾 = 2 measurement replicates along the 

fourth dimension. 

2.2  Multiway Partial Least-Squares 

In this study, multiway partial least-squares (MW-PLS; 

Nomikos and MacGregor, 1995) is considered to investigate 

the relation among cell metabolism and process performance 

and deal with multidimensional matrices. MW-PLS consists in 

a proper unfolding of multi-way data followed by a partial 

least-squares (PLS; Wold et al., 2001) modeling.  

Prior to the analysis, metabolomics data are mean centered and 

Pareto-scaled (Eriksson et al., 2006; i.e., each ion’s intensity 

divided by the square root of its standard deviation).  

 

Fig. 1. Data unfolding.  

Batch-wise unfolding (Nomikos and MacGregor, 1995) is then 

applied to 𝐗′ to take into consideration the dynamics of 

metabolomics data and the correlation structure among ion 

intensities collected at different time points during the culture 

evolution. Data collected at different time points, 𝐗𝑖  [𝑁 × 𝑀 ×
𝐾] with 𝑖 =  1, 2, … , 7, were isolated (Figure 1a) and variable-

wise unfolded by vertically concatenating measurement 

replicates (Figure 1b) to generate 𝐗𝑖  [𝑁 ∙ 𝐾 × 𝑀]. Then, data 

collected at different time points, 𝐗𝑖  (𝑖 =  1, 2, … , 7), are 

horizontally concatenated (Figure 1c) to generate matrix 𝐗 =
[𝑁 ∙ 𝐾 × 𝐼 ∙ 𝑀] = [96 × 31423], which is the batch-wise 

unfolded version of 𝐗′. Similarly, the response matrix 

𝐘′ [𝑁 × 1 × 𝐼] (i.e., product titer) is variable-wise unfolded by 

vertically concatenating two copies of 𝐘′ in 𝐘′′ [𝑁 ∙ 𝐾 × 1 ×



 

 

     

 

𝐼], in such a way as to match measurement replicates in 𝐗. 

Then, 𝐘′′ is batch-wise unfolded and product titers measured 

along culture evolution are horizontally concatenated to 

generate matrix 𝐘 = [𝑁 ∙ 𝐾 × 𝐼] = [96 × 7]. 

PLS is then applied. PLS is a linear multivariate regression 

model which relates the matrix 𝐗 [𝑁 ∙ 𝐾 × 𝐼 ∙ 𝑀] of 𝐼 ∙ 𝑀 

regressors (i.e., the time profiles of collected ions) for 𝑁 ∙ 𝐾 

observations (i.e., experimental batches with replicates) to a 

matrix 𝐘 [𝑁 ∙ 𝐾 × 𝐼] of I responses (i.e., the time profile of the 

titer) for the same observations. PLS decomposes both 

matrices 𝐗 and 𝐘 into a reduced space of 𝐴 orthogonal latent 

variables (LVs) according to: 

𝐗 = 𝐓𝐏T +  𝐄     (1) 

𝐘 = 𝐔𝐐T + 𝐅,  (2) 

where 𝐏T [𝐴 × 𝐼 ∙ 𝑀] and 𝐐T [𝐴 × 𝐼] are the transpose of the 

loading matrices of 𝐗 and 𝐘, respectively, 𝐓 [𝑁 ∙ 𝐾 × 𝐴] and 

𝐔 [𝑁 ∙ 𝐾 × 𝐴] are the score matrices of 𝐗 and 𝐘, respectively, 

and 𝐄 [𝑁 ∙ 𝐾 × 𝐼 ∙ 𝑀] and 𝐅 [𝑁 ∙ 𝐾 × 𝐼] are the residual 

matrices of 𝐗 and 𝐘, respectively, which are minimized in a 

least square sense. The loadings describe how the metabolites 

time profiles are correlated and combined to generate the 

subspace of LVs, while the scores describe how the 

experimental batches are related with respect to how 𝐗 and 𝐘 

covary, namely with respect to the covariance structure among 

both the metabolites time profiles and the titer time profile.  

In PLS, weights are introduced to preserve the orthogonality 

among LVs scores and estimate the response �̂� form the 

observations:  

�̂� = 𝐗 𝐖 (𝐏T𝐖)−𝟏 𝐐T   , (3) 

where 𝐖 [𝐼 ∙ 𝑀 × 𝐴] is the weight matrix. Additionally, 

weights are used to calculate the model scores 𝐓𝑛𝑒𝑤 of new 

observations 𝐗𝑛𝑒𝑤  as: 

𝐓𝑛𝑒𝑤 = 𝐗𝑛𝑒𝑤𝐖 (𝐏T𝐖)−𝟏   , (4) 

and predict the response associated to the new observations: 

�̂�𝑛𝑒𝑤 =  𝐗𝑛𝑒𝑤  𝐖 (𝐏T𝐖)−𝟏 𝐐T   . (5) 

2.3  Evolving Partial Least-Squares 

An evolving PLS model (E-PLS; Ramaker et al., 2005) is used 

for the real-time estimation of the product end-point titer. E-

PLS is a multi-model strategy (Figure 2) that at the i-th time 

point builds a PLS model on matrix 𝐗𝑖 = [𝐗1, 𝐗2, … , 𝐗𝑖], the 

batch-wise unfolded dataset of dimension [𝑁 ∙ 𝐾 × 𝑖 ∙ 𝑀] of 

the metabolomics data up to i-th time point, and the end-point 

titer, the response variable 𝐘𝐸  [𝑁 ∙ 𝐾 × 1] that contains the 

product titer at 7th time point. 

For both MW-PLS and E-PLS, the number of LVs was 

selected through a 9-fold cross-validation (Geladi and 

Kowalski, 1986). Model performance is evaluated through a 

250-iteration Monte Carlo cross-validation, which consists in 

a random division of the dataset in calibration and validation 

samples (88% and 12% of the dataset, respectively). In cross-

validation both measurement replicates of a sample are 

included either in the calibration dataset or in the validation 

one.  

 

Fig. 2. E-PLS building procedure.  

2.4  Variable selection 

The selection of the most relevant variables (i.e., ions) for the 

PLS model improves performance, removes redundant and 

noisy variables, and allows a better interpretation and 

understanding of the system (Mehmood et al., 2012). In this 

study, variable selection was performed through a bootstrap 

procedure (Afanador et al., 2013) on the variable importance 

in prediction (VIP; Eriksson et al., 2006) index. The VIP score 

of an ion at a specific time point, v, is defined as:  

VIP𝑣 =
√𝐼∙𝑀 ∑ 𝑅𝑌,𝑎

2𝐴
𝑎=1 𝑤𝑣,𝑎

2

√∑ 𝑅𝑌,𝑎
2𝐴

𝑎=1

   ,  (6) 

where 𝑅𝑌,𝑎
2  is the variance of the response explained by the a-

th LV of the model, and 𝑤𝑣,𝑎 is the weight of the v-th ion and 

a-th LV.  

The bootstrap procedure allows assessing the variability in 

variables’ importance in order to perform a robust selection of 

the most influential variables for the titer prediction. This 

methodology retains only those variables whose VIP scores 

remain high independently of the available subset of samples 

in the validatory iterations. In particular, the bootstrap 

procedure was performed through p = 250 iterations. At each 

iteration, a PLS model was built by excluding a randomly 

selected 12% of the available samples, and following 3 steps 

over the results of the p iterations:  

1. calculation of VIP index standard deviation of each ion; 

2. calculation of the 5th percentile (𝛼 = 0.1) of the VIP-

index distribution for each ion, under the assumption 

that that VIPs are distributed according to a Student’s t 

distribution. Then, the 5th percentile is calculated 

through: �̂�VIP𝑖𝑚
𝑡1−𝛼 2⁄ ,𝑝−1, where 𝑡1−𝛼 2⁄ ,𝑝−1 identifies 

the 5% confidence threshold of a t-distribution with 

(𝑝 − 1) degrees of freedom and variance �̂�VIP𝑖𝑚
 

determined from the values of the VIP index for each 

ion im over p iterations;  

3. selection of the 5% top ranked variables according to 

the 5th percentile. This percentage of selected ions 

provides good model performance without retaining an 



 

 

     

 

excessive number of variables, thus allowing an easier 

interpretation of the results.  

The selected variables are then organized in a matrix 𝐗𝑠  [𝑁 ∙
𝐾 × 𝑉] of much reduced dimension (𝑉 ≪ 𝐼 ∙ 𝑀), which is used 

to train updated versions of the abovementioned models 

(similarly to Sections 2.2 and 2.3) which show improved 

prediction performance.  

3. RESULTS AND DISCUSSIONS 

3.1  Early estimation of product titer 

The early estimation of product end-point titer 𝐘𝐸 is performed 

using E-PLS model from the dynamics of cell metabolic 

profiles. The estimation performance with variable selection is 

shown in Table 1, where the estimation accuracy is reported in 

terms of: determination coefficients in calibration 𝑅𝑌
2 and in 

validation 𝑄2, average absolute estimation error 𝜀  ̅in validation 

and ratio between the average absolute error in validation and 

the variability of the calibration data 𝜀 ̅ 𝜎𝑐𝑎𝑙⁄ . 

Table 1.  Validation estimation performance of E-PLS 

with variable selection for the early estimation of end-

point titer 

Time point  𝑅𝑌
2 [%] 𝑄2 [%] 𝜀  ̅[mg/L] 𝜀 ̅ 𝜎𝑐𝑎𝑙⁄  [%] 

1 95.9 43.4 412.0 45.6 

2 98.3 66.0 329.2 36.5 

3 96.8 64.1 346.9 38.5 

4 96.5 63.4 348.0 38.5 

5 94.8 65.8 320.3 35.3 

6 92.8 63.5 323.3 35.6 

7 93.1 65.3 320.3 35.2 

 

Apart from good fitting performance in calibration (𝑅𝑌
2 >

90% for all the time points), E-PLS with variable selection 

provides satisfactory estimation in validation with 𝑄2>40% 

and 𝜀 ̅ 𝜎𝑐𝑎𝑙⁄ <50%, especially after time point 2. The estimated 

values are close or within the instrumental measurement 

uncertainty and always smaller than 𝜎𝑐𝑎𝑙 . Accordingly, cell 

lines exhibiting high end-point titer can be identified through 

the proposed methodology very early. In fact, even at time 

point 2 (i.e., few days after the beginning of the experiment), 

the end-point titer is estimated with high accuracy (𝜀  ̅ < 330 

mg/L, with an error 𝜀 > 800 mg/L, namely 𝜀 𝜎𝑐𝑎𝑙⁄  > 87% only 

in 6.6% of the predictions). According to these results, the 

dynamics of cell metabolic profiles represents a good indicator 

of cell performances and could be exploited for the early 

screening of cell lines behavior.  

Since E-PLS with variable selection provides a sufficiently 

accurate estimation of end-point titer, it can be used to select 

cell lines from the early stages of the cell culture. An example 

of early estimation of end-point titer is presented for two cell 

lines exhibiting high and low product titer. Figure 3 reports the 

real end-point titer (dashed line) compared to the estimated one 

(lines with circles/squares) at all time points for the two cell 

lines (in different colors). A clear difference in the expected 

end-point titer of the two cells is visible at all time points, even 

when only time point 1 is considered. In fact, an error ~400 

mg/L is found at that time point, which still provides an 

indication of the expected end-point titer. A more accurate 

estimation (𝜀  ̅< 200 mg/L) is obtained for both cell lines after 

time points 2. Based on these results, the proposed model 

allows an accurate early estimation of the end-point titer since 

the first week of culture. In this way, high-performing cell 

lines can be identified in few days after the beginning of the 

culture, while the low-performing cells can be discarded. 

Furthermore, the model suggests a considerable reduction 

(~50% - 80%) in the experiment duration because, even with 

a reduced experiment length the screening capability is 

satisfactory. 

 

Fig. 3. Example of E-PLS estimation with variable selection 

for two cell lines: real and estimated end-point titers are 

compared at all time points. Shaded areas report the 6% 

measurement uncertainty. For confidentiality reasons the y-

axis scale is normalized between 0 and 1. 

3.2  Study of the correlation between product titer time 

profile and the dynamics of metabolic profiles 

An in-depth understanding of the relation among the cell 

metabolism and the process performance can be achieved by 

studying the correlation between the product titer time profile 

and the dynamics of metabolic profiles. To this purpose, a 

MW-PLS model was built to estimate the product titer time 

profile (𝐘) from the metabolic dynamic profiles (𝐗). 

The performance of MW-PLS with variable selection is shown 

in Figure 4. A four-LV model, capturing 87.1% of 𝐘 variability 

by means of 30.5% of 𝐗 variability, was built. Even if this 

model does not provide good estimations of the product titer 

at time points 1 and 2 (𝑄2 < 30% and 𝜀 ̅ 𝜎𝑐𝑎𝑙⁄ > 55%), proving 

that in the early stages of the culture the dynamics of cell 

metabolic profiles does not contain a fingerprint of product 

titer (because the metabolic information regarding product 

titer is partially hidden by measurement noise and 

unsystematic variability related to other phenotypes or 

inherent cell variability), from time point 3 on MW-PLS with 

variable selection estimates product titer with relatively small 

error (𝑄2 > 50% and 𝜀 ̅ 𝜎𝑐𝑎𝑙⁄ < 45%). This means that, from time 

point 3, product titer leaves a fingerprint on the dynamics of 

cell metabolic profiles. As a consequence, this allows a better 

understanding of the metabolic traits which are typical of the 

most promising cell lines to be progressed in the scale-up. 
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Fig. 4. Validation estimation performance of the MW-PLS 

with variable selection for the product titer time profile from 

the dynamics of metabolic profiles. 

The typical 𝐘 loading plot of the model in one iteration of the 

cross-validation (Figure 5) shows both the auto-correlation 

between product titer at different time points and its 

relationship with the variability of the dynamics of metabolic 

profiles captured by model LVs. The first LV (plain blue bars) 

shows high positive values from time point 4 on, indicating a 

positive auto-correlation in titer. Differently, 𝐘 loadings of LV 

2 (striped gray bars) show high positive values between time 

points 1 and 4, indicating a positive auto-correlation in titer in 

the first week of culture. The fact that the model captures 

product titer variability in the first part of the culture (time 

point 1 to 4) and in the second part of the culture (time point 4 

to 7) with 2 LVs, which are orthogonal by definition, means 

that distinct and independent metabolic phenomena are related 

to product titer in these two phases of the culture. Since these 

phenomena are independent, cell lines can show titer below the 

average in the initial part of the culture, while showing titer 

above the average in the final part of the culture (and the 

opposite occurs, as well). 

 

Fig. 5. MW-PLS with variable selection for the estimation of 

product titer time profile from the dynamics of metabolic 

profiles: 𝐘 loading plot of one cross-validation iteration. 

MW-PLS scores show in a single point the entire dynamics of 

metabolic profiles, and together with 𝐘 loadings allow to 

understand the relationship between the dynamics of 

metabolic profiles and the product titer at each time point. 

Figure 6 shows that the first LV relates a large portion of 𝐗 

variability (21.2%) to 52.9% of 𝐘 variability, capturing the 

largest part of metabolic variability related to product titer. The 

second LV relates a very small portion of 𝐗 variability (3.5%) 

to one fifth of 𝐘 variability (21.1%).  

 
(a) 

 
(b) 

 
(c) 

Fig. 6. MW-PLS with variable selection for the estimation of 

product titer time profile from the dynamics of metabolic 

profiles, score space of the first two LVs: (a) calibration and 

validation samples, (b) mapping of cell lines with high titer at 

time points 1 and 7, and (c) mapping of cell lines with high 

titer at time point 1 and low titer at time point 7. 

The score space can be effectively used to map the cell lines 

according to product titer time profile. Figure 6a shows that 

the cell lines with high product titer at time points 1 and 7 are 

typically located in the first quadrant. These samples generate 

a compact cluster (blue diamonds), indicating high similarity 

in the metabolic profiles dynamics. Similarly, Figure 6b shows 

that the cell lines with low product titer at time point 1, but 

high product titer at time point 7 are typically located in the 

fourth quadrant. This group of cells (orange triangles) achieves 
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high product titer at the end of the culture, despite beginning 

to produce later during the culture.  

Finally, it should be highlighted that the proposed model can 

correctly map the validation samples, namely, new unknown 

cell lines that are not included into the model. As an example, 

two validation cell lines are projected onto the score space 

(Figure 6c). The cell line exhibiting high product titer at time 

point 1 and low product titer at time point 7 (red dot) is 

correctly mapped in the third quadrant. Similarly, the cell line 

exhibiting average titer at time point 1 and high product titer 

at time point 7 (green star) is correctly mapped in the first 

quadrant.  

4. CONCLUSIONS 

In this work we proposed a multivariate multi-way approach 

to deal with metabolomics time profiles to allow an informed 

screening and an early selection of the cell lines that are good 

candidates to be progressed in the scale-up because they 

exhibit high productivity at the Ambr® 15 scale. The proposed 

methodology aids to significantly speed up the screening 

process, since low performing cultures can be aborted before 

their natural end, while the early estimation of product end-

point titer allows a 50% reduction of the experiment duration. 

Furthermore, the estimation performance of the product titer 

time profile from the dynamics of metabolic profiles 

guaranteed a better understanding of the relationship between 

biological information (i.e., the evolution of cell metabolism) 

and process performance (product titer in this case). The 

proposed approach is general and can be easily extended to 

other biopharmaceutical processes.  

Future developments will be oriented to the identification of 

the metabolic pathways and the networks of cellular reactions 

that characterize a product of desired quality attributes. In 

particular, the goal will be that of providing a methodology for 

interpreting the parameters of the data-based model in order to 

understand the relation between process behavior and 

biological functions. 
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